Endogenous Retroviral Elements in Human Development and Central Nervous System Embryonal Tumors
Abstract
:1. Discovery of Endogenous Retroviruses
2. Expression/Regulation of HML-2 in Early Development
3. HERV-K Expression Is Associated with Stemness Markers
4. HML-2 Expression in Cancer
5. Endogenous Retroviral Element Expression as a Target for Treatment
6. Endogenous Retroviral Element Expression as a Clinical Prognosticator
7. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Todaro, G.J.; Huebner, R.J. N.A.S. symposium: New evidence as the basis for increased efforts in cancer research. Proc. Natl. Acad. Sci. USA 1972, 69, 1009–1015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baltimore, D. Tumor viruses. Cold Spring Harb. Symp. Quant. Biol. 1975, 39 Pt 2, 1187–1200. [Google Scholar] [CrossRef]
- Weiss, R.A. The discovery of endogenous retroviruses. Retrovirology 2006, 3, 67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crawford, L.V.; Crawford, E.M. The properties of Rous sarcoma virus purified by density gradient centrifugation. Virology 1961, 13, 227–232. [Google Scholar] [CrossRef]
- Temin, H.M. Separation of morphological conversion and virus production in Rous sarcoma virus infection. Cold Spring Harb. Symp. Quant. Biol. 1962, 27, 407–414. [Google Scholar] [CrossRef]
- Temin, H.M. Nature of the provirus of Rous sarcoma. Nat. Cancer Inst. Monogr. 1964, 17, 557–570. [Google Scholar]
- Dougherty, R.M.; Stefano, H.S.D. Lack of relationship between infection with avian leukosis virus and the presence of COFAL antigen in chick embryos. Virology 1966, 29, 586–595. [Google Scholar] [CrossRef]
- Baltimore, D. RNA-dependent DNA polymerase in virions of RNA tumor viruses. Nature 1970, 226, 1209–1211. [Google Scholar] [CrossRef]
- Temin, H.M.; Mizutani, S. RNA-dependent DNA polymerase in virions of Rous sarcoma virus. Nature 1970, 226, 1211–1213. [Google Scholar] [CrossRef]
- Lander, E.S.; Linton, L.M.; Birren, B.; Nusbaum, C.; Zody, M.C.; Baldwin, J.; Devon, K.; Dewar, K.; Doyle, M.; FitzHugh, W.; et al. Initial sequencing and analysis of the human genome. Nature 2001, 409, 860–921. [Google Scholar]
- Mager, D.L.; Stoye, J.P. Mammalian Endogeouns Retoviruses. Microbiol. Spectr. 2015, 3, MDNA3-0009-2014. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aitchison, J.D.; Blobel, G.; Rout, M.P. Nup120p: A yeast nucleoporin required for NPC distribution and mRNA transport. J. Cell Biol. 1995, 131 Pt 2, 1659–1675. [Google Scholar] [CrossRef]
- Kämmerer, U.; Germeyer, A.; Stengel, S.; Kapp, M.; Denner, J. Human endogenous retrovirus K (HERV-K) is expressed in villous and extravillous cytotrophoblast cells of the human placenta. J. Reprod. Immunol. 2011, 91, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Grow, E.J.; Flynn, R.A.; Chavez, S.L.; Bayless, N.L.; Wossidlo, M.; Wesche, D.J.; Martin, L.; Ware, C.B.; Blish, C.A.; Change, H.Y.; et al. Intrinsic retroviral reactivation in human preimplantation embryos and pluripotent cells. Nature 2015, 522, 221–225. [Google Scholar] [CrossRef] [Green Version]
- Medstrand, P.; Mager, D.L. Human-specific integrations of the HERV-K endogenous retrovirus family. J. Virol. 1998, 72, 9782–9787. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sauter, M.; Schommer, S.; Kremmer, E.; Remberger, K.; Dölken, G.; Lemm, I.; Buck, M.; Best, B.; Neumann-Haefelin, D.; Mueller-Lantzsch, N. Human endogenous retrovirus K10: Expression of Gag protein and detection of antibodies in patients with seminomas. J. Virol. 1995, 69, 414–421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Löwer, R.; Löwer, J.; Kurth, R. The viruses in all of us: Characteristics and biological significance of human endogenous retrovirus sequences. Proc. Natl. Acad. Sci. USA 1996, 93, 5177–5184. [Google Scholar] [CrossRef] [Green Version]
- Seniuta, N.B.; Kleĭman, A.M.; Triakin, A.; Karseladze, A.I.; Shelepova, V.M.; Tiuliandin, S.A.; Gurtsevic, V.E.; Aitchison, J.D.; Blobel, G.; Rout, M.P. Nup120p: Antibodies to structural proteins of endogenous retrovirus of the HERV-K/HDTV family as markers of human germ cell tumors. Vopr. Virusol. 2006, 51, 17–21. [Google Scholar]
- Subramanian, R.P.; Wildschutte, J.H.; Russo, C.; Coffin, J.M. Identification, characterization, and comparative genomic distribution of the HERV-K (HML-2) group of human endogenous retroviruses. Retrovirology 2011, 8, 90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, W.; Yang, L.; Harris, R.S.; Lin, L.; Olson, T.L.; Hamele, C.E.; Feith, D.J.; Loughran, T.P., Jr.; Poss, M. Retrovirus insertion site analysis of LGL leukemia patient genomes. BMC Med. Genom. 2019, 12, 88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manghera, M.; Douville, R.N. Endogenous retrovirus-K promoter: A landing strip for inflammatory transcription factors? Retrovirology 2013, 10, 16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, T.; Medynets, M.; Johnson, K.R.; Doucet-O’Hare, T.T.; DiSanza, B.; Li, W.; Xu, Y.; Bagnell, A.; Tyagi, R.; Sampson, K.; et al. A landing strip for inflammatory transcription factors? Retrovirology 2013, 10, 16. [Google Scholar]
- Cardelli, M.; van Doorn, R.; Larcher, L.; Donato, M.D.; Piacenza, F.; Pierpaoli, E.; Giacconi, R.; Malavolta, M.; Rachakonda, S.; Gruis, N.A.; et al. Association of HERV-K and LINE-1 hypomethylation with reduced disease-free survival in melanoma patients. Epigenomics 2020, 12, 1689–1706. [Google Scholar] [CrossRef] [PubMed]
- Dolci, M.; Favero, C.; Toumi, W.; Favi, E.; Tarantini, L.; Signorini, L.; Basile, G.; Bollati, V.; D’Alessandro, S.; Bagnoli, P.; et al. Human Endogenous Retroviruses Long Terminal Repeat Methylation, Transcription, and Protein Expression in Human Colon Cancer. Front. Oncol. 2020, 10, 569015. [Google Scholar] [CrossRef]
- Schorn, A.J.; Gutbrod, M.J.; LeBlanc, C.; Martienssen, R. LTR-Retrotransposon Control by tRNA-Derived Small RNAs. Cell 2017, 170, 61–71.e11. [Google Scholar] [CrossRef] [Green Version]
- Gao, L.; Wu, K.; Liu, Z.; Yao, X.; Yuan, S.; Tao, W.; Yi, L.; Yu, G.; Hou, Z.; Fan, D.; et al. Chromatin Accessibility Landscape in Human Early Embros and Its Association with Evolution. Cell 2018, 173, 248–259.e15. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Lee, M.-H.; Henderson, L.; Tyagi, R.; Bachani, M.; Steiner, J.; Campanac, E.; Hoffman, D.A.; von Geld-hern, G.; Johnson, K.; et al. Human endogenous retrovirus-K contributes to motor neuron disease. Sci. Transl. Med. 2015, 7, 307ra153. [Google Scholar] [CrossRef] [PubMed]
- Nair, V.P.; Liu, H.; Ciceri, G.; Jungverdorben, J.; Frishman, G.; Tchieu, J.; Cederquist, G.T.; Rothenaigner, I.; Schorpp, K.; Klepper, L.; et al. Activation of HERV-K(HML-2) disrupts cortical patterning and neuronal differentiation by increasing NTRK3. Cell Stem Cell 2021, 28, 1566–1581.e8. [Google Scholar] [CrossRef]
- McGregor, L.M.; Baylin, S.B.; Griffin, C.A.; Hawkins, A.L.; Nelkin, B.D. Molecular cloning of the cDNA for human TrkC (NTRK3), chromosomal assignment, and evidence for a splice variant. Genomics 1994, 22, 267–272. [Google Scholar] [CrossRef]
- Doucet-O’Hare, T.T.; DiSanza, B.L.; DeMarino, C.; Atkinson, A.L.; Rosenblum, J.S.; Henderson, L.J.; Johnson, K.R.; Kowalak, J.; Garcia-Montojo, M.; Allen, S.J.; et al. SMARCB1 deletion in atypical teratoid rhabdoid tumors results in human endogenous retrovirus K (HML-2) expression. Sci. Rep. 2021, 11, 12893. [Google Scholar] [CrossRef] [PubMed]
- Fuchs, N.V.; Loewer, S.; Daley, G.Q.; Izsvák, Z.; Löwer, J.; Löwer, R. Human endogenous retrovirus K (HML-2) RNA and protein expression is a marker for human embryonic and induced pluripotent stem cells. Retrovirology 2013, 10, 115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, F.; Li, M.; Wei, Y.; Lin, K.; Lu, Y.; Shen, J.; Johanning, G.L.; Wang-Johanning, F. Activation of HERV-K Env protein is essential for tumorigenesis and metastasis of breast cancer cells. Oncotarget 2016, 7, 84093–84117. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Radvanyi, L.; Yin, B.; Rycaj, K.; Li, J.; Chivukula, R.; Lin, K.; Lu, Y.; Shen, J.; Chang, D.Z.; et al. Downregulation of Human Endogenous Retrovirus Type K (HERV-K) Viral env RNA in Pancreatic Cancer Cells Decreases Cell Proliferation and Tumor Growth. Clin. Cancer Res. 2017, 23, 5892–5911. [Google Scholar] [CrossRef] [Green Version]
- Iramaneerat, K.; Rattanatunyong, P.; Khemapech, N.; Triratanachat, S.; Mutirangura, A. HERV-K hypomethylation in ovarian clear cell carcinoma is associated with a poor prognosis and platinum resistance. Int. J. Gynecol. Cancer. 2011, 21, 51–57. [Google Scholar] [CrossRef]
- Ma, W.; Hong, Z.; Liu, H.; Chen, V.; Ding, L.; Liu, Z.; Zhou, F.; Yuan, Y. Human Endogenous Retroviruses-K (HML-2) Expression is Correlated with Prognosis and Progress of Hepatocellular Carcinoma. Biomed. Res. Int. 2016, 2016, 8201642. [Google Scholar] [CrossRef]
- Golan, M.; Hizi, A.; Resau, J.H.; Yaal-Hahoshen, N.; Reichman, H.; Keydar, I.; Tsarfaty, I. Human endogenous retrovirus (HERV-K) reverse transcriptase as a breast cancer prognostic marker. Neoplasia 2008, 10, 521–533. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leruste, A.; Tosello, J.; Ramos, R.N.; Tauziède-Espariat, A.; Brohard, S.; Han, Z.-Y.; Beccaria, K.; Andrianteranagna, M.; Caudana, P.; Nikolic, J.; et al. Clonally Expanded T Cells Reveal Immunogenicity of Rhabdoid Tumors. Cancer Cell 2019, 36, 597–612. [Google Scholar] [CrossRef] [PubMed]
- Nemes, K.; Frühwald, M.C. Emerging therapeutic targets for the treatment of malignant rhabdoid tumors. Expert Opin. Ther. Targets 2018, 22, 365–379. [Google Scholar] [CrossRef]
- Del Baldo, G.; Carta, R.; Alessi, I.; Merli, P.; Agolini, E.; Rinelli, M.; Boccuto, L.; Milano, G.M.; Serra, A.; Carai, A.; et al. Rhabdoid Tumor Predisposition Syndrome: From Clinical Suspicion to General Management. Front. Oncol. 2021, 11, 586288. [Google Scholar] [CrossRef]
- Bronson, D.L.; Fraley, E.E.; Frogh, J.; Kalter, S.S. Induction of retrovirus particles in human testicular tumor (Tera-1) cell cultures: An electron microscopic study. J. Natl. Cancer Inst. 1979, 63, 337–339. [Google Scholar]
- Herbst, H.; Sauter, M.; Mueller-Lantzsch, N. Expression of human endogenous retrovirus K elements in germ cell and trophoblastic tumors. Am. J. Pathol. 1996, 149, 1727–1735. [Google Scholar]
- Ruprecht, K.; Ferreira, H.; Flockerzi, A.; Wahl, S.; Sauter, M.; Mayer, J.; Mueller-Lantzsch, N. Human endogenous retrovirus family HERV-K(HML-2) RNA transcripts are selectively packaged into retroviral particles produced by the human germ cell tumor line Tera-1 and originate mainly from a provirus on chromosome 22q11.21. J. Virol. 2008, 82, 10008–10016. [Google Scholar] [CrossRef] [Green Version]
- Sauter, M.; Roemer, K.; Best, B.; Afting, M.; Schommer, S.; Hartmann, M.; Meuller-Lantzsch, N. Specificity of antibodies directed against Env protein of human endogenous retroviruses in patients with germ cell tumors. Cancer Res. 1996, 56, 4362–4365. [Google Scholar]
- DeSisto, J.; Lucas, J.T., Jr.; Xu, K.; Donson, A.; Lin, T.; Sanford, B.; Wu, G.; Tran, Q.T.; Hedges, D.; Hsu, C.-Y.; et al. Comprehensive molecular characterization of pediatric radiation-induced high-grade glioma. Nat. Commun. 2021, 12, 5531. [Google Scholar] [CrossRef] [PubMed]
- Moxon-Emre, I.; Dahl, C.; Ramaswamy, V.; Bartels, U.; Tabori, U.; Huang, A.; Cushing, S.L.; Papaioannou, V.; Laperriere, N.; Bouffet, E.; et al. Hearing loss and intellectual outcome in children treated for embryonal brain tumors: Implications for young children treated with radiation sparing approaches. Cancer Med. 2021, 10, 7111–7125. [Google Scholar] [CrossRef] [PubMed]
- Ishida, T.; Obata, Y.; Ohara, N.; Matsushita, H.; Sato, S.; Uenaka, A.; Saika, T.; Miyamura, T.; Chayama, K.; Nakamura, Y.; et al. Identification of the HERV-K gag antigen in prostate cancer by SEREX using autologous patient serum and its immunogenicity. Cancer Immun. 2008, 8, 15. [Google Scholar] [PubMed]
- Dervan, E.; Bhattacharyya, D.D.; McAuliffe, J.D.; Khan, F.H.; Glynn, S.A. Ancient Adversary—HERV-K(HML-2) in Cancer. Front. Oncol. 2021, 11, 658489. [Google Scholar] [CrossRef]
- Wang-Johanning, F.; Rycaj, K.; Plummer, J.B.; Li, M.; Yin, B.; Frerich, K.; Garza, J.G.; Shen, J.; Lin, K.; Yan, P.; et al. Immunotherapeutic potential of anti-human endogenous retrovirus-K envelope protein antibodies in targeting breast tumors. J. Natl. Cancer Inst. 2012, 104, 189–210. [Google Scholar] [CrossRef]
- Rycaj, K.; Plummer, J.B.; Yin, B.; Li, M.; Garza, J.; Radvanyi, L.; Ramondetta, L.M.; Lin, K.; Johanning, G.L.; Tang, D.G.; et al. Cytotoxicity of human endogenous retrovirus K-specific T cells toward autologous ovarian cancer cells. Clin. Cancer Res. 2015, 21, 471–483. [Google Scholar] [CrossRef] [Green Version]
- Cherkasova, E.; Scrivani, C.; Doh, S.; Doh, S.; Weisman, Q.; Takahashi, Y.; Harashima, N.; Yokoyama, H.; Srinivasan, R.; Linehan, W.M.; et al. Detection of an Immunogenic HERV-E Envelope with Selective Expression in Clear Cell Kidney Cancer. Cancer Res. 2016, 76, 2177–2185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takahashi, Y.; Harashima, N.; Kajigaya, S.; Yokoyama, H.; Cherkasova, E.; McCoy, J.P.; Hanada, K.-I.; Mena, O.; Kurlander, R.; Tawab, A.; et al. Regression of human kidney cancer following allogeneic stem cell transplantation is associated with recognition of an HERV-E antigen by T cells. J. Clin. Investig. 2008, 118, 1099–1109, Erratum in J. Clin. Investig. 2008, 118, 1584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berkhout, B.; Jebbink, M.; Zsíros, J. Identification of an active reverse transcriptase enzyme encoded by a human endogenous HERV-K retrovirus. J. Virol. 1999, 73, 2365–2375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rossi, A.; Russo, G.; Puca, A.; La Montagna, R.; Caputo, M.; Mattioli, E.; Lopez, M.; Giordano, A.; Pentimalli, F. The antiretroviral nucleoside analogue Abacavir reduces cell growth and promotes differentiation of human medulloblastoma cells. Int. J. Cancer. 2009, 125, 235–243. [Google Scholar] [CrossRef]
- Giovinazzo, A.; Balestrieri, E.; Petrone, V.; Argaw-Denboba, A.; Cipriani, C.; Miele, M.T.; Grelli, S.; Sinibaldi-Vallebona, P.; Matteucci, C. The Concomitant Expression of Human Endogenous Retroviruses and Embryonic Genes in Cancer Cells under Microenvironmental Changes is a Potential Target for Antiretroviral Drugs. Cancer Microenviron. 2019, 12, 105–118. [Google Scholar] [CrossRef]
- Ibba, G.; Piu, C.; Uleri, E.; Serra, C.; Dolei, A. Disruption by SaCas9 Endonuclease of HERV-Kenv, a Retroviral Gene with Oncogenic and Neuropathogenic Potential, Inhibits Molecules Involved in Cancer and Amyotrophic Lateral Sclerosis. Viruses 2018, 10, 412. [Google Scholar] [CrossRef] [Green Version]
- Kleiman, A.; Senyuta, N.; Tryakin, A.; Sauter, M.; Karseladze, A.; Tjulandin, S.; Gurtsevitch, V.; Meuller-Lantzsch, N. HERV-K(HML-2) GAG/ENV antibodies as indicator for therapy effect in patients with germ cell tumors. Int. J. Cancer 2004, 110, 459–461. [Google Scholar] [CrossRef]
- Grabski, D.F.; Ratan, A.; Gray, L.R.; Bekiranov, S.; Rekosh, D.; Hammarskjold, M.-L.; Rasmussen, S.K. Upregulation of human endogenous retrovirus-K (HML-2) mRNAs in hepatoblastoma: Identification of potential new immunotherapeutic targets and biomarkers. J. Pediatr. Surg. 2021, 56, 286–292. [Google Scholar] [CrossRef] [PubMed]
Cancer Type | Biomarker Detected/HML-2 Component Targeted | Observation | Ref |
---|---|---|---|
Seminoma cells | Antibodies targeting N terminal of HML-2 gag protein | Protein expressed in cytoplasm of cells and antibodies against this protein were detected in 2–4% patients | [16] |
Germ-cell tumors | HML-2 gag and env antibodies in patients | HERV-K/ HTDV gag and env antibodies expressed in germ-cell tumors | [18] |
LGL leukemia | Polymorphic HML-2 loci in human genomes | LGL leukemia patients carry higher burden of polymorphic HERV-K proviruses compared to individuals from thousand genomes project of European ancestry | [20] |
Melanoma | HML-2 hypomethylation | Independent predictor of disease progression, hypomethylation correlated with reduced disease-free survival | [23] |
Colon cancer | HML-2 promoter hypomethylated, higher transcription in tumor, env protein in tumor only | HML-2 hypomethylation in tumor leads to its transcription and translation in tumor tissue | [24] |
AT/RT | HML-2 env protein expression in AT/RT patient tissue, HML-2 transcription in AT/RT cells | Targeted decrease of HML-2 expression results in decreased proliferation and viability of ATRT cells | [30] |
Ovarian clear cell carcinoma | Hypomethylation of HML-2, transcription of HML-2 | Hypomethylation of HERV-K leads to higher expression and was associated with a poor prognosis and platinum resistance | [34] |
Hepatocellular carcinoma | HML-2 expression detected in patient samples with qRT-PCR | Level of HML-2 transcription was independent prognostic factor for overall survival rate of hepatocellular carcinoma patients, higher level yielded worse prognosis | [35] |
Breast cancer | HML-2 reverse transcriptase protein expression in patient samples | RT protein expression in patients correlates with poor prognosis for disease-free patients and their overall survival | [36] |
Rhabdoid tumors | HML-2 Expression in rhabdoid tumors with SMARCB1 mutations | SMARB1 absence leads to re-expression of multiple endogenous retroviruses, including HML-2 | [37] |
Germ-cell tumors | Retroviral particles bud from cells after treatment with 5-iodo-2’-deoxyuridine and dexamethasone | Germ-cell tumor cells treated with an antiviral pyrimidine analog and the corticosteroid dexamethasone release retroviral particles, but no particles were observed in untreated Tera-1 or Tera-2 cell lines | [40] |
Carcinoma in situ | HML-2 transcripts | In situ hybridization identified transcription of HERV-K in carcinoma in situ samples | [41] |
Teratocarcinoma cells | Locus-specific expression of HML-2 and transcripts packaged into viral particles | Chr22q11.21 is the locus expressing HML-2 transcripts in Tera-1 cells, and HML-2 RNAs are selectively packaged into HML-2 retroviral particles | [42] |
Germ-cell tumors | HML-2 gag/env antibody detection | Concerns 85% of patients with germ. Cell tumors produce antibodies directed against HML-2 env; anti-tumor treatment resulted in a decrease in env antibodies | [43] |
Prostate cancer | HML-2 gag antibodies | HERV-K gag antibodies detected in prostate cancer patients | [46] |
Breast cancer | HML-2 env protein | Immunotherapeutic potential of anti-human endogenous retrovirus K envelope antibodies | [48] |
Ovarian cancer | HML-2 env protein | cytotoxicity of human endogenous retrovirus specific T cells | [49] |
Germ-cell tumors | HML-2 antibodies to gag or env | Level of HML-2 ab was stable or elevated in patients with relapse | [56] |
Pediatric hepatoblastoma | HML-2 transcription | Upregulated HML-2 transcription in cancer compared to healthy liver | [57] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Doucet-O’Hare, T.T.; Rosenblum, J.S.; Shah, A.H.; Gilbert, M.R.; Zhuang, Z. Endogenous Retroviral Elements in Human Development and Central Nervous System Embryonal Tumors. J. Pers. Med. 2021, 11, 1332. https://doi.org/10.3390/jpm11121332
Doucet-O’Hare TT, Rosenblum JS, Shah AH, Gilbert MR, Zhuang Z. Endogenous Retroviral Elements in Human Development and Central Nervous System Embryonal Tumors. Journal of Personalized Medicine. 2021; 11(12):1332. https://doi.org/10.3390/jpm11121332
Chicago/Turabian StyleDoucet-O’Hare, Tara T., Jared S. Rosenblum, Ashish H. Shah, Mark R. Gilbert, and Zhengping Zhuang. 2021. "Endogenous Retroviral Elements in Human Development and Central Nervous System Embryonal Tumors" Journal of Personalized Medicine 11, no. 12: 1332. https://doi.org/10.3390/jpm11121332
APA StyleDoucet-O’Hare, T. T., Rosenblum, J. S., Shah, A. H., Gilbert, M. R., & Zhuang, Z. (2021). Endogenous Retroviral Elements in Human Development and Central Nervous System Embryonal Tumors. Journal of Personalized Medicine, 11(12), 1332. https://doi.org/10.3390/jpm11121332