The Current State of Radiotherapy for Pediatric Brain Tumors: An Overview of Post-Radiotherapy Neurocognitive Decline and Outcomes
Abstract
:1. Introduction
2. Survival Outcomes and Benefit of Radiotherapy
2.1. Medulloblastoma
2.2. Low-Grade Gliomas
2.3. High-Grade Gliomas
2.4. Brainstem Gliomas
2.5. Ependymoma
2.6. Craniopharyngioma
3. Neurocognitive Late Effects
3.1. Decline in Neurocognitive Development
3.2. Mechanism of Neurocognitive Decline
3.3. Management of Late Effects
4. Future Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Linabery, A.M.; Ross, J.A. Trends in childhood cancer incidence in the U.S. (1992–2004). Cancer 2008, 112, 416–432. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention. Trends in childhood cancer mortality--United States, 1990–2004. MMWR Morb. Mortal Wkly. Rep. 2007, 56, 1257–1261. [Google Scholar]
- Pollack, I.F.; Agnihotri, S.; Broniscer, A. Childhood brain tumors: Current management, biological insights, and future directions. J. Neurosurg. Pediatr. 2019, 23, 261–273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duffner, P.K.; Cohen, M.E.; Myers, M.H.; Heise, H.W. Survival of children with brain tumors: SEER Program, 1973–1980. Neurology 1986, 36, 597–601. [Google Scholar] [CrossRef]
- Young, J.L., Jr.; Ries, L.G.; Silverberg, E.; Horm, J.W.; Miller, R.W. Cancer incidence, survival, and mortality for children younger than age 15 years. Cancer 1986, 58, 598–602. [Google Scholar] [CrossRef]
- Massimino, M.; Giangaspero, F.; Garrè, M.L.; Gandola, L.; Poggi, G.; Biassoni, V.; Gatta, G.; Rutkowski, S. Childhood medulloblastoma. Crit. Rev. Oncol. Hematol. 2011, 79, 65–83. [Google Scholar] [CrossRef] [Green Version]
- Hoffman, H.J.; De Silva, M.; Humphreys, R.P.; Drake, J.M.; Smith, M.L.; Blaser, S.I. Aggressive surgical management of craniopharyngiomas in children. J. Neurosurg. 1992, 76, 47–52. [Google Scholar] [CrossRef]
- Rousseau, P.; Habrand, J.L.; Sarrazin, D.; Kalifa, C.; Terrier-Lacombe, M.J.; Rekacewicz, C.; Rey, A. Treatment of intracranial ependymomas of children: Review of a 15-year experience. Int. J. Radiat. Oncol. Biol. Phys. 1994, 28, 381–386. [Google Scholar] [CrossRef]
- Wisoff, J.H.; Sanford, R.A.; Heier, L.A.; Sposto, R.; Burger, P.C.; Yates, A.J.; Holmes, E.J.; Kun, L.E. Primary neurosurgery for pediatric low-grade gliomas: A prospective multi-institutional study from the Children’s Oncology Group. Neurosurgery 2011, 68, 1548–1554. [Google Scholar] [CrossRef]
- Wisoff, J.H.; Boyett, J.M.; Berger, M.S.; Brant, C.; Li, H.; Yates, A.J.; McGuire-Cullen, P.; Turski, P.A.; Sutton, L.N.; Allen, J.C.; et al. Current neurosurgical management and the impact of the extent of resection in the treatment of malignant gliomas of childhood: A report of the Children’s Cancer Group trial no. CCG-945. J. Neurosurg. 1998, 89, 52–59. [Google Scholar] [CrossRef]
- Shibui, S. Brain Tumor Registry of Japan (2001–2004). Neurol. Med. Chir. 2014, 54, 1–102. [Google Scholar]
- Howlander, N.; Noone, A.; Krapcho, M.; Miller, D.; Brest, A.; Yu, M.; Ruhl, J.; Tatalovich, Z.; Mariotto, A.; Lewis, D.; et al. SEER Cancer Statistics Review, 1975–2016. Available online: https://seer.cancer.gov/archive/csr/1975_2016/ (accessed on 21 February 2021).
- Armstrong, G.T.; Stovall, M.; Robison, L.L. Long-term effects of radiation exposure among adult survivors of childhood cancer: Results from the childhood cancer survivor study. Radiat. Res. 2010, 174, 840–850. [Google Scholar] [CrossRef] [Green Version]
- Ris, M.D.; Packer, R.; Goldwein, J.; Jones-Wallace, D.; Boyett, J.M. Intellectual outcome after reduced-dose radiation therapy plus adjuvant chemotherapy for medulloblastoma: A Children’s Cancer Group study. J. Clin. Oncol. 2001, 19, 3470–3476. [Google Scholar] [CrossRef]
- Mulhern, R.K.; Palmer, S.L.; Merchant, T.E.; Wallace, D.; Kocak, M.; Brouwers, P.; Krull, K.; Chintagumpala, M.; Stargatt, R.; Ashley, D.M.; et al. Neurocognitive consequences of risk-adapted therapy for childhood medulloblastoma. J. Clin. Oncol. 2005, 23, 5511–5519. [Google Scholar] [CrossRef]
- Hua, C.; Bass, J.K.; Khan, R.; Kun, L.E.; Merchant, T.E. Hearing loss after radiotherapy for pediatric brain tumors: Effect of cochlear dose. Int. J. Radiat. Oncol. Biol. Phys. 2008, 72, 892–899. [Google Scholar] [CrossRef]
- Laughton, S.J.; Merchant, T.E.; Sklar, C.A.; Kun, L.E.; Fouladi, M.; Broniscer, A.; Morris, E.B.; Sanders, R.P.; Krasin, M.J.; Shelso, J.; et al. Endocrine outcomes for children with embryonal brain tumors after risk-adapted craniospinal and conformal primary-site irradiation and high-dose chemotherapy with stem-cell rescue on the SJMB-96 trial. J. Clin. Oncol. 2008, 26, 1112–1118. [Google Scholar] [CrossRef]
- Neglia, J.P.; Robison, L.L.; Stovall, M.; Liu, Y.; Packer, R.J.; Hammond, S.; Yasui, Y.; Kasper, C.E.; Mertens, A.C.; Donaldson, S.S.; et al. New primary neoplasms of the central nervous system in survivors of childhood cancer: A report from the Childhood Cancer Survivor Study. J. Natl. Cancer Inst. 2006, 98, 1528–1537. [Google Scholar] [CrossRef]
- Miké, V.; Meadows, A.T.; D’Angio, G.J. Incidence of second malignant neoplasms in children: Results of an international study. Lancet 1982, 2, 1326–1331. [Google Scholar] [CrossRef]
- Murphy, E.S.; Merchant, T.E.; Wu, S.; Xiong, X.; Lukose, R.; Wright, K.D.; Qaddoumi, I.; Armstrong, G.T.; Broniscer, A.; Gajjar, A. Necrosis after craniospinal irradiation: Results from a prospective series of children with central nervous system embryonal tumors. Int. J. Radiat. Oncol. Biol. Phys. 2012, 83, e655–e660. [Google Scholar] [CrossRef] [Green Version]
- Bloom, H.J.; Wallace, E.N.; Henk, J.M. The treatment and prognosis of medulloblastoma in children. A study of 82 verified cases. Am. J. Roentgenol. Radium Ther. Nucl. Med. 1969, 105, 43–62. [Google Scholar] [CrossRef]
- Meeske, K.A.; Patel, S.K.; Palmer, S.N.; Nelson, M.B.; Parow, A.M. Factors associated with health-related quality of life in pediatric cancer survivors. Pediatr. Blood Cancer 2007, 49, 298–305. [Google Scholar] [CrossRef]
- Packer, R.J. Childhood brain tumors: Accomplishments and ongoing challenges. J. Child Neurol. 2008, 23, 1122–1127. [Google Scholar] [CrossRef] [Green Version]
- Meeske, K.; Katz, E.R.; Palmer, S.N.; Burwinkle, T.; Varni, J.W. Parent proxy-reported health-related quality of life and fatigue in pediatric patients diagnosed with brain tumors and acute lymphoblastic leukemia. Cancer 2004, 101, 2116–2125. [Google Scholar] [CrossRef]
- Brice, L.; Weiss, R.; Wei, Y.; Satwani, P.; Bhatia, M.; George, D.; Garvin, J.; Morris, E.; Harrison, L.; Cairo, M.S.; et al. Health-related quality of life (HRQoL): The impact of medical and demographic variables upon pediatric recipients of hematopoietic stem cell transplantation. Pediatr. Blood Cancer 2011, 57, 1179–1185. [Google Scholar] [CrossRef]
- Johnson, D.L.; McCabe, M.A.; Nicholson, H.S.; Joseph, A.L.; Getson, P.R.; Byrne, J.; Brasseux, C.; Packer, R.J.; Reaman, G. Quality of long-term survival in young children with medulloblastoma. J. Neurosurg. 1994, 80, 1004–1010. [Google Scholar] [CrossRef] [Green Version]
- Reimers, T.S.; Mortensen, E.L.; Nysom, K.; Schmiegelow, K. Health-related quality of life in long-term survivors of childhood brain tumors. Pediatr. Blood Cancer 2009, 53, 1086–1091. [Google Scholar] [CrossRef] [PubMed]
- Ajithkumar, T.; Price, S.; Horan, G.; Burke, A.; Jefferies, S. Prevention of radiotherapy-induced neurocognitive dysfunction in survivors of paediatric brain tumours: The potential role of modern imaging and radiotherapy techniques. Lancet Oncol. 2017, 18, e91–e100. [Google Scholar] [CrossRef] [Green Version]
- Ris, M.D.; Noll, R.B. Long-term neurobehavioral outcome in pediatric brain-tumor patients: Review and methodological critique. J. Clin. Exp. Neuropsychol. 1994, 16, 21–42. [Google Scholar] [CrossRef] [PubMed]
- Mulhern, R.K.; Hancock, J.; Fairclough, D.; Kun, L. Neuropsychological status of children treated for brain tumors: A critical review and integrative analysis. Med. Pediatr. Oncol. 1992, 20, 181–191. [Google Scholar] [CrossRef] [PubMed]
- Chadderton, R.D.; West, C.G.; Schuller, S.; Quirke, D.C.; Gattamaneni, R.; Taylor, R. Radiotherapy in the treatment of low-grade astrocytomas. II. The physical and cognitive sequelae. Childs Nerv. Syst. 1995, 11, 443–448. [Google Scholar] [CrossRef] [PubMed]
- Dennis, M.; Spiegler, B.J.; Obonsawin, M.C.; Maria, B.L.; Cowell, C.; Hoffman, H.J.; Hendrick, E.B.; Humphreys, R.P.; Bailey, J.D.; Ehrlich, R.M. Brain tumors in children and adolescents--III. Effects of radiation and hormone status on intelligence and on working, associative and serial-order memory. Neuropsychologia 1992, 30, 257–275. [Google Scholar] [CrossRef]
- North, C.A.; North, R.B.; Epstein, J.A.; Piantadosi, S.; Wharam, M.D. Low-grade cerebral astrocytomas. Survival and quality of life after radiation therapy. Cancer 1990, 66, 6–14. [Google Scholar] [CrossRef]
- Palmer, S.L.; Goloubeva, O.; Reddick, W.E.; Glass, J.O.; Gajjar, A.; Kun, L.; Merchant, T.E.; Mulhern, R.K. Patterns of intellectual development among survivors of pediatric medulloblastoma: A longitudinal analysis. J. Clin. Oncol. 2001, 19, 2302–2308. [Google Scholar] [CrossRef]
- Walter, A.W.; Mulhern, R.K.; Gajjar, A.; Heideman, R.L.; Reardon, D.; Sanford, R.A.; Xiong, X.; Kun, L.E. Survival and neurodevelopmental outcome of young children with medulloblastoma at St Jude Children’s Research Hospital. J. Clin. Oncol. 1999, 17, 3720–3728. [Google Scholar] [CrossRef]
- Reimers, T.S.; Ehrenfels, S.; Mortensen, E.L.; Schmiegelow, M.; Sønderkaer, S.; Carstensen, H.; Schmiegelow, K.; Müller, J. Cognitive deficits in long-term survivors of childhood brain tumors: Identification of predictive factors. Med. Pediatr. Oncol. 2003, 40, 26–34. [Google Scholar] [CrossRef]
- Mostow, E.N.; Byrne, J.; Connelly, R.R.; Mulvihill, J.J. Quality of life in long-term survivors of CNS tumors of childhood and adolescence. J. Clin. Oncol. 1991, 9, 592–599. [Google Scholar] [CrossRef]
- Howard, A.F.; Hasan, H.; Bobinski, M.A.; Nurcombe, W.; Olson, R.; Parkinson, M.; Goddard, K. Parents’ perspectives of life challenges experienced by long-term paediatric brain tumour survivors: Work and finances, daily and social functioning, and legal difficulties. J. Cancer Surviv. 2014, 8, 372–383. [Google Scholar] [CrossRef]
- De Ruiter, M.A.; Schouten-van Meeteren, A.Y.N.; van Vuurden, D.G.; Maurice-Stam, H.; Gidding, C.; Beek, L.R.; Granzen, B.; Oosterlaan, J.; Grootenhuis, M.A. Psychosocial profile of pediatric brain tumor survivors with neurocognitive complaints. Qual. Life Res. 2016, 25, 435–446. [Google Scholar] [CrossRef] [Green Version]
- Mulhern, R.K.; Merchant, T.E.; Gajjar, A.; Reddick, W.E.; Kun, L.E. Late neurocognitive sequelae in survivors of brain tumours in childhood. Lancet Oncol. 2004, 5, 399–408. [Google Scholar] [CrossRef]
- Merchant, T.E.; Hua, C.H.; Shukla, H.; Ying, X.; Nill, S.; Oelfke, U. Proton versus photon radiotherapy for common pediatric brain tumors: Comparison of models of dose characteristics and their relationship to cognitive function. Pediatr. Blood Cancer 2008, 51, 110–117. [Google Scholar] [CrossRef]
- Merchant, T.E.; Kiehna, E.N.; Li, C.; Shukla, H.; Sengupta, S.; Xiong, X.; Gajjar, A.; Mulhern, R.K. Modeling radiation dosimetry to predict cognitive outcomes in pediatric patients with CNS embryonal tumors including medulloblastoma. Int. J. Radiat. Oncol. Biol. Phys. 2006, 65, 210–221. [Google Scholar] [CrossRef]
- Grill, J.; Renaux, V.K.; Bulteau, C.; Viguier, D.; Levy-Piebois, C.; Sainte-Rose, C.; Dellatolas, G.; Raquin, M.A.; Jambaqué, I.; Kalifa, C. Long-term intellectual outcome in children with posterior fossa tumors according to radiation doses and volumes. Int. J. Radiat. Oncol. Biol. Phys. 1999, 45, 137–145. [Google Scholar] [CrossRef]
- Dennis, M.; Spiegler, B.J.; Hetherington, C.R.; Greenberg, M.L. Neuropsychological sequelae of the treatment of children with medulloblastoma. J. Neurooncol. 1996, 29, 91–101. [Google Scholar] [CrossRef]
- Nathan, P.C.; Patel, S.K.; Dilley, K.; Goldsby, R.; Harvey, J.; Jacobsen, C.; Kadan-Lottick, N.; McKinley, K.; Millham, A.K.; Moore, I.; et al. Guidelines for identification of, advocacy for, and intervention in neurocognitive problems in survivors of childhood cancer: A report from the Children’s Oncology Group. Arch. Pediatr. Adolesc. Med. 2007, 161, 798–806. [Google Scholar] [CrossRef]
- Ullrich, N.J.; Embry, L. Neurocognitive dysfunction in survivors of childhood brain tumors. Semin. Pediatr. Neurol. 2012, 19, 35–42. [Google Scholar] [CrossRef] [PubMed]
- Wefel, J.S.; Noll, K.R.; Scheurer, M.E. Neurocognitive functioning and genetic variation in patients with primary brain tumours. Lancet Oncol. 2016, 17, e97–e108. [Google Scholar] [CrossRef] [Green Version]
- DeNunzio, N.J.; Yock, T.I. Modern Radiotherapy for Pediatric Brain Tumors. Cancers 2020, 12, 1533. [Google Scholar] [CrossRef] [PubMed]
- McNeil, D.E.; Coté, T.R.; Clegg, L.; Rorke, L.B. Incidence and trends in pediatric malignancies medulloblastoma/primitive neuroectodermal tumor: A SEER update. Surveillance Epidemiology and End Results. Med. Pediatr. Oncol. 2002, 39, 190–194. [Google Scholar] [CrossRef]
- Park, T.S.; Hoffman, H.J.; Hendrick, E.B.; Humphreys, R.P.; Becker, L.E. Medulloblastoma: Clinical presentation and management. Experience at the hospital for sick children, toronto, 1950–1980. J. Neurosurg. 1983, 58, 543–552. [Google Scholar] [CrossRef]
- Padovani, L.; Horan, G.; Ajithkumar, T. Radiotherapy Advances in Paediatric Medulloblastoma Treatment. Clin. Oncol. 2019, 31, 171–181. [Google Scholar] [CrossRef]
- Kortmann, R.D.; Kühl, J.; Timmermann, B.; Mittler, U.; Urban, C.; Budach, V.; Richter, E.; Willich, N.; Flentje, M.; Berthold, F.; et al. Postoperative neoadjuvant chemotherapy before radiotherapy as compared to immediate radiotherapy followed by maintenance chemotherapy in the treatment of medulloblastoma in childhood: Results of the German prospective randomized trial HIT 91. Int. J. Radiat. Oncol. Biol. Phys. 2000, 46, 269–279. [Google Scholar] [CrossRef]
- Fouladi, M.; Gajjar, A.; Boyett, J.M.; Walter, A.W.; Thompson, S.J.; Merchant, T.E.; Jenkins, J.J.; Langston, J.W.; Liu, A.; Kun, L.E.; et al. Comparison of CSF cytology and spinal magnetic resonance imaging in the detection of leptomeningeal disease in pediatric medulloblastoma or primitive neuroectodermal tumor. J. Clin. Oncol. 1999, 17, 3234–3237. [Google Scholar] [CrossRef]
- Bourgouin, P.M.; Tampieri, D.; Grahovac, S.Z.; Léger, C.; Del Carpio, R.; Melançon, D. CT and MR imaging findings in adults with cerebellar medulloblastoma: Comparison with findings in children. Am. J. Roentgenol. 1992, 159, 609–612. [Google Scholar] [CrossRef] [Green Version]
- Poretti, A.; Meoded, A.; Huisman, T.A. Neuroimaging of pediatric posterior fossa tumors including review of the literature. J. Magn. Reson. Imaging 2012, 35, 32–47. [Google Scholar] [CrossRef]
- Al-Wassia, R.K.; Ghassal, N.M.; Naga, A.; Awad, N.A.; Bahadur, Y.A.; Constantinescu, C. Optimization of Craniospinal Irradiation for Pediatric Medulloblastoma Using VMAT and IMRT. J. Pediatr. Hematol. Oncol. 2015, 37, e405–e411. [Google Scholar] [CrossRef]
- Brown, A.P.; Barney, C.L.; Grosshans, D.R.; McAleer, M.F.; de Groot, J.F.; Puduvalli, V.K.; Tucker, S.L.; Crawford, C.N.; Khan, M.; Khatua, S.; et al. Proton beam craniospinal irradiation reduces acute toxicity for adults with medulloblastoma. Int. J. Radiat. Oncol. Biol. Phys. 2013, 86, 277–284. [Google Scholar] [CrossRef] [Green Version]
- Eaton, B.R.; Esiashvili, N.; Kim, S.; Patterson, B.; Weyman, E.A.; Thornton, L.T.; Mazewski, C.; MacDonald, T.J.; Ebb, D.; MacDonald, S.M.; et al. Endocrine outcomes with proton and photon radiotherapy for standard risk medulloblastoma. Neuro. Oncol. 2016, 18, 881–887. [Google Scholar] [CrossRef] [Green Version]
- Packer, R.J.; Gajjar, A.; Vezina, G.; Rorke-Adams, L.; Burger, P.C.; Robertson, P.L.; Bayer, L.; LaFond, D.; Donahue, B.R.; Marymont, M.H.; et al. Phase III study of craniospinal radiation therapy followed by adjuvant chemotherapy for newly diagnosed average-risk medulloblastoma. J. Clin. Oncol. 2006, 24, 4202–4208. [Google Scholar] [CrossRef]
- Merchant, T.E.; Kun, L.E.; Krasin, M.J.; Wallace, D.; Chintagumpala, M.M.; Woo, S.Y.; Ashley, D.M.; Sexton, M.; Kellie, S.J.; Ahern, V.; et al. Multi-institution prospective trial of reduced-dose craniospinal irradiation (23.4 Gy) followed by conformal posterior fossa (36 Gy) and primary site irradiation (55.8 Gy) and dose-intensive chemotherapy for average-risk medulloblastoma. Int. J. Radiat. Oncol. Biol. Phys. 2008, 70, 782–787. [Google Scholar] [CrossRef] [Green Version]
- Lannering, B.; Rutkowski, S.; Doz, F.; Pizer, B.; Gustafsson, G.; Navajas, A.; Massimino, M.; Reddingius, R.; Benesch, M.; Carrie, C.; et al. Hyperfractionated versus conventional radiotherapy followed by chemotherapy in standard-risk medulloblastoma: Results from the randomized multicenter HIT-SIOP PNET 4 trial. J. Clin. Oncol. 2012, 30, 3187–3193. [Google Scholar] [CrossRef]
- Eaton, B.R.; Esiashvili, N.; Kim, S.; Weyman, E.A.; Thornton, L.T.; Mazewski, C.; MacDonald, T.; Ebb, D.; MacDonald, S.M.; Tarbell, N.J.; et al. Clinical Outcomes Among Children With Standard-Risk Medulloblastoma Treated With Proton and Photon Radiation Therapy: A Comparison of Disease Control and Overall Survival. Int. J. Radiat. Oncol. Biol. Phys. 2016, 94, 133–138. [Google Scholar] [CrossRef] [Green Version]
- Focal Radiotherapy Plus Low Dose Craniospinal Irradiation Followed by Adjuvant Chemotherapy in WNT Medulloblastoma. Available online: https://clinicaltrials.gov/ct2/show/NCT04474964 (accessed on 6 June 2022).
- Cohen, K.J.; Broniscer, A.; Glod, J. Pediatric glial tumors. Curr. Treat Options Oncol. 2001, 2, 529–536. [Google Scholar] [CrossRef]
- Stupp, R.; Mason, W.P.; van den Bent, M.J.; Weller, M.; Fisher, B.; Taphoorn, M.J.; Belanger, K.; Brandes, A.A.; Marosi, C.; Bogdahn, U.; et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med. 2005, 352, 987–996. [Google Scholar] [CrossRef]
- Teo, C.; Siu, T.L. Radical resection of focal brainstem gliomas: Is it worth doing? Childs Nerv. Syst. 2008, 24, 1307–1314. [Google Scholar] [CrossRef]
- Shibamoto, Y.; Takahashi, M.; Dokoh, S.; Tanabe, M.; Ishida, T.; Abe, M. Radiation therapy for brain stem tumor with special reference to CT feature and prognosis correlations. Int. J. Radiat. Oncol. Biol. Phys. 1989, 17, 71–76. [Google Scholar] [CrossRef]
- Schild, S.E.; Stafford, S.L.; Brown, P.D.; Wood, C.P.; Scheithauer, B.W.; Schomberg, P.J.; Wong, W.W.; Lyons, M.K.; Shaw, E.G. The results of radiotherapy for brainstem tumors. J. Neurooncol. 1998, 40, 171–177. [Google Scholar] [CrossRef]
- Schulz-Ertner, D.; Debus, J.; Lohr, F.; Frank, C.; Höss, A.; Wannenmacher, M. Fractionated stereotactic conformal radiation therapy of brain stem gliomas: Outcome and prognostic factors. Radiother. Oncol. 2000, 57, 215–223. [Google Scholar] [CrossRef]
- Merchant, T.E.; Mulhern, R.K.; Krasin, M.J.; Kun, L.E.; Williams, T.; Li, C.; Xiong, X.; Khan, R.B.; Lustig, R.H.; Boop, F.A.; et al. Preliminary results from a phase II trial of conformal radiation therapy and evaluation of radiation-related CNS effects for pediatric patients with localized ependymoma. J. Clin. Oncol. 2004, 22, 3156–3162. [Google Scholar] [CrossRef]
- Landau, E.; Boop, F.A.; Conklin, H.M.; Wu, S.; Xiong, X.; Merchant, T.E. Supratentorial ependymoma: Disease control, complications, and functional outcomes after irradiation. Int. J. Radiat. Oncol. Biol. Phys. 2013, 85, e193–e199. [Google Scholar] [CrossRef] [Green Version]
- Conter, C.; Carrie, C.; Bernier, V.; Geoffray, A.; Pagnier, A.; Gentet, J.C.; Lellouch-Tubiana, A.; Chabaud, S.; Frappaz, D. Intracranial ependymomas in children: Society of pediatric oncology experience with postoperative hyperfractionated local radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 2009, 74, 1536–1542. [Google Scholar] [CrossRef]
- Lober, R.M.; Harsh, G.R.t. A perspective on craniopharyngioma. World Neurosurg. 2013, 79, 645–646. [Google Scholar] [CrossRef] [PubMed]
- Ellison, D.; Clifford, S.C.; Gajjar, A.; GIlbertson, R. What’s new in neuro-oncology? Recent advances in medulloblastoma. Eur. J. Paediatr. Neurol. 1991, 7, 53–66. [Google Scholar] [CrossRef]
- Thomas, P.R.; Deutsch, M.; Kepner, J.L.; Boyett, J.M.; Krischer, J.; Aronin, P.; Albright, L.; Allen, J.C.; Packer, R.J.; Linggood, R.; et al. Low-stage medulloblastoma: Final analysis of trial comparing standard-dose with reduced-dose neuraxis irradiation. J. Clin. Oncol. 2000, 18, 3004–3011. [Google Scholar] [CrossRef] [PubMed]
- Packer, R.J.; Sutton, L.N.; Atkins, T.E.; Radcliffe, J.; Bunin, G.R.; D’Angio, G.; Siegel, K.R.; Schut, L. A prospective study of cognitive function in children receiving whole-brain radiotherapy and chemotherapy: 2-year results. J. Neurosurg. 1989, 70, 707–713. [Google Scholar] [CrossRef]
- Packer, R.J.; Boyett, J.M.; Janss, A.J.; Stavrou, T.; Kun, L.; Wisoff, J.; Russo, C.; Geyer, R.; Phillips, P.; Kieran, M.; et al. Growth hormone replacement therapy in children with medulloblastoma: Use and effect on tumor control. J. Clin. Oncol. 2001, 19, 480–487. [Google Scholar] [CrossRef]
- Bailey, C.C.; Gnekow, A.; Wellek, S.; Jones, M.; Round, C.; Brown, J.; Phillips, A.; Neidhardt, M.K. Prospective randomised trial of chemotherapy given before radiotherapy in childhood medulloblastoma. International Society of Paediatric Oncology (SIOP) and the (German) Society of Paediatric Oncology (GPO): SIOP II. Med. Pediatr. Oncol. 1995, 25, 166–178. [Google Scholar] [CrossRef]
- Murphy, E.S.; Chao, S.T.; Angelov, L.; Vogelbaum, M.A.; Barnett, G.; Jung, E.; Recinos, V.R.; Mohammadi, A.; Suh, J.H. Radiosurgery for Pediatric Brain Tumors. Pediatr. Blood Cancer 2016, 63, 398–405. [Google Scholar] [CrossRef]
- Evans, A.E.; Jenkin, R.D.; Sposto, R.; Ortega, J.A.; Wilson, C.B.; Wara, W.; Ertel, I.J.; Kramer, S.; Chang, C.H.; Leikin, S.L.; et al. The treatment of medulloblastoma. Results of a prospective randomized trial of radiation therapy with and without CCNU, vincristine, and prednisone. J. Neurosurg. 1990, 72, 572–582. [Google Scholar] [CrossRef]
- Tait, D.M.; Thornton-Jones, H.; Bloom, H.J.; Lemerle, J.; Morris-Jones, P. Adjuvant chemotherapy for medulloblastoma: The first multi-centre control trial of the International Society of Paediatric Oncology (SIOP I). Eur. J. Cancer 1990, 26, 464–469. [Google Scholar] [CrossRef]
- Massimino, M.; Biassoni, V.; Gandola, L.; Garrè, M.L.; Gatta, G.; Giangaspero, F.; Poggi, G.; Rutkowski, S. Childhood medulloblastoma. Crit. Rev. Oncol. Hematol. 2016, 105, 35–51. [Google Scholar] [CrossRef] [Green Version]
- Rutkowski, S.; Bode, U.; Deinlein, F.; Ottensmeier, H.; Warmuth-Metz, M.; Soerensen, N.; Graf, N.; Emser, A.; Pietsch, T.; Wolff, J.E.; et al. Treatment of early childhood medulloblastoma by postoperative chemotherapy alone. N. Engl. J. Med. 2005, 352, 978–986. [Google Scholar] [CrossRef] [Green Version]
- Lassaletta, A. Medulloblastoma in infants: The never-ending challenge. Lancet Oncol. 2018, 19, 720–721. [Google Scholar] [CrossRef]
- Remke, M.; Ramaswamy, V. Infant medulloblastoma-Learning new lessons from old strata. Nat. Rev. Clin. Oncol. 2018, 15, 659–660. [Google Scholar] [CrossRef]
- Gajjar, A.; Chintagumpala, M.; Ashley, D.; Kellie, S.; Kun, L.E.; Merchant, T.E.; Woo, S.; Wheeler, G.; Ahern, V.; Krasin, M.J.; et al. Risk-adapted craniospinal radiotherapy followed by high-dose chemotherapy and stem-cell rescue in children with newly diagnosed medulloblastoma (St Jude Medulloblastoma-96): Long-term results from a prospective, multicentre trial. Lancet Oncol. 2006, 7, 813–820. [Google Scholar] [CrossRef]
- Packer, R.J. Chemotherapy for medulloblastoma/primitive neuroectodermal tumors of the posterior fossa. Ann. Neurol. 1990, 28, 823–828. [Google Scholar] [CrossRef]
- Zeltzer, P.M.; Boyett, J.M.; Finlay, J.L.; Albright, A.L.; Rorke, L.B.; Milstein, J.M.; Allen, J.C.; Stevens, K.R.; Stanley, P.; Li, H.; et al. Metastasis stage, adjuvant treatment, and residual tumor are prognostic factors for medulloblastoma in children: Conclusions from the Children’s Cancer Group 921 randomized phase III study. J. Clin. Oncol. 1999, 17, 832–845. [Google Scholar] [CrossRef] [Green Version]
- Louis, D.N.; Perry, A.; Wesseling, P.; Brat, D.J.; Cree, I.A.; Figarella-Branger, D.; Hawkins, C.; Ng, H.K.; Pfister, S.M.; Reifenberger, G.; et al. The 2021 WHO Classification of Tumors of the Central Nervous System: A summary. Neuro-Oncol. 2021, 23, 1231–1251. [Google Scholar] [CrossRef]
- Rutkowski, S.; von Hoff, K.; Emser, A.; Zwiener, I.; Pietsch, T.; Figarella-Branger, D.; Giangaspero, F.; Ellison, D.W.; Garre, M.L.; Biassoni, V.; et al. Survival and prognostic factors of early childhood medulloblastoma: An international meta-analysis. J. Clin. Oncol. 2010, 28, 4961–4968. [Google Scholar] [CrossRef]
- Northcott, P.A.; Jones, D.T.; Kool, M.; Robinson, G.W.; Gilbertson, R.J.; Cho, Y.J.; Pomeroy, S.L.; Korshunov, A.; Lichter, P.; Taylor, M.D.; et al. Medulloblastomics: The end of the beginning. Nat. Rev. Cancer 2012, 12, 818–834. [Google Scholar] [CrossRef] [Green Version]
- Thompson, E.M.; Bramall, A.; Herndon, J.E., 2nd; Taylor, M.D.; Ramaswamy, V. The clinical importance of medulloblastoma extent of resection: A systematic review. J. Neurooncol. 2018, 139, 523–539. [Google Scholar] [CrossRef]
- Raimondi, A.J.; Tomita, T. Medulloblastoma in childhood. Acta Neurochir. 1979, 50, 127–138. [Google Scholar] [CrossRef]
- Berry, M.P.; Jenkin, R.D.; Keen, C.W.; Nair, B.D.; Simpson, W.J. Radiation treatment for medulloblastoma. A 21-year review. J. Neurosurg. 1981, 55, 43–51. [Google Scholar] [CrossRef]
- Del Charco, J.O.; Bolek, T.W.; McCollough, W.M.; Maria, B.L.; Kedar, A.; Braylan, R.C.; Mickle, J.P.; Buatti, J.M.; Mendenhall, N.P.; Marcus, R.B., Jr. Medulloblastoma: Time-dose relationship based on a 30-year review. Int. J. Radiat. Oncol. Biol. Phys. 1998, 42, 147–154. [Google Scholar] [CrossRef]
- Taylor, R.E.; Bailey, C.C.; Robinson, K.; Weston, C.L.; Ellison, D.; Ironside, J.; Lucraft, H.; Gilbertson, R.; Tait, D.M.; Walker, D.A.; et al. Results of a randomized study of preradiation chemotherapy versus radiotherapy alone for nonmetastatic medulloblastoma: The International Society of Paediatric Oncology/United Kingdom Children’s Cancer Study Group PNET-3 Study. J. Clin. Oncol. 2003, 21, 1581–1591. [Google Scholar] [CrossRef]
- Thompson, E.M.; Hielscher, T.; Bouffet, E.; Remke, M.; Luu, B.; Gururangan, S.; McLendon, R.E.; Bigner, D.D.; Lipp, E.S.; Perreault, S.; et al. Prognostic value of medulloblastoma extent of resection after accounting for molecular subgroup: A retrospective integrated clinical and molecular analysis. Lancet Oncol. 2016, 17, 484–495. [Google Scholar] [CrossRef] [Green Version]
- Yuh, G.E.; Loredo, L.N.; Yonemoto, L.T.; Bush, D.A.; Shahnazi, K.; Preston, W.; Slater, J.M.; Slater, J.D. Reducing toxicity from craniospinal irradiation: Using proton beams to treat medulloblastoma in young children. Cancer J. 2004, 10, 386–390. [Google Scholar] [CrossRef]
- St. Clair, W.H.; Adams, J.A.; Bues, M.; Fullerton, B.C.; La Shell, S.; Kooy, H.M.; Loeffler, J.S.; Tarbell, N.J. Advantage of protons compared to conventional X-ray or IMRT in the treatment of a pediatric patient with medulloblastoma. Int. J. Radiat. Oncol. Biol. Phys. 2004, 58, 727–734. [Google Scholar] [CrossRef]
- Moeller, B.J.; Chintagumpala, M.; Philip, J.J.; Grosshans, D.R.; McAleer, M.F.; Woo, S.Y.; Gidley, P.W.; Vats, T.S.; Mahajan, A. Low early ototoxicity rates for pediatric medulloblastoma patients treated with proton radiotherapy. Radiat. Oncol. 2011, 6, 58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fukunaga-Johnson, N.; Lee, J.H.; Sandler, H.M.; Robertson, P.; McNeil, E.; Goldwein, J.W. Patterns of failure following treatment for medulloblastoma: Is it necessary to treat the entire posterior fossa? Int. J. Radiat. Oncol. Biol. Phys. 1998, 42, 143–146. [Google Scholar] [CrossRef]
- Wolden, S.L.; Dunkel, I.J.; Souweidane, M.M.; Happersett, L.; Khakoo, Y.; Schupak, K.; Lyden, D.; Leibel, S.A. Patterns of failure using a conformal radiation therapy tumor bed boost for medulloblastoma. J. Clin. Oncol. 2003, 21, 3079–3083. [Google Scholar] [CrossRef]
- Packer, R.J.; Zhou, T.; Holmes, E.; Vezina, G.; Gajjar, A. Survival and secondary tumors in children with medulloblastoma receiving radiotherapy and adjuvant chemotherapy: Results of Children’s Oncology Group trial A9961. Neuro. Oncol. 2013, 15, 97–103. [Google Scholar] [CrossRef] [Green Version]
- Nageswara Rao, A.A.; Wallace, D.J.; Billups, C.; Boyett, J.M.; Gajjar, A.; Packer, R.J. Cumulative cisplatin dose is not associated with event-free or overall survival in children with newly diagnosed average-risk medulloblastoma treated with cisplatin based adjuvant chemotherapy: Report from the Children’s Oncology Group. Pediatr. Blood Cancer 2014, 61, 102–106. [Google Scholar] [CrossRef] [Green Version]
- Jakacki, R.I.; Burger, P.C.; Zhou, T.; Holmes, E.J.; Kocak, M.; Onar, A.; Goldwein, J.; Mehta, M.; Packer, R.J.; Tarbell, N.; et al. Outcome of children with metastatic medulloblastoma treated with carboplatin during craniospinal radiotherapy: A Children’s Oncology Group Phase I/II study. J. Clin. Oncol. 2012, 30, 2648–2653. [Google Scholar] [CrossRef] [Green Version]
- Gandola, L.; Massimino, M.; Cefalo, G.; Solero, C.; Spreafico, F.; Pecori, E.; Riva, D.; Collini, P.; Pignoli, E.; Giangaspero, F.; et al. Hyperfractionated accelerated radiotherapy in the Milan strategy for metastatic medulloblastoma. J. Clin. Oncol. 2009, 27, 566–571. [Google Scholar] [CrossRef]
- Gajjar, A.; Stewart, C.F.; Ellison, D.W.; Kaste, S.; Kun, L.E.; Packer, R.J.; Goldman, S.; Chintagumpala, M.; Wallace, D.; Takebe, N.; et al. Phase I study of vismodegib in children with recurrent or refractory medulloblastoma: A pediatric brain tumor consortium study. Clin. Cancer Res. 2013, 19, 6305–6312. [Google Scholar] [CrossRef] [Green Version]
- Robinson, G.W.; Orr, B.A.; Wu, G.; Gururangan, S.; Lin, T.; Qaddoumi, I.; Packer, R.J.; Goldman, S.; Prados, M.D.; Desjardins, A.; et al. Vismodegib Exerts Targeted Efficacy Against Recurrent Sonic Hedgehog-Subgroup Medulloblastoma: Results From Phase II Pediatric Brain Tumor Consortium Studies PBTC-025B and PBTC-032. J. Clin. Oncol. 2015, 33, 2646–2654. [Google Scholar] [CrossRef]
- Kumar, V.; Abbas, A.; Aster, J.C. Central Nervous System. In Robbins Basic Pathology, 10th ed.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 849–888. [Google Scholar]
- Mizumoto, M.; Oshiro, Y.; Yamamoto, T.; Kohzuki, H.; Sakurai, H. Proton Beam Therapy for Pediatric Brain Tumor. Neurol. Med. Chir. 2017, 57, 343–355. [Google Scholar] [CrossRef] [Green Version]
- Gajjar, A.; Sanford, R.A.; Heideman, R.; Jenkins, J.J.; Walter, A.; Li, Y.; Langston, J.W.; Muhlbauer, M.; Boyett, J.M.; Kun, L.E. Low-grade astrocytoma: A decade of experience at St. Jude Children’s Research Hospital. J. Clin. Oncol. 1997, 15, 2792–2799. [Google Scholar] [CrossRef]
- Ostrom, Q.T.; Cioffi, G.; Gittleman, H.; Patil, N.; Waite, K.; Kruchko, C.; Barnholtz-Sloan, J.S. CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2012–2016. Neuro-Oncol. 2019, 21, v1–v100. [Google Scholar] [CrossRef]
- Komotar, R.J.; Mocco, J.; Jones, J.E.; Zacharia, B.E.; Tihan, T.; Feldstein, N.A.; Anderson, R.C. Pilomyxoid astrocytoma: Diagnosis, prognosis, and management. Neurosurg. Focus 2005, 18, E7. [Google Scholar] [CrossRef]
- Komotar, R.J.; Burger, P.C.; Carson, B.S.; Brem, H.; Olivi, A.; Goldthwaite, P.T.; Tihan, T. Pilocytic and pilomyxoid hypothalamic/chiasmatic astrocytomas. Neurosurgery 2004, 54, 72–79. [Google Scholar] [CrossRef]
- Song, K.S.; Phi, J.H.; Cho, B.K.; Wang, K.C.; Lee, J.Y.; Kim, D.G.; Kim, I.H.; Ahn, H.S.; Park, S.H.; Kim, S.K. Long-term outcomes in children with glioblastoma. J. Neurosurg. Pediatr 2010, 6, 145–149. [Google Scholar] [CrossRef]
- Wang, J.; Wakeman, T.P.; Lathia, J.D.; Hjelmeland, A.B.; Wang, X.F.; White, R.R.; Rich, J.N.; Sullenger, B.A. Notch promotes radioresistance of glioma stem cells. Stem Cells 2010, 28, 17–28. [Google Scholar] [CrossRef] [Green Version]
- Bao, S.; Wu, Q.; Sathornsumetee, S.; Hao, Y.; Li, Z.; Hjelmeland, A.B.; Shi, Q.; McLendon, R.E.; Bigner, D.D.; Rich, J.N. Stem cell-like glioma cells promote tumor angiogenesis through vascular endothelial growth factor. Cancer Res. 2006, 66, 7843–7848. [Google Scholar] [CrossRef] [Green Version]
- Furnari, F.B.; Fenton, T.; Bachoo, R.M.; Mukasa, A.; Stommel, J.M.; Stegh, A.; Hahn, W.C.; Ligon, K.L.; Louis, D.N.; Brennan, C.; et al. Malignant astrocytic glioma: Genetics, biology, and paths to treatment. Genes Dev. 2007, 21, 2683–2710. [Google Scholar] [CrossRef] [Green Version]
- Bao, S.; Wu, Q.; McLendon, R.E.; Hao, Y.; Shi, Q.; Hjelmeland, A.B.; Dewhirst, M.W.; Bigner, D.D.; Rich, J.N. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 2006, 444, 756–760. [Google Scholar] [CrossRef]
- Zhang, X.P.; Zheng, G.; Zou, L.; Liu, H.L.; Hou, L.H.; Zhou, P.; Yin, D.D.; Zheng, Q.J.; Liang, L.; Zhang, S.Z.; et al. Notch activation promotes cell proliferation and the formation of neural stem cell-like colonies in human glioma cells. Mol. Cell Biochem. 2008, 307, 101–108. [Google Scholar] [CrossRef]
- Dontu, G.; Jackson, K.W.; McNicholas, E.; Kawamura, M.J.; Abdallah, W.M.; Wicha, M.S. Role of Notch signaling in cell-fate determination of human mammary stem/progenitor cells. Breast Cancer Res. 2004, 6, R605–R615. [Google Scholar] [CrossRef] [Green Version]
- Farnie, G.; Clarke, R.B. Mammary stem cells and breast cancer--role of Notch signalling. Stem Cell Rev. 2007, 3, 169–175. [Google Scholar] [CrossRef]
- Fre, S.; Huyghe, M.; Mourikis, P.; Robine, S.; Louvard, D.; Artavanis-Tsakonas, S. Notch signals control the fate of immature progenitor cells in the intestine. Nature 2005, 435, 964–968. [Google Scholar] [CrossRef]
- Van Es, J.H.; van Gijn, M.E.; Riccio, O.; van den Born, M.; Vooijs, M.; Begthel, H.; Cozijnsen, M.; Robine, S.; Winton, D.J.; Radtke, F.; et al. Notch/gamma-secretase inhibition turns proliferative cells in intestinal crypts and adenomas into goblet cells. Nature 2005, 435, 959–963. [Google Scholar] [CrossRef] [PubMed]
- Hitoshi, S.; Alexson, T.; Tropepe, V.; Donoviel, D.; Elia, A.J.; Nye, J.S.; Conlon, R.A.; Mak, T.W.; Bernstein, A.; van der Kooy, D. Notch pathway molecules are essential for the maintenance, but not the generation, of mammalian neural stem cells. Genes Dev. 2002, 16, 846–858. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hitoshi, S.; Seaberg, R.M.; Koscik, C.; Alexson, T.; Kusunoki, S.; Kanazawa, I.; Tsuji, S.; van der Kooy, D. Primitive neural stem cells from the mammalian epiblast differentiate to definitive neural stem cells under the control of Notch signaling. Genes Dev. 2004, 18, 1806–1811. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakamura, Y.; Sakakibara, S.; Miyata, T.; Ogawa, M.; Shimazaki, T.; Weiss, S.; Kageyama, R.; Okano, H. The bHLH gene hes1 as a repressor of the neuronal commitment of CNS stem cells. J. Neurosci. 2000, 20, 283–293. [Google Scholar] [CrossRef] [Green Version]
- Pece, S.; Serresi, M.; Santolini, E.; Capra, M.; Hulleman, E.; Galimberti, V.; Zurrida, S.; Maisonneuve, P.; Viale, G.; Di Fiore, P.P. Loss of negative regulation by Numb over Notch is relevant to human breast carcinogenesis. J. Cell Biol. 2004, 167, 215–221. [Google Scholar] [CrossRef] [Green Version]
- Politi, K.; Feirt, N.; Kitajewski, J. Notch in mammary gland development and breast cancer. Semin Cancer Biol. 2004, 14, 341–347. [Google Scholar] [CrossRef]
- Weng, A.P.; Ferrando, A.A.; Lee, W.; Morris, J.P.t.; Silverman, L.B.; Sanchez-Irizarry, C.; Blacklow, S.C.; Look, A.T.; Aster, J.C. Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science 2004, 306, 269–271. [Google Scholar] [CrossRef] [Green Version]
- Kanamori, M.; Kawaguchi, T.; Nigro, J.M.; Feuerstein, B.G.; Berger, M.S.; Miele, L.; Pieper, R.O. Contribution of Notch signaling activation to human glioblastoma multiforme. J. Neurosurg. 2007, 106, 417–427. [Google Scholar] [CrossRef]
- Armogida, M.; Petit, A.; Vincent, B.; Scarzello, S.; da Costa, C.A.; Checler, F. Endogenous beta-amyloid production in presenilin-deficient embryonic mouse fibroblasts. Nat. Cell Biol. 2001, 3, 1030–1033. [Google Scholar] [CrossRef]
- Huppert, S.S.; Le, A.; Schroeter, E.H.; Mumm, J.S.; Saxena, M.T.; Milner, L.A.; Kopan, R. Embryonic lethality in mice homozygous for a processing-deficient allele of Notch1. Nature 2000, 405, 966–970. [Google Scholar] [CrossRef]
- Fan, X.; Matsui, W.; Khaki, L.; Stearns, D.; Chun, J.; Li, Y.M.; Eberhart, C.G. Notch pathway inhibition depletes stem-like cells and blocks engraftment in embryonal brain tumors. Cancer Res. 2006, 66, 7445–7452. [Google Scholar] [CrossRef] [Green Version]
- Valiakhmetova, A.; Gorelyshev, S.; Konovalov, A.; Trunin, Y.; Savateev, A.; Kram, D.E.; Severson, E.; Hemmerich, A.; Edgerly, C.; Duncan, D.; et al. Treatment of Pediatric Glioblastoma with Combination Olaparib and Temozolomide Demonstrates 2-Year Durable Response. Oncologist 2020, 25, e198–e202. [Google Scholar] [CrossRef] [Green Version]
- Epstein, F.; Wisoff, J. Intra-axial tumors of the cervicomedullary junction. J. Neurosurg. 1987, 67, 483–487. [Google Scholar] [CrossRef] [Green Version]
- Stroink, A.R.; Hoffman, H.J.; Hendrick, E.B.; Humphreys, R.P.; Davidson, G. Transependymal benign dorsally exophytic brain stem gliomas in childhood: Diagnosis and treatment recommendations. Neurosurgery 1987, 20, 439–444. [Google Scholar] [CrossRef]
- Epstein, F.; McCleary, E.L. Intrinsic brain-stem tumors of childhood: Surgical indications. J. Neurosurg. 1986, 64, 11–15. [Google Scholar] [CrossRef] [Green Version]
- Green, A.L.; Kieran, M.W. Pediatric brainstem gliomas: New understanding leads to potential new treatments for two very different tumors. Curr. Oncol. Rep. 2015, 17, 436. [Google Scholar] [CrossRef]
- Pellot, J.E.; De Jesus, O. Diffuse Intrinsic Pontine Glioma. In StatPearls; StatPearls Publishing LLC: Treasure Island, FL, USA, 2022. [Google Scholar]
- Sievers, P.; Sill, M.; Schrimpf, D.; Stichel, D.; Reuss, D.E.; Sturm, D.; Hench, J.; Frank, S.; Krskova, L.; Vicha, A.; et al. A subset of pediatric-type thalamic gliomas share a distinct DNA methylation profile, H3K27me3 loss and frequent alteration of EGFR. Neuro-Oncol. 2021, 23, 34–43. [Google Scholar] [CrossRef]
- Freeman, C.R.; Farmer, J.P. Pediatric brain stem gliomas: A review. Int. J. Radiat. Oncol. Biol. Phys. 1998, 40, 265–271. [Google Scholar] [CrossRef]
- Rubin, G.; Michowitz, S.; Horev, G.; Herscovici, Z.; Cohen, I.J.; Shuper, A.; Rappaport, Z.H. Pediatric brain stem gliomas: An update. Childs Nerv. Syst. 1998, 14, 167–173. [Google Scholar] [CrossRef]
- Guillamo, J.S.; Créange, A.; Kalifa, C.; Grill, J.; Rodriguez, D.; Doz, F.; Barbarot, S.; Zerah, M.; Sanson, M.; Bastuji-Garin, S.; et al. Prognostic factors of CNS tumours in Neurofibromatosis 1 (NF1): A retrospective study of 104 patients. Brain 2003, 126, 152–160. [Google Scholar] [CrossRef] [Green Version]
- Mahdi, J.; Shah, A.C.; Sato, A.; Morris, S.M.; McKinstry, R.C.; Listernick, R.; Packer, R.J.; Fisher, M.J.; Gutmann, D.H. A multi-institutional study of brainstem gliomas in children with neurofibromatosis type 1. Neurology 2017, 88, 1584–1589. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahdi, J.; Goyal, M.S.; Griffith, J.; Morris, S.M.; Gutmann, D.H. Nonoptic pathway tumors in children with neurofibromatosis type 1. Neurology 2020, 95, e1052–e1059. [Google Scholar] [CrossRef] [PubMed]
- Young Poussaint, T.; Yousuf, N.; Barnes, P.D.; Anthony, D.C.; Zurakowski, D.; Scott, R.M.; Tarbell, N.J. Cervicomedullary astrocytomas of childhood: Clinical and imaging follow-up. Pediatr. Radiol. 1999, 29, 662–668. [Google Scholar] [CrossRef] [PubMed]
- Mulhern, R.K.; Heideman, R.L.; Khatib, Z.A.; Kovnar, E.H.; Sanford, R.A.; Kun, L.E. Quality of survival among children treated for brain stem glioma. Pediatr. Neurosurg. 1994, 20, 226–232. [Google Scholar] [CrossRef]
- Indelicato, D.J.; Rotondo, R.L.; Uezono, H.; Sandler, E.S.; Aldana, P.R.; Ranalli, N.J.; Beier, A.D.; Morris, C.G.; Bradley, J.A. Outcomes Following Proton Therapy for Pediatric Low-Grade Glioma. Int. J. Radiat. Oncol. Biol. Phys. 2019, 104, 149–156. [Google Scholar] [CrossRef] [Green Version]
- Constine, L.S.; Woolf, P.D.; Cann, D.; Mick, G.; McCormick, K.; Raubertas, R.F.; Rubin, P. Hypothalamic-pituitary dysfunction after radiation for brain tumors. N. Engl. J. Med. 1993, 328, 87–94. [Google Scholar] [CrossRef]
- Taphoorn, M.J.; Heimans, J.J.; van der Veen, E.A.; Karim, A.B. Endocrine functions in long-term survivors of low-grade supratentorial glioma treated with radiation therapy. J. Neurooncol. 1995, 25, 97–102. [Google Scholar] [CrossRef]
- Kato, T.; Sawamura, Y.; Tada, M.; Ikeda, J.; Ishii, N.; Abe, H. Cisplatin/vincristine chemotherapy for hypothalamic/visual pathway astrocytomas in young children. J. Neurooncol. 1998, 37, 263–270. [Google Scholar] [CrossRef]
- Packer, R.J.; Lange, B.; Ater, J.; Nicholson, H.S.; Allen, J.; Walker, R.; Prados, M.; Jakacki, R.; Reaman, G.; Needles, M.N.; et al. Carboplatin and vincristine for recurrent and newly diagnosed low-grade gliomas of childhood. J. Clin. Oncol. 1993, 11, 850–856. [Google Scholar] [CrossRef]
- Packer, R.J.; Ater, J.; Allen, J.; Phillips, P.; Geyer, R.; Nicholson, H.S.; Jakacki, R.; Kurczynski, E.; Needle, M.; Finlay, J.; et al. Carboplatin and vincristine chemotherapy for children with newly diagnosed progressive low-grade gliomas. J. Neurosurg. 1997, 86, 747–754. [Google Scholar] [CrossRef]
- Bouffet, E.; Amat, D.; Devaux, Y.; Desuzinges, C. Chemotherapy for spinal cord astrocytoma. Med. Pediatr. Oncol. 1997, 29, 560–562. [Google Scholar] [CrossRef]
- Merchant, T.E.; Li, C.; Xiong, X.; Kun, L.E.; Boop, F.A.; Sanford, R.A. Conformal radiotherapy after surgery for paediatric ependymoma: A prospective study. Lancet Oncol. 2009, 10, 258–266. [Google Scholar] [CrossRef] [Green Version]
- Koshy, M.; Rich, S.; Merchant, T.E.; Mahmood, U.; Regine, W.F.; Kwok, Y. Post-operative radiation improves survival in children younger than 3 years with intracranial ependymoma. J. Neurooncol. 2011, 105, 583–590. [Google Scholar] [CrossRef] [PubMed]
- Doxey, D.; Bruce, D.; Sklar, F.; Swift, D.; Shapiro, K. Posterior fossa syndrome: Identifiable risk factors and irreversible complications. Pediatr. Neurosurg. 1999, 31, 131–136. [Google Scholar] [CrossRef]
- Merchant, T.E.; Jenkins, J.J.; Burger, P.C.; Sanford, R.A.; Sherwood, S.H.; Jones-Wallace, D.; Heideman, R.L.; Thompson, S.J.; Helton, K.J.; Kun, L.E. Influence of tumor grade on time to progression after irradiation for localized ependymoma in children. Int. J. Radiat. Oncol. Biol. Phys. 2002, 53, 52–57. [Google Scholar] [CrossRef]
- Sanford, R.A.; Merchant, T.E.; Zwienenberg-Lee, M.; Kun, L.E.; Boop, F.A. Advances in surgical techniques for resection of childhood cerebellopontine angle ependymomas are key to survival. Childs Nerv. Syst. 2009, 25, 1229–1240. [Google Scholar] [CrossRef]
- Pollack, I.F.; Gerszten, P.C.; Martinez, A.J.; Lo, K.H.; Shultz, B.; Albright, A.L.; Janosky, J.; Deutsch, M. Intracranial ependymomas of childhood: Long-term outcome and prognostic factors. Neurosurgery 1995, 37, 655–666. [Google Scholar] [CrossRef]
- Nazar, G.B.; Hoffman, H.J.; Becker, L.E.; Jenkin, D.; Humphreys, R.P.; Hendrick, E.B. Infratentorial ependymomas in childhood: Prognostic factors and treatment. J. Neurosurg. 1990, 72, 408–417. [Google Scholar] [CrossRef] [Green Version]
- Van Veelen-Vincent, M.L.; Pierre-Kahn, A.; Kalifa, C.; Sainte-Rose, C.; Zerah, M.; Thorne, J.; Renier, D. Ependymoma in childhood: Prognostic factors, extent of surgery, and adjuvant therapy. J. Neurosurg. 2002, 97, 827–835. [Google Scholar] [CrossRef] [Green Version]
- Robertson, P.L.; Zeltzer, P.M.; Boyett, J.M.; Rorke, L.B.; Allen, J.C.; Geyer, J.R.; Stanley, P.; Li, H.; Albright, A.L.; McGuire-Cullen, P.; et al. Survival and prognostic factors following radiation therapy and chemotherapy for ependymomas in children: A report of the Children’s Cancer Group. J. Neurosurg. 1998, 88, 695–703. [Google Scholar] [CrossRef]
- Tihan, T.; Zhou, T.; Holmes, E.; Burger, P.C.; Ozuysal, S.; Rushing, E.J. The prognostic value of histological grading of posterior fossa ependymomas in children: A Children’s Oncology Group study and a review of prognostic factors. Mod. Pathol. 2008, 21, 165–177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eaton, B.R.; Goldberg, S.; Tarbell, N.J.; Lawell, M.P.; Gallotto, S.L.; Weyman, E.A.; Kuhlthau, K.A.; Ebb, D.H.; MacDonald, S.M.; Yock, T.I. Long-term health-related quality of life in pediatric brain tumor survivors receiving proton radiotherapy at <4 years of age. Neuro-Oncol. 2020, 22, 1379–1387. [Google Scholar] [CrossRef] [PubMed]
- Kulkarni, A.V.; Piscione, J.; Shams, I.; Bouffet, E. Long-term quality of life in children treated for posterior fossa brain tumors. J. Neurosurg. Pediatr. 2013, 12, 235–240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petito, C.K.; DeGirolami, U.; Earle, K.M. Craniopharyngiomas: A clinical and pathological review. Cancer 1976, 37, 1944–1952. [Google Scholar] [CrossRef]
- Garnett, M.R.; Puget, S.; Grill, J.; Sainte-Rose, C. Craniopharyngioma. Orphanet J. Rare Dis. 2007, 2, 18. [Google Scholar] [CrossRef] [Green Version]
- Elliott, R.E.; Hsieh, K.; Hochm, T.; Belitskaya-Levy, I.; Wisoff, J.; Wisoff, J.H. Efficacy and safety of radical resection of primary and recurrent craniopharyngiomas in 86 children. J. Neurosurg. Pediatr. 2010, 5, 30–48. [Google Scholar] [CrossRef] [Green Version]
- Lin, L.L.; El Naqa, I.; Leonard, J.R.; Park, T.S.; Hollander, A.S.; Michalski, J.M.; Mansur, D.B. Long-term outcome in children treated for craniopharyngioma with and without radiotherapy. J. Neurosurg. Pediatr. 2008, 1, 126–130. [Google Scholar] [CrossRef]
- Stripp, D.C.; Maity, A.; Janss, A.J.; Belasco, J.B.; Tochner, Z.A.; Goldwein, J.W.; Moshang, T.; Rorke, L.B.; Phillips, P.C.; Sutton, L.N.; et al. Surgery with or without radiation therapy in the management of craniopharyngiomas in children and young adults. Int. J. Radiat. Oncol. Biol. Phys. 2004, 58, 714–720. [Google Scholar] [CrossRef]
- Moon, S.H.; Kim, I.H.; Park, S.W.; Kim, I.; Hong, S.; Park, C.I.; Wang, K.C.; Cho, B.K. Early adjuvant radiotherapy toward long-term survival and better quality of life for craniopharyngiomas—A study in single institute. Childs Nerv. Syst. 2005, 21, 799–807. [Google Scholar] [CrossRef]
- Garrè, M.L.; Cama, A. Craniopharyngioma: Modern concepts in pathogenesis and treatment. Curr. Opin. Pediatr. 2007, 19, 471–479. [Google Scholar] [CrossRef]
- Müller, H.L. Consequences of craniopharyngioma surgery in children. J. Clin. Endocrinol. Metab. 2011, 96, 1981–1991. [Google Scholar] [CrossRef] [Green Version]
- Merchant, T.E.; Kiehna, E.N.; Li, C.; Xiong, X.; Mulhern, R.K. Radiation dosimetry predicts IQ after conformal radiation therapy in pediatric patients with localized ependymoma. Int. J. Radiat. Oncol. Biol. Phys. 2005, 63, 1546–1554. [Google Scholar] [CrossRef]
- Chapman, C.A.; Waber, D.P.; Bernstein, J.H.; Pomeroy, S.L.; LaVally, B.; Sallan, S.E.; Tarbell, N. Neurobehavioral and neurologic outcome in long-term survivors of posterior fossa brain tumors: Role of age and perioperative factors. J. Child Neurol. 1995, 10, 209–212. [Google Scholar] [CrossRef]
- Palmer, S.L.; Hassall, T.; Evankovich, K.; Mabbott, D.J.; Bonner, M.; Deluca, C.; Cohn, R.; Fisher, M.J.; Morris, E.B.; Broniscer, A.; et al. Neurocognitive outcome 12 months following cerebellar mutism syndrome in pediatric patients with medulloblastoma. Neuro-Oncol. 2010, 12, 1311–1317. [Google Scholar] [CrossRef]
- Mulhern, R.K.; Reddick, W.E.; Palmer, S.L.; Glass, J.O.; Elkin, T.D.; Kun, L.E.; Taylor, J.; Langston, J.; Gajjar, A. Neurocognitive deficits in medulloblastoma survivors and white matter loss. Ann. Neurol. 1999, 46, 834–841. [Google Scholar] [CrossRef]
- Copeland, D.R.; deMoor, C.; Moore, B.D., 3rd; Ater, J.L. Neurocognitive development of children after a cerebellar tumor in infancy: A longitudinal study. J. Clin. Oncol. 1999, 17, 3476–3486. [Google Scholar] [CrossRef]
- Hoppe-Hirsch, E.; Renier, D.; Lellouch-Tubiana, A.; Sainte-Rose, C.; Pierre-Kahn, A.; Hirsch, J.F. Medulloblastoma in childhood: Progressive intellectual deterioration. Childs Nerv. Syst. 1990, 6, 60–65. [Google Scholar] [CrossRef]
- Armstrong, F.D.; Blumberg, M.J.; Toledano, S.R. Neurobehavioral issues in childhood cancer. School Psychol. Rev. 1999, 28, 194. [Google Scholar] [CrossRef]
- DeAngelis, L.M.; Delattre, J.Y.; Posner, J.B. Radiation-induced dementia in patients cured of brain metastases. Neurology 1989, 39, 789–796. [Google Scholar] [CrossRef]
- Tofilon, P.J.; Fike, J.R. The radioresponse of the central nervous system: A dynamic process. Radiat. Res. 2000, 153, 357–370. [Google Scholar] [CrossRef]
- Reddick, W.E.; Russell, J.M.; Glass, J.O.; Xiong, X.; Mulhern, R.K.; Langston, J.W.; Merchant, T.E.; Kun, L.E.; Gajjar, A. Subtle white matter volume differences in children treated for medulloblastoma with conventional or reduced dose craniospinal irradiation. Magn. Reson. Imaging 2000, 18, 787–793. [Google Scholar] [CrossRef]
- Palmer, S.L.; Reddick, W.E.; Glass, J.O.; Gajjar, A.; Goloubeva, O.; Mulhern, R.K. Decline in corpus callosum volume among pediatric patients with medulloblastoma: Longitudinal MR imaging study. AJNR Am. J. Neuroradiol. 2002, 23, 1088–1094. [Google Scholar] [PubMed]
- Attia, A.; Page, B.R.; Lesser, G.J.; Chan, M. Treatment of radiation-induced cognitive decline. Curr. Treat Options Oncol. 2014, 15, 539–550. [Google Scholar] [CrossRef] [PubMed]
- Greene-Schloesser, D.; Robbins, M.E.; Peiffer, A.M.; Shaw, E.G.; Wheeler, K.T.; Chan, M.D. Radiation-induced brain injury: A review. Front. Oncol. 2012, 2, 73. [Google Scholar] [CrossRef] [Green Version]
- Reddick, W.E.; Mulhern, R.K.; Elkin, T.D.; Glass, J.O.; Merchant, T.E.; Langston, J.W. A hybrid neural network analysis of subtle brain volume differences in children surviving brain tumors. Magn. Reson. Imaging 1998, 16, 413–421. [Google Scholar] [CrossRef]
- Apple, D.M.; Fonseca, R.S.; Kokovay, E. The role of adult neurogenesis in psychiatric and cognitive disorders. Brain Res. 2017, 1655, 270–276. [Google Scholar] [CrossRef] [Green Version]
- Taupin, P. Neural progenitor and stem cells in the adult central nervous system. Ann. Acad. Med. 2006, 35, 814–820. [Google Scholar]
- Greenberger, B.A.; Pulsifer, M.B.; Ebb, D.H.; MacDonald, S.M.; Jones, R.M.; Butler, W.E.; Huang, M.S.; Marcus, K.J.; Oberg, J.A.; Tarbell, N.J.; et al. Clinical outcomes and late endocrine, neurocognitive, and visual profiles of proton radiation for pediatric low-grade gliomas. Int. J. Radiat. Oncol. Biol. Phys. 2014, 89, 1060–1068. [Google Scholar] [CrossRef]
- Tsai, P.F.; Yang, C.C.; Chuang, C.C.; Huang, T.Y.; Wu, Y.M.; Pai, P.C.; Tseng, C.K.; Wu, T.H.; Shen, Y.L.; Lin, S.Y. Hippocampal dosimetry correlates with the change in neurocognitive function after hippocampal sparing during whole brain radiotherapy: A prospective study. Radiat. Oncol. 2015, 10, 253. [Google Scholar] [CrossRef] [Green Version]
- Kerns, K.A.; Thomson, J. Implementation of a compensatory memory system in a school age child with severe memory impairment. Pediatr. Rehabil. 1998, 2, 77–87. [Google Scholar] [CrossRef]
- Brown, R.; Dingle, A.; Dreelin, B. Neuropsychological effects of stimulant medication on children’s learning and behavior. In Handbook of Clinical Child Pharmacology; Wiley: New York, NY, USA, 1997. [Google Scholar]
- Thompson, S.J.; Leigh, L.; Christensen, R.; Xiong, X.; Kun, L.E.; Heideman, R.L.; Reddick, W.E.; Gajjar, A.; Merchant, T.; Pui, C.H.; et al. Immediate neurocognitive effects of methylphenidate on learning-impaired survivors of childhood cancer. J. Clin. Oncol. 2001, 19, 1802–1808. [Google Scholar] [CrossRef]
- Torres, C.F.; Korones, D.N.; Palumbo, D.R.; Wissler, K.H.; Vadasz, E.; Cox, C. Effect of methylphenidate in the post-radiation attention and memory deficits in children. Ann. Neurol. 1996, 40, 331–332. [Google Scholar]
- Leigh, L.; Miles, M. Educational issues for children with cancer. In Principles and Practice of Paediatric Oncology, 4th ed.; Pizzo, P., Poplack, D., Eds.; Lippincott: Philadelphia, PA, USA, 2002. [Google Scholar]
- Max, J.E.; Roberts, M.A.; Koele, S.L.; Lindgren, S.D.; Robin, D.A.; Arndt, S.; Smith, W.L., Jr.; Sato, Y. Cognitive outcome in children and adolescents following severe traumatic brain injury: Influence of psychosocial, psychiatric, and injury-related variables. J. Int. Neuropsychol. Soc. 1999, 5, 58–68. [Google Scholar] [CrossRef]
- Yock, T.I.; Yeap, B.Y.; Ebb, D.H.; Weyman, E.; Eaton, B.R.; Sherry, N.A.; Jones, R.M.; MacDonald, S.M.; Pulsifer, M.B.; Lavally, B.; et al. Long-term toxic effects of proton radiotherapy for paediatric medulloblastoma: A phase 2 single-arm study. Lancet Oncol. 2016, 17, 287–298. [Google Scholar] [CrossRef]
- Antonini, T.N.; Ris, M.D.; Grosshans, D.R.; Mahajan, A.; Okcu, M.F.; Chintagumpala, M.; Paulino, A.; Child, A.E.; Orobio, J.; Stancel, H.H.; et al. Attention, processing speed, and executive functioning in pediatric brain tumor survivors treated with proton beam radiation therapy. Radiother. Oncol. 2017, 124, 89–97. [Google Scholar] [CrossRef]
- Pulsifer, M.B.; Sethi, R.V.; Kuhlthau, K.A.; MacDonald, S.M.; Tarbell, N.J.; Yock, T.I. Early Cognitive Outcomes Following Proton Radiation in Pediatric Patients With Brain and Central Nervous System Tumors. Int. J. Radiat. Oncol. Biol. Phys. 2015, 93, 400–407. [Google Scholar] [CrossRef] [Green Version]
- Oshiro, Y.; Okumura, T.; Mizumoto, M.; Fukushima, T.; Ishikawa, H.; Hashimoto, T.; Tsuboi, K.; Kaneko, M.; Sakurai, H. Proton beam therapy for unresectable hepatoblastoma in children: Survival in one case. Acta Oncol. 2013, 52, 600–603. [Google Scholar] [CrossRef]
- Kanemoto, A.; Oshiro, Y.; Sugahara, S.; Kamagata, S.; Hirobe, S.; Toma, M.; Okumura, T.; Sakurai, H. Proton beam therapy for inoperable recurrence of bronchial high-grade mucoepidermoid carcinoma. Jpn. J. Clin. Oncol. 2012, 42, 552–555. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mizumoto, M.; Hashii, H.; Senarita, M.; Sakai, S.; Wada, T.; Okumura, T.; Tsuboi, K.; Sakurai, H. Proton beam therapy for malignancy in Bloom syndrome. Strahlenther. Onkol. 2013, 189, 335–338. [Google Scholar] [CrossRef]
- MacDonald, S.M.; Safai, S.; Trofimov, A.; Wolfgang, J.; Fullerton, B.; Yeap, B.Y.; Bortfeld, T.; Tarbell, N.J.; Yock, T. Proton radiotherapy for childhood ependymoma: Initial clinical outcomes and dose comparisons. Int. J. Radiat. Oncol. Biol. Phys. 2008, 71, 979–986. [Google Scholar] [CrossRef]
- Miralbell, R.; Lomax, A.; Cella, L.; Schneider, U. Potential reduction of the incidence of radiation-induced second cancers by using proton beams in the treatment of pediatric tumors. Int. J. Radiat. Oncol. Biol. Phys. 2002, 54, 824–829. [Google Scholar] [CrossRef]
- Kahalley, L.S.; Ris, M.D.; Grosshans, D.R.; Okcu, M.F.; Paulino, A.C.; Chintagumpala, M.; Moore, B.D.; Guffey, D.; Minard, C.G.; Stancel, H.H.; et al. Comparing Intelligence Quotient Change After Treatment With Proton Versus Photon Radiation Therapy for Pediatric Brain Tumors. J. Clin. Oncol. 2016, 34, 1043–1049. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Howell, R.M.; Giebeler, A.; Taddei, P.J.; Mahajan, A.; Newhauser, W.D. Comparison of risk of radiogenic second cancer following photon and proton craniospinal irradiation for a pediatric medulloblastoma patient. Phys. Med. Biol. 2013, 58, 807–823. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paganetti, H.; Niemierko, A.; Ancukiewicz, M.; Gerweck, L.E.; Goitein, M.; Loeffler, J.S.; Suit, H.D. Relative biological effectiveness (RBE) values for proton beam therapy. Int. J. Radiat. Oncol. Biol. Phys. 2002, 53, 407–421. [Google Scholar] [CrossRef]
- Wambersie, A. RBE, reference RBE and clinical RBE: Applications of these concepts in hadron therapy. Strahlenther. Onkol. 1999, 175 (Suppl. 2), 39–43. [Google Scholar] [CrossRef]
- DeLaney, T.F. Prescribing, Recording, and Reporting Proton-Beam Therapy. Radiat. Res. 2009, 171, 776. [Google Scholar] [CrossRef]
- Ladra, M.M.; Edgington, S.K.; Mahajan, A.; Grosshans, D.; Szymonifka, J.; Khan, F.; Moteabbed, M.; Friedmann, A.M.; MacDonald, S.M.; Tarbell, N.J.; et al. A dosimetric comparison of proton and intensity modulated radiation therapy in pediatric rhabdomyosarcoma patients enrolled on a prospective phase II proton study. Radiother. Oncol. 2014, 113, 77–83. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.T.; Bilton, S.D.; Famiglietti, R.M.; Riley, B.A.; Mahajan, A.; Chang, E.L.; Maor, M.H.; Woo, S.Y.; Cox, J.D.; Smith, A.R. Treatment planning with protons for pediatric retinoblastoma, medulloblastoma, and pelvic sarcoma: How do protons compare with other conformal techniques? Int. J. Radiat. Oncol. Biol. Phys. 2005, 63, 362–372. [Google Scholar] [CrossRef]
- Yock, T.; Schneider, R.; Friedmann, A.; Adams, J.; Fullerton, B.; Tarbell, N. Proton radiotherapy for orbital rhabdomyosarcoma: Clinical outcome and a dosimetric comparison with photons. Int. J. Radiat. Oncol. Biol. Phys. 2005, 63, 1161–1168. [Google Scholar] [CrossRef]
- Palm, A.; Johansson, K.A. A review of the impact of photon and proton external beam radiotherapy treatment modalities on the dose distribution in field and out-of-field; implications for the long-term morbidity of cancer survivors. Acta Oncol. 2007, 46, 462–473. [Google Scholar] [CrossRef]
- Fukushima, H.; Fukushima, T.; Sakai, A.; Suzuki, R.; Kobayashi, C.; Oshiro, Y.; Mizumoto, M.; Hoshino, N.; Gotoh, C.; Urita, Y.; et al. Tailor-made treatment combined with proton beam therapy for children with genitourinary/pelvic rhabdomyosarcoma. Rep. Pract. Oncol. Radiother. 2015, 20, 217–222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oshiro, Y.; Mizumoto, M.; Okumura, T.; Sugahara, S.; Fukushima, T.; Ishikawa, H.; Nakao, T.; Hashimoto, T.; Tsuboi, K.; Ohkawa, H.; et al. Clinical results of proton beam therapy for advanced neuroblastoma. Radiat. Oncol. 2013, 8, 142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oshiro, Y.; Sugahara, S.; Fukushima, T.; Okumura, T.; Nakao, T.; Mizumoto, M.; Hashimoto, T.; Tsuboi, K.; Kaneko, M.; Sakurai, H. Pediatric nasopharyngeal carcinoma treated with proton beam therapy. Two case reports. Acta Oncol. 2011, 50, 470–473. [Google Scholar] [CrossRef] [PubMed]
- Mizumoto, M.; Oshiro, Y.; Takizawa, D.; Fukushima, T.; Fukushima, H.; Yamamoto, T.; Muroi, A.; Okumura, T.; Tsuboi, K.; Sakurai, H. Proton beam therapy for pediatric ependymoma. Pediatr. Int. 2015, 57, 567–571. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fuss, M.; Hug, E.B.; Schaefer, R.A.; Nevinny-Stickel, M.; Miller, D.W.; Slater, J.M.; Slater, J.D. Proton radiation therapy (PRT) for pediatric optic pathway gliomas: Comparison with 3D planned conventional photons and a standard photon technique. Int. J. Radiat. Oncol. Biol. Phys. 1999, 45, 1117–1126. [Google Scholar] [CrossRef]
- Beltran, C.; Roca, M.; Merchant, T.E. On the benefits and risks of proton therapy in pediatric craniopharyngioma. Int. J. Radiat. Oncol. Biol. Phys. 2012, 82, e281–e287. [Google Scholar] [CrossRef] [Green Version]
- Boehling, N.S.; Grosshans, D.R.; Bluett, J.B.; Palmer, M.T.; Song, X.; Amos, R.A.; Sahoo, N.; Meyer, J.J.; Mahajan, A.; Woo, S.Y. Dosimetric comparison of three-dimensional conformal proton radiotherapy, intensity-modulated proton therapy, and intensity-modulated radiotherapy for treatment of pediatric craniopharyngiomas. Int. J. Radiat. Oncol. Biol. Phys. 2012, 82, 643–652. [Google Scholar] [CrossRef]
- Childs, S.K.; Kozak, K.R.; Friedmann, A.M.; Yeap, B.Y.; Adams, J.; MacDonald, S.M.; Liebsch, N.J.; Tarbell, N.J.; Yock, T.I. Proton radiotherapy for parameningeal rhabdomyosarcoma: Clinical outcomes and late effects. Int. J. Radiat. Oncol. Biol. Phys. 2012, 82, 635–642. [Google Scholar] [CrossRef] [Green Version]
- Yock, T.; Yeap, B.; Pulsifer, M.; Ebb, D.; Macdonald, S.; Marcus, K.; Tarbell, N. Results from a Prospective Trial of Proton Radiotherapy for Medulloblastoma: Clinical Outcomes including Hearing and Neurocognitive. Fuel Energy Abstr. 2011, 81, S113. [Google Scholar] [CrossRef]
- Yock, T.I.; Bhat, S.; Szymonifka, J.; Yeap, B.Y.; Delahaye, J.; Donaldson, S.S.; MacDonald, S.M.; Pulsifer, M.B.; Hill, K.S.; DeLaney, T.F.; et al. Quality of life outcomes in proton and photon treated pediatric brain tumor survivors. Radiother. Oncol. 2014, 113, 89–94. [Google Scholar] [CrossRef] [Green Version]
- Child, A.E.; Warren, E.A.; Grosshans, D.R.; Paulino, A.C.; Okcu, M.F.; Ris, M.D.; Mahajan, A.; Orobio, J.; Cirino, P.T.; Minard, C.G.; et al. Long-term cognitive and academic outcomes among pediatric brain tumor survivors treated with proton versus photon radiotherapy. Pediatr. Blood Cancer 2021, 68, e29125. [Google Scholar] [CrossRef]
- Kahalley, L.S.; Peterson, R.; Ris, M.D.; Janzen, L.; Okcu, M.F.; Grosshans, D.R.; Ramaswamy, V.; Paulino, A.C.; Hodgson, D.; Mahajan, A.; et al. Superior Intellectual Outcomes After Proton Radiotherapy Compared With Photon Radiotherapy for Pediatric Medulloblastoma. J. Clin. Oncol. 2020, 38, 454–461. [Google Scholar] [CrossRef]
- Kahalley, L.S.; Douglas Ris, M.; Mahajan, A.; Fatih Okcu, M.; Chintagumpala, M.; Paulino, A.C.; Whitehead, W.E.; Minard, C.G.; Stancel, H.H.; Orobio, J.; et al. Prospective, longitudinal comparison of neurocognitive change in pediatric brain tumor patients treated with proton radiotherapy versus surgery only. Neuro-Oncol. 2019, 21, 809–818. [Google Scholar] [CrossRef] [Green Version]
- Kahalley, L.S.; Winter-Greenberg, A.; Stancel, H.; Ris, M.D.; Gragert, M. Utility of the General Ability Index (GAI) and Cognitive Proficiency Index (CPI) with survivors of pediatric brain tumors: Comparison to Full Scale IQ and premorbid IQ estimates. J. Clin. Exp. Neuropsychol. 2016, 38, 1065–1076. [Google Scholar] [CrossRef] [Green Version]
- Macdonald, S.M.; Sethi, R.; Lavally, B.; Yeap, B.Y.; Marcus, K.J.; Caruso, P.; Pulsifer, M.; Huang, M.; Ebb, D.; Tarbell, N.J.; et al. Proton radiotherapy for pediatric central nervous system ependymoma: Clinical outcomes for 70 patients. Neuro-Oncol. 2013, 15, 1552–1559. [Google Scholar] [CrossRef] [Green Version]
- Weusthof, K.; Luttich, P.; Regnery, S.; Konig, L.; Bernhardt, D.; Witt, O.; Herfarth, K.; Unterberg, A.; Jungk, C.; Farnia, B.; et al. Neurocognitive Outcomes in Pediatric Patients Following Brain Irradiation. Cancers 2021, 13, 3538. [Google Scholar] [CrossRef]
Tumor Type | Mainstay Treatment | Specific Radiation Therapy | Reported Survival |
---|---|---|---|
Medulloblastoma | Maximal surgical resection with radiation and multiagent Chemotherapy [59,60,61,62]. | Proton-beam-radiation therapy (23.4 Gy in 13 fractions of craniospinal irradiation with a posterior fossa boost of 30.6 Gy in 17 fractions) | 86% at 5 years [59], 83% at 61.2 months [60], 78% at 4.8 years [61], 87.6% at 6 years [62] |
Low-Grade Glioma (Pilocytic Astrocytoma) | Maximal surgical resection. Multimodal therapy for unresectable tumors and recurrent tumors [64]. | Proton-beam radiation | >90% at 10 years [64] |
High-Grade Glioma | Maximal surgical resection. Stereotactic biopsy if unresectable. Radiotherapy with concomitant temozolomide for non-surgical cases [65]. | Proton-beam-radiation strength, dependent on radiosensitivity of tumor cells | 26.5% at 2 years [65] |
Brain Stem Glioma | Resection when possible and radiation therapy [9,66,67,68,69]. | Proton-beam radiation | Widely variable: 34% at 5 years [68], 100% at 5 years [66], 33% at 5 years [69] |
Ependymoma | Maximal surgical resection. Local or craniospinal radiation in those with subtotal resection [70,71,72]. | Proton-beam radiation (54–59.4 Gy) | 76% at 10 years [71], 74.8% at 5 years [72] |
Craniopharyngioma | Controversial surgical resection with adjuvant radiotherapy [73]. | Proton-beam radiation | 88% at 5 years [73] |
Key Points of Discussion on the Neurocognitive Late Effects from Radiotherapy |
---|
Type of Radiotherapy | Proton-Beam Radiotherapy | IMRT (Photon) | VMAT (Photon) |
---|---|---|---|
Comparison of Complications |
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Major, N.; Patel, N.A.; Bennett, J.; Novakovic, E.; Poloni, D.; Abraham, M.; Brown, N.J.; Gendreau, J.L.; Sahyouni, R.; Loya, J. The Current State of Radiotherapy for Pediatric Brain Tumors: An Overview of Post-Radiotherapy Neurocognitive Decline and Outcomes. J. Pers. Med. 2022, 12, 1050. https://doi.org/10.3390/jpm12071050
Major N, Patel NA, Bennett J, Novakovic E, Poloni D, Abraham M, Brown NJ, Gendreau JL, Sahyouni R, Loya J. The Current State of Radiotherapy for Pediatric Brain Tumors: An Overview of Post-Radiotherapy Neurocognitive Decline and Outcomes. Journal of Personalized Medicine. 2022; 12(7):1050. https://doi.org/10.3390/jpm12071050
Chicago/Turabian StyleMajor, Nicholas, Neal A. Patel, Josiah Bennett, Ena Novakovic, Dana Poloni, Mickey Abraham, Nolan J. Brown, Julian L. Gendreau, Ronald Sahyouni, and Joshua Loya. 2022. "The Current State of Radiotherapy for Pediatric Brain Tumors: An Overview of Post-Radiotherapy Neurocognitive Decline and Outcomes" Journal of Personalized Medicine 12, no. 7: 1050. https://doi.org/10.3390/jpm12071050
APA StyleMajor, N., Patel, N. A., Bennett, J., Novakovic, E., Poloni, D., Abraham, M., Brown, N. J., Gendreau, J. L., Sahyouni, R., & Loya, J. (2022). The Current State of Radiotherapy for Pediatric Brain Tumors: An Overview of Post-Radiotherapy Neurocognitive Decline and Outcomes. Journal of Personalized Medicine, 12(7), 1050. https://doi.org/10.3390/jpm12071050