Outcome of Critically Ill COVID-19 Patients According to the Setting of Corticosteroid Initiation—A Retrospective Observational Cohort Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Patient Management in the ICU and Corticosteroid Treatment
2.3. Study Groups and Endpoint Definitions
2.4. Data Collection
2.5. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Comparisons According to the Corticosteroid Initiation Setting
3.3. Prognostic Factors in the Critically Ill Patients Treated with Corticosteroids
3.4. Propensity Score
3.5. Role of the Corticosteroid Dose Regimen and Subgroup Analyses
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- COVID-ICU Group on behalf of the REVA Network and the COVID-ICU Investigators. Clinical characteristics and day-90 outcomes of 4244 critically ill adults with COVID-19: A prospective cohort study. Intensive Care Med. 2021, 47, 60–73. [Google Scholar] [CrossRef] [PubMed]
- Galloway, J.B.; Norton, S.; Barker, R.D.; Brookes, A.; Carey, I.; Clarke, B.D.; Jina, R.; Reid, C.; Russell, M.D.; Sneep, R.; et al. A clinical risk score to identify patients with COVID-19 at high risk of critical care admission or death: An observational cohort study. J. Infect. 2020, 81, 282–288. [Google Scholar] [CrossRef]
- Torres Acosta, M.A.; Singer, B.D. Pathogenesis of COVID-19-induced ARDS: Implications for an ageing population. Eur. Respir. J. 2020, 56, 2002049. [Google Scholar] [CrossRef]
- RECOVERY Collaborative Group; Horby, P.; Lim, W.S.; Emberson, J.R.; Mafham, M.; Bell, J.L.; Linsell, L.; Staplin, N.; Brightling, C.; Ustianowski, A.; et al. Dexamethasone in Hospitalized Patients with Covid-19. N. Engl. J. Med. 2021, 384, 693–704. [Google Scholar]
- Angus, D.C.; Derde, L.; Al-Beidh, F.; Annane, D.; Arabi, Y.; Beane, A.; van Bentum-Puijk, W.; Berry, L.; Bhimani, Z.; Bonten, M.; et al. Effect of Hydrocortisone on Mortality and Organ Support in Patients With Severe COVID-19: The REMAP-CAP COVID-19 Corticosteroid Domain Randomized Clinical Trial. JAMA 2020, 324, 1317–1329. [Google Scholar] [PubMed]
- WHO Rapid Evidence Appraisal for COVID-19 Therapies (REACT) Working Group; Shankar-Hari, M.; Vale, C.L.; Godolphin, P.J.; Fisher, D.; Higgins, J.P.T.; Spiga, F.; Savovic, J.; Tierney, J.; Baron, G.; et al. Association Between Administration of Systemic Corticosteroids and Mortality Among Critically Ill Patients With COVID-19: A Meta-analysis. JAMA 2020, 324, 1330–1341. [Google Scholar] [CrossRef] [PubMed]
- REMAP-CAP Investigators; Gordon, A.C.; Mouncey, P.R.; Al-Beidh, F.; Rowan, K.M.; Nichol, A.D.; Arabi, Y.M.; Annane, D.; Beane, A.; van Bentum-Puijk, W.; et al. Interleukin-6 Receptor Antagonists in Critically Ill Patients with Covid-19. N. Engl. J. Med. 2021, 384, 1491–1502. [Google Scholar] [CrossRef] [PubMed]
- Shankar-Hari, M.; Vale, C.L.; Godolphin, P.J.; Fisher, D.; Higgins, J.P.; Spiga, F.; Savovic, J.; Tierney, J.; Baron, G.; Benbenishty, J.S.; et al. Association Between Administration of IL-6 Antagonists and Mortality Among Patients Hospitalized for COVID-19: A Meta-analysis. JAMA 2021, 326, 499–518. [Google Scholar]
- CORIMUNO-19 Collaborative Group. Effect of anakinra versus usual care in adults in hospital with COVID-19 and mild-to-moderate pneumonia (CORIMUNO-ANA-1): A randomised controlled trial. Lancet Respir. Med. 2021, 9, 295–304. [Google Scholar] [CrossRef]
- Demoule, A.; Vieillard Baron, A.; Darmon, M.; Beurton, A.; Géri, G.; Voiriot, G.; Dupont, T.; Zafrani, L.; Girodias, L.; Labbé, V.; et al. High-Flow Nasal Cannula in Critically III Patients with Severe COVID-19. Am. J. Respir. Crit. Care Med. 2020, 202, 1039–1042. [Google Scholar] [CrossRef]
- ARDS Definition Task Force; Ranieri, V.M.; Rubenfeld, G.D.; Thompson, B.T.; Ferguson, N.D.; Caldwell, E.; Fan, E.; Camporota, L.; Slutsky, A.S. Acute respiratory distress syndrome: The Berlin Definition. JAMA 2012, 307, 2526–2533. [Google Scholar]
- Griffiths, M.J.D.; McAuley, D.F.; Perkins, G.D.; Barrett, N.; Blackwood, B.; Boyle, A.; Chee, N.; Connolly, B.; Dark, P.; Finney, S.; et al. Guidelines on the management of acute respiratory distress syndrome. BMJ Open Respir. Res. 2019, 6, e000420. [Google Scholar] [CrossRef] [Green Version]
- Papazian, L.; Aubron, C.; Brochard, L.; Chiche, J.D.; Combes, A.; Dreyfuss, D.; Forel, J.M.; Guérin, C.; Jaber, S.; Mekontso-Dessap, A.; et al. Formal guidelines: Management of acute respiratory distress syndrome. Ann. Intensive Care 2019, 9, 69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Villar, J.; Ferrando, C.; Martínez, D.; Ambrós, A.; Muñoz, T.; Soler, J.A.; Aguilar, G.; Alba, F.; González-Higueras, E.; Conesa, L.A.; et al. Dexamethasone treatment for the acute respiratory distress syndrome: A multicentre, randomised controlled trial. Lancet Respir. Med. 2020, 8, 267–276. [Google Scholar] [CrossRef]
- Arabi, Y.M.; Gordon, A.C.; Derde, L.P.G.; Nichol, A.D.; Murthy, S.; Beidh, F.A.; Annane, D.; Swaidan, L.A.; Beane, A.; Beasley, R.; et al. Lopinavir-ritonavir and hydroxychloroquine for critically ill patients with COVID-19: REMAP-CAP randomized controlled trial. Intensive Care Med. 2021, 47, 867–886. [Google Scholar] [CrossRef] [PubMed]
- Reis, G.; Moreira Silva, E.A.D.S.; Medeiros Silva, D.C.; Thabane, L.; Singh, G.; Park, J.J.H.; Forrest, J.I.; Harari, O.; Quirino Dos Santos, C.V.; Guimarães de Almeida, A.P.F.; et al. Effect of Early Treatment With Hydroxychloroquine or Lopinavir and Ritonavir on Risk of Hospitalization Among Patients With COVID-19: The TOGETHER Randomized Clinical Trial. JAMA Netw. Open 2021, 4, e216468. [Google Scholar] [CrossRef] [PubMed]
- Vincent, J.L.; Moreno, R.; Takala, J.; Willatts, S.; De Mendonça, A.; Bruining, H.; Reinhart, C.K.; Suter, P.M.; Thijs, L.G. The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure. Intensive Care Med. 1996, 22, 707–710. [Google Scholar] [CrossRef]
- Yang, Z.; Hu, Q.; Huang, F.; Xiong, S.; Sun, Y. The prognostic value of the SOFA score in patients with COVID-19: A retrospective, observational study. Medicine 2021, 100, e26900. [Google Scholar] [CrossRef]
- Austin, P.C. Optimal caliper widths for propensity-score matching when estimating differences in means and differences in proportions in observational studies. Pharm. Stat. 2011, 10, 150–161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- So, C.; Ro, S.; Murakami, M.; Imai, R.; Jinta, T. High-dose, short-term corticosteroids for ARDS caused by COVID-19: A case series. Respirol. Case Rep. 2020, 8, e00596. [Google Scholar] [CrossRef] [PubMed]
- Pinzón, M.A.; Ortiz, S.; Holguín, H.; Betancur, J.F.; Cardona Arango, D.; Laniado, H.; Arias Arias, C.; Muñoz, B.; Quiceno, J.; Jaramillo, D.; et al. Dexamethasone vs methylprednisolone high dose for Covid-19 pneumonia. PLoS ONE 2021, 16, e0252057. [Google Scholar] [CrossRef] [PubMed]
- López Zúñiga, M.Á.; Moreno-Moral, A.; Ocaña-Granados, A.; Padilla-Moreno, F.A.; Castillo-Fernández, A.M.; Guillamón-Fernández, D.; Ramírez-Sánchez, C.; Sanchez-Palop, M.; Martínez-Colmenero, J.; Pimentel-Villar, M.A.; et al. High-dose corticosteroid pulse therapy increases the survival rate in COVID-19 patients at risk of hyper-inflammatory response. PLoS ONE 2021, 16, e0243964. [Google Scholar] [CrossRef]
- Camell, C.D.; Yousefzadeh, M.J.; Zhu, Y.; Prata, L.G.P.; Huggins, M.A.; Pierson, M.; Zhang, L.; O’Kelly, R.D.; Pirtskhalava, T.; Xun, P.; et al. Senolytics reduce coronavirus-related mortality in old mice. Science 2021, 373, eabe4832. [Google Scholar] [CrossRef] [PubMed]
- Di Pierro, F.; Derosa, G.; Maffioli, P.; Bertuccioli, A.; Togni, S.; Riva, A.; Allegrini, P.; Khan, A.; Khan, S.; Khan, B.A.; et al. Possible Therapeutic Effects of Adjuvant Quercetin Supplementation Against Early-Stage COVID-19 Infection: A Prospective, Randomized, Controlled, and Open-Label Study. Int. J. Gen. Med. 2021, 14, 2359–2366. [Google Scholar] [CrossRef]
- Vivarelli, S.; Falzone, L.; Torino, F.; Scandurra, G.; Russo, G.; Bordonaro, R.; Pappalardo, F.; Spandidos, D.A.; Raciti, G.; Libra, M. Immune-checkpoint inhibitors from cancer to COVID-19: A promising avenue for the treatment of patients with COVID-19 (Review). Int. J. Oncol. 2021, 58, 145–157. [Google Scholar] [CrossRef]
- Gaziano, R.; Pistoia, E.S.; Campione, E.; Fontana, C.; Marino, D.; Favaro, M.; Pica, F.; Di Francesco, P. Immunomodulatory agents as potential therapeutic or preventive strategies for COVID-19. Eur. Rev. Med. Pharmacol. Sci. 2021, 25, 4174–4184. [Google Scholar] [PubMed]
- Meyerowitz, E.A.; Sen, P.; Schoenfeld, S.R.; Neilan, T.G.; Frigault, M.J.; Stone, J.H.; Kim, A.Y.; Mansour, M.K. Immunomodulation as Treatment for Severe COVID-19: A systematic review of current modalities and future directions. Clin. Infect. Dis. 2020, 72, e1130–e1143. [Google Scholar] [CrossRef] [PubMed]
- Barbaro, R.P.; MacLaren, G.; Boonstra, P.S.; Combes, A.; Agerstrand, C.; Annich, G.; Diaz, R.; Fan, E.; Hryniewicz, K.; Lorusso, R.; et al. Extracorporeal membrane oxygenation for COVID-19: Evolving outcomes from the international Extracorporeal Life Support Organization Registry. Lancet 2021, 398, 1230–1238. [Google Scholar] [CrossRef]
- Schmidt, M.; Hajage, D.; Lebreton, G.; Monsel, A.; Voiriot, G.; Levy, D.; Baron, E.; Beurton, A.; Chommeloux, J.; Meng, P.; et al. Extracorporeal membrane oxygenation for severe acute respiratory distress syndrome associated with COVID-19: A retrospective cohort study. Lancet Respir. Med. 2020, 8, 1121–1131. [Google Scholar] [CrossRef]
- Voicu, S.; Brudon, A.; Modestin, L.; Nitenberg, K.; Gonde, A.; Malissin, I.; Mégarbane, B. Reversibility of total airway closure and alveolar consolidation in a COVID-19 patient: A case study. Nurs. Crit. Care 2021. [Google Scholar] [CrossRef] [PubMed]
- Lebreton, G.; Schmidt, M.; Ponnaiah, M.; Folliguet, T.; Para, M.; Guihaire, J.; Lansac, E.; Sage, E.; Cholley, B.; Mégarbane, B.; et al. Extracorporeal membrane oxygenation network organisation and clinical outcomes during the COVID-19 pandemic in Greater Paris, France: A multicentre cohort study. Lancet Respir. Med. 2021, 9, 851–862. [Google Scholar] [CrossRef]
Variable | Overall (n = 228) | Cb-Group (n = 63) | Ca-Group (n = 165) | p-Value |
---|---|---|---|---|
Demographics and Comorbidities | ||||
Age (years) | 67 (56–74) | 70 (64–78) | 64 (53–73) | 0.001 |
Male gender, n (%) | 168 (74) | 50 (79) | 118 (72) | 0.23 |
Past hypertension, n (%) | 119 (52) | 38 (60) | 81 (49) | 0.13 |
Diabetes mellitus, n (%) | 84 (37) | 29 (46) | 55 (33) | 0.08 |
Ischemic heart disease, n (%) | 26 (11) | 9 (14) | 17 (10) | 0.40 |
Body-mass index (kg/m2) | 28.5 (25.4–32.9) | 29.2 (26.0–32.0) | 28.0 (25.3–33.4) | 0.69 |
Tobacco smoking, n (%) | 16 (7) | 2 (3) | 14 (9) | 0.16 |
Parameters on ICU Admission | ||||
SARS-CoV-2 (original strain, and alpha, beta, delta, and undetermined *** variants), n (%) | 189 (83)/26 (11)/8 (4)/2 (1)/3 (1) | 50 (79)/10 (16)/1 (2)/1 (2)/1 (2) | 139 (84)/16 (10)/7 (4)/1 (1)/2 (1) | 0.33 |
SOFA score * | 4 (2–5) | 4 (3–5) | 4 (2–6) | 0.50 |
Lung injuries by CT-scan (%) | 50 (40–60) | 50 (30–60) | 50 (40–60) | 0.77 |
Blood lactate (mmol/L) * | 1.3 (1.0–1.7) | 1.5 (1.2–1.9) | 1.3 (1.0–1.7) | 0.08 |
PaO2/FiO2 ratio (mmHg) * | 111 (78–171) | 93.6 (69–123) | 120 (83–180) | 0.003 |
Serum C-reactive protein (mg/L) * | 140 (78–220) | 99 (43–156) | 160 (95–232) | <0.001 |
Serum procalcitonin (ng/mL) * | 0.26 (0.12–0.75) | 0.18 (0.08–0.42) | 0.30 (0.13–0.82) | 0.01 |
White blood cells (G/L) * | 8.5 (6.2–11.2) | 9.9 (7.9–12.5) | 8.2 (5.8–10.5) | <0.001 |
Peripheral lymphocytes (G/L) * | 0.8 (0.5–1.0) | 0.6 (0.4–0.9) | 0.8 (0.6–1.1) | 0.005 |
Peripheral neutrophils (G/L) * | 7.0 (5.0–9.5) | 8.6 (6.7–10.4) | 6.3 (4.7–9.0) | <0.001 |
Serum interleukin-6 concentration (pg/mL) * | 63.4 (20.6–150.1) | 62.1 (20.5–141.7) | 67.0 (20.8–162.2) | 0.62 |
Invasive mechanical ventilation on ICU admission day * | 39 (17) | 13 (21) | 26 (16) | 0.38 |
Vasopressors, n (%) * | 26 (11) | 3 (5) | 23 (14) | 0.051 |
vvECMO, n (%) * | 13 (6) | 2 (3) | 11 (7) | 0.31 |
Time from hospital to ICU admission (days) | 1 (0–4) | 5 (3–10) | 0 (0–2) | <0.001 |
Corticosteroid Treatment and Additional Therapies in the ICU ** | ||||
Time from symptoms to corticosteroids (days) | 7 (5–10) | 7 (4–9) | 8 (6–11) | <0.001 |
Dexamethasone in the ICU, n (%) D6 regimen D20/10 regimen | 112 (49) 116 (51) | 33 (52) 30 (48) | 79 (48) 86 (52) | 0.54 |
Total duration of corticosteroid treatment (days) | 10 (10–14) | 14 (10–20) | 10 (10–10) | <0.001 |
Tocilizumab, n (%) | 79 (35) | 22 (35) | 57 (35) | 0.96 |
Hydroxychloroquine/azithromycin combination, n (%) | 35 (15) | 1 (2) | 34 (21) | <0.001 |
Lopinavir/ritonavir, n (%) | 6 (3) | 0 (0) | 6 (4) | 0.19 |
Anakinra, n (%) | 3 (1) | 0 (0) | 3 (2) | 0.56 |
Invasive mechanical ventilation, n (%) | 111 (49) | 36 (57) | 75 (46) | 0.11 |
Prone positioning, n (%) | 99 (49) | 31 (59) | 68 (45) | 0.09 |
Number of proning sessions | 3 (1–5) | 2 (1–5) | 3 (1–4) | 0.74 |
Nitrogen oxide, n (%) | 47 (21) | 16 (26) | 31 (19) | 0.28 |
vvECMO, n (%) | 31 (14) | 11 (18) | 20 (12) | 0.29 |
Renal replacement therapy, n (%) | 42 (19) | 14 (23) | 28 (17) | 0.34 |
ICU Complications and Outcome | ||||
Hospital-acquired infection, n (%) | 100 (44) | 35 (56) | 65 (39) | 0.03 |
Number of hospital-acquired infection episodes | 2 (1–3) | 2 (1–4) | 2 (1-2) | 0.03 |
Number of days alive free of mechanical ventilation at day 28 (days) | 7 (0–28) | 7 (0–28) | 28 (2–28) | 0.03 |
Survival to hospital discharge, n (%) | 141 (62) | 27 (43) | 114 (69) | <0.001 |
OR (CI95) | p | |
---|---|---|
Corticosteroids started before ICU admission | 2.64 (1.30–5.43) | 0.007 |
Invasive mechanical ventilation on ICU admission | 2.53 (0.93–7.25) | 0.07 |
Tocilizumab | 1.49 (0.76–2.95) | 0.25 |
SOFA on ICU admission * | 1.30 (1.14–1.50) | 0.0001 |
Age * | 1.07 (1.04–1.11) | <0.0001 |
Hydroxychloroquine/azithromycin combination | 0.67 (0.22–1.86) | 0.45 |
Cb-Group (n = 53) | Ca-Group (n = 53) | p | SMD | |
---|---|---|---|---|
Demographics and Comorbidities | ||||
Age (years) | 70 (63–75) | 69 (58–77) | 0.76 | 0.12 |
Male gender, n (%) | 40 (76) | 39 (74) | 1 | 0.04 |
Past hypertension, n (%) | 35 (66) | 30 (57) | 0.43 | 0.20 |
Diabetes mellitus, n (%) | 27 (51) | 15 (28) | 0.028 | 0.48 |
Ischemic heart disease, n (%) | 9 (17) | 7 (13) | 0.79 | 0.11 |
Body mass index (kg/m2) | 29.2 (26.2–32.0) | 26.7 (23.5–33.4) | 0.30 | 0.11 |
Tobacco smoking, n (%) | 2 (4) | 3 (6) | 1 | 0.09 |
Parameters on ICU Admission | ||||
SOFA score * | 4 (3–5) | 3 (2–5) | 0.59 | 0.06 |
Blood lactate (mmol/L) * | 1.5 (1.2–1.8) | 1.3 (1.0–2.1) | 0.83 | 0.07 |
PaO2/FiO2 ratio (mmHg) * | 94 (70–143) | 103 (76–146) | 0.61 | 0.12 |
Serum C-reactive protein (mg/L) * | 102 (47–157) | 160 (97–240) | 0.002 | 0.58 |
Serum procalcitonin (ng/mL) * | 0.19 (0.08, 0.61) | 0.30 (0.13, 0.64) | 0.24 | 0.21 |
White blood cells (G/L) * | 10.1 (7.9–12.2) | 7.6 (5.6–10.0) | 0.001 | 0.64 |
Peripheral lymphocytes (G/L) * | 0.6 (0.4–0.9) | 0.8 (0.6–1.0) | 0.012 | 0.50 |
Peripheral neutrophils (G/L) * | 9.0 (6.7–10.4) | 6.3 (4.4–8.8) | <0.001 | 0.70 |
Serum interleukin-6 (pg/mL)* | 54 (13–129) | 54 (19–193) | 0.40 | 0.09 |
Invasive mechanical ventilation on ICU admission day, n (%) * | 8 (15) | 10 (19) | 0.80 | 0.10 |
Vasopressors, n (%) * | 2 (4) | 5 (9) | 0.44 | 0.23 |
vvECMO, n (%) * | 2 (4) | 0 (0) | 0.50 | 0.28 |
Time from hospital to ICU admission (days) | 5 (2–10) | 1 (0–2) | <0.001 | 0.70 |
Corticosteroid Treatment and Additional Therapies in the ICU | ||||
Time from symptoms to corticosteroids (days) | 6 (3–9) | 8 (6–10) | 0.004 | 0.63 |
Dexamethasone in the ICU, n (%) D6 regimen D20/10 regimen | 28 (53) 25 (47) | 29 (55) 24 (44) | 1 | 0.04 |
Corticosteroid treatment duration (days) | 14 (10–21) | 10 (10–13) | <0.001 | 0.54 |
Tocilizumab, n (%) | 16 (30) | 20 (38) | 0.54 | 0.16 |
Hydroxychloroquine/azithromycin combination, n (%) | 1 (2) | 8 (15) | 0.031 | 0.49 |
Invasive mechanical ventilation, n (%) | 29 (55) | 20 (38) | 0.12 | 0.35 |
Prone positioning, n (%) | 25 (58) | 22 (47) | 0.30 | 0.23 |
Number of proning sessions | 2.5 (2.0-5.3) | 2.5 (1.0–5.0) | 0.54 | 0.05 |
Nitrogen oxide, n (%) | 12 (23) | 6 (12) | 0.20 | 0.30 |
vvECMO, n (%) | 9 (17) | 1 (2) | 0.016 | 0.54 |
Renal replacement therapy, n (%) | 13 (25) | 4 (8) | 0.018 | 0.49 |
ICU Complications and Outcome | ||||
Hospital-acquired infection, n (%) | 29 (55) | 19 (36) | 0.08 | 0.39 |
Number of hospital-acquired infection episodes | 2 (1–4) | 2 (1, 2) | 0.032 | 0.81 |
Number of days alive free of mechanical ventilation at day 28 (days) | 9 (0–28) | 28 (2–28) | 0.11 | 0.35 |
Survival to hospital discharge, n (%) | 24 (45) | 36 (68) | 0.031 | 0.47 |
Overall (n = 63) | Non-Survivors (n = 36) | Survivors (n = 27) | p-Value | |
---|---|---|---|---|
Demographics and Comorbidities | ||||
Age (years) | 70 (64–78) | 73 (66–79) | 69 (62–74) | 0.13 |
Male gender, n (%) | 50 (79) | 28 (78) | 22 (81) | 0.72 |
Past hypertension, n (%) | 38 (60) | 23 (64) | 15 (56) | 0.50 |
Diabetes mellitus, n (%) | 29 (46) | 18 (50) | 11 (41) | 0.47 |
Ischemic heart disease, n (%) | 9 (14) | 7 (19) | 2 (7) | 0.28 |
Body mass index (kg/m2) | 29.2 (26.0–32.0) | 29.6 (27.3–32.0) | 27.8 (24.1–31.7) | 0.29 |
Tobacco smoking, n (%) | 2 (3) | 1 (3) | 1 (4) | 1.0 |
Parameters on ICU Admission | ||||
SOFA score * | 4 (3–5) | 4 (3–5) | 3 (2–4) | 0.02 |
PaO2/FiO2 ratio (mmHg) * | 94 (69–122) | 81 (69–127) | 98 (71–121) | 0.42 |
Blood lactate (mmol/L) * | 1.50 (1.20–1.90) | 1.50 (1.20–1.85) | 1.50 (1.15–1.90) | 0.75 |
Serum C-reactive protein (mg/L) * | 99 (43–156) | 85 (39–144) | 130 (47–176) | 0.52 |
Serum procalcitonin (ng/mL) * | 0.18 (0.08–0.42) | 0.21 (0.09–0.41) | 0.18 (0.08–0.38) | 0.52 |
White blood cells (G/L) * | 9.9 (7.9–12.5) | 9.5 (7.2–14.0) | 10.5 (8.5–11.8) | 0.60 |
Peripheral lymphocytes (G/L) * | 0.6 (0.4–0.9) | 0.6 (0.4–0.9) | 0.6 (0.4–0.9) | 0.46 |
Peripheral neutrophils (G/L) * | 8.6 (6.7–10.4) | 8.2 (5.9–11.9) | 9.1 (7.6–10.1) | 0.72 |
Serum interleukin-6 (pg/mL) * | 62.2 (20.5–142.0) | 64.0 (46.5–267.0) | 26.6 (9.0–111.0) | 0.01 |
Invasive mechanical ventilation on ICU admission day, n (%) * | 13 (21) | 11 (31) | 2 (7) | 0.03 |
Vasopressors, n (%) * | 3 (5) | 3 (15) | 0 (0) | 0.12 |
vvECMO, n (%) * | 2 (3) | 2 (6) | 0 (0) | 0.50 |
Time from hospital to ICU admission (days) | 5 (2.5–10) | 6 (3–16) | 4 (2–9) | 0.04 |
Corticosteroid Treatment and Additional Therapies in the ICU | ||||
Time from symptoms to corticosteroids (days) | 7 (4–9) | 6 (4–9) | 7 (5–9) | 0.84 |
Corticosteroid before ICU, n (%) D6 regimen Other corticosteroid regimen | 53 (84) 10 (16) | 31 (86) 5 (14) | 22 (81) 5 (19) | 0.73 |
Dexamethasone in the ICU, n (%) D6 regimen D20/10 regimen | 33 (52) 30 (48) | 21 (58) 16 (44) | 12 (44) 14 (54) | 0.56 |
Corticosteroid treatment duration (days) | 14 (10–20) | 13 (10–23) | 15 (11–20) | 0.39 |
Tocilizumab, n (%) | 22 (35) | 13 (36) | 9 (33) | 0.82 |
Hydroxychloroquine/azithromycin combination, n (%) | 1 (2) | 1 (3) | 0 (0) | 1.0 |
Time from corticosteroid initiation to ICU transfer (days) | 5 (2–9) | 4 (2–8) | 5 (3–9) | 0.83 |
Invasive mechanical ventilation, n (%) | 36 (57.1) | 30 (83) | 6 (22) | <0.001 |
Prone positioning, n (%) | 31 (59) | 24 (75) | 7 (33) | 0.004 |
Number of proning sessions | 2 (1–5) | 2 (1–6) | 3 (1–5) | 0.78 |
Nitrogen oxide, n (%) | 16 (26) | 16 (44) | 0 (0) | <0.001 |
vvECMO, n (%) | 11 (18) | 11 (31) | 0 (0) | 0.001 |
Renal replacement therapy, n (%) | 14 (23) | 11 (31) | 3 (12) | 0.12 |
ICU Complications and Outcome | ||||
Hospital-acquired infection, n (%) | 35 (56) | 27 (75) | 8 (30) | 0.001 |
Number of hospital-acquired infection episodes | 2 (1–4) | 2 (2-3) | 4 (1–4) | 0.53 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Voicu, S.; Lacoste-Palasset, T.; Malissin, I.; Bekhit, S.; Cauchois, E.; Dahmani, S.; Saib, M.; Grant, C.; Naim, G.; M’Rad, A.; et al. Outcome of Critically Ill COVID-19 Patients According to the Setting of Corticosteroid Initiation—A Retrospective Observational Cohort Study. J. Pers. Med. 2021, 11, 1359. https://doi.org/10.3390/jpm11121359
Voicu S, Lacoste-Palasset T, Malissin I, Bekhit S, Cauchois E, Dahmani S, Saib M, Grant C, Naim G, M’Rad A, et al. Outcome of Critically Ill COVID-19 Patients According to the Setting of Corticosteroid Initiation—A Retrospective Observational Cohort Study. Journal of Personalized Medicine. 2021; 11(12):1359. https://doi.org/10.3390/jpm11121359
Chicago/Turabian StyleVoicu, Sebastian, Thomas Lacoste-Palasset, Isabelle Malissin, Shana Bekhit, Eléonore Cauchois, Sirine Dahmani, Melkir Saib, Caroline Grant, Giulia Naim, Aymen M’Rad, and et al. 2021. "Outcome of Critically Ill COVID-19 Patients According to the Setting of Corticosteroid Initiation—A Retrospective Observational Cohort Study" Journal of Personalized Medicine 11, no. 12: 1359. https://doi.org/10.3390/jpm11121359
APA StyleVoicu, S., Lacoste-Palasset, T., Malissin, I., Bekhit, S., Cauchois, E., Dahmani, S., Saib, M., Grant, C., Naim, G., M’Rad, A., Pepin-Lehaleur, A., Ekhérian, J. -M., Deye, N., & Mégarbane, B. (2021). Outcome of Critically Ill COVID-19 Patients According to the Setting of Corticosteroid Initiation—A Retrospective Observational Cohort Study. Journal of Personalized Medicine, 11(12), 1359. https://doi.org/10.3390/jpm11121359