Mapping Brain Microstructure and Network Alterations in Depressive Patients with Suicide Attempts Using Generalized Q-Sampling MRI
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Diffusion MRI Data Acquisition
2.3. Generalized Q-Sampling Imaging (GQI)
2.4. Diffusion Imaging Preprocessing
2.5. Voxel-Based Statistical Analysis
2.6. Graph Theoretical Analysis (GTA)
2.7. Network-Based Statistical (NBS) Analysis
3. Results
3.1. Demographic Characteristics
3.2. Voxel-Based Statistical Analysis
3.3. Graph Theoretical Analysis
3.4. Network-Based Statistical (NBS) Analysis
4. Discussion
4.1. Voxel-Based Statistical Analysis
4.2. Corpus Callosum
4.3. Cingulate Gyrus
4.4. Precuneus/Cuneus
4.5. Caudate
4.6. Network Measurement
4.7. Limitations
4.8. Future Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- GBD 2017 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2018, 392, 1789–1858. [Google Scholar] [CrossRef] [Green Version]
- Murray, C.J.; Vos, T.; Lozano, R.; Naghavi, M.; Flaxman, A.D.; Michaud, C.; Ezzati, M.; Shibuya, K.; Salomon, J.A.; Abdalla, S.; et al. Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990–2010: A systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012, 380, 2197–2223. [Google Scholar] [CrossRef]
- Richards, D. Prevalence and clinical course of depression: A review. Clin. Psychol. Rev. 2011, 31, 1117–1125. [Google Scholar] [CrossRef]
- McIntyre, R.S.; Cha, D.S.; Soczynska, J.K.; Woldeyohannes, H.O.; Gallaugher, L.A.; Kudlow, P.; Alsuwaidan, D.; Baskaran, A. Cognitive deficits and functional outcomes in major depressive disorder: Determinants, substrates, and treatment interventions. Depress Anxiety 2013, 30, 515–527. [Google Scholar] [CrossRef]
- Blazer, D.G. Depression in late life: Review and commentary. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2003, 58, 249–265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peyre, H.; Hoertel, N.; Stordeur, C.; Lebeau, G.; Blanco, C.; McMahon, K.; Basmaci, R.; Lemogne, C.; Limosin, F.; Delorme, R. Contributing Factors and Mental Health Outcomes of First Suicide Attempt During Childhood and Adolescence: Results From a Nationally Representative Study. J. Clin. Psychiatry 2017, 78, e622–e630. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Zhao, Y.; Wang, Y.; Liu, L.; Zhang, X.; Li, B.; Cui, R. The Effects of Psychological Stress on Depression. Curr. Neuropharmacol. 2015, 13, 494–504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, H.; Luo, X.; Ke, X.; Dai, Q.; Zheng, W.; Zhang, C.; Cassidy, R.M.; Soares, J.C.; Zhang, X.; Ning, Y. Major depressive disorder and suicide risk among adult outpatients at several general hospitals in a Chinese Han population. PLoS ONE 2017, 12, e0186143. [Google Scholar] [CrossRef] [Green Version]
- Bilsen, J. Suicide and Youth: Risk Factors. Front. Psychiatry 2018, 9, 540. [Google Scholar] [CrossRef] [PubMed]
- Bostwick, J.M.; Pabbati, C.; Geske, J.R.; McKean, A.J. Suicide Attempt as a Risk Factor for Completed Suicide: Even More Lethal Than We Knew. Am. J. Psychiatry 2016, 173, 1094–1100. [Google Scholar] [CrossRef] [Green Version]
- Sotelo, L.J.; Musselman, D.; Nemeroff, C. The biology of depression in cancer and the relationship between depression and cancer progression. Int. Rev. Psychiatry 2014, 26, 16–30. [Google Scholar] [CrossRef]
- Cuijpers, P.; Quero, S.; Dowrick, C.; Arroll, B. Psychological Treatment of Depression in Primary Care: Recent Developments. Curr. Psychiatry Rep. 2019, 21, 129. [Google Scholar] [CrossRef] [Green Version]
- Bani-Fatemi, A.; Tasmim, S.; Graff-Guerrero, A.; Gerretsen, P.; Strauss, J.; Kolla, N.; Spalletta, G.; De Luca, V. Structural and functional alterations of the suicidal brain: An updated review of neuroimaging studies. Psychiatry Res. Neuroimaging 2018, 278, 77–91. [Google Scholar] [CrossRef]
- Zhang, R.; Jiang, X.; Chang, M.; Wei, S.; Tang, Y.; Wang, F. White matter abnormalities of corpus callosum in patients with bipolar disorder and suicidal ideation. Ann. Gen. Psychiatry 2019, 18, 20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yeh, F.C.; Wedeen, V.J.; Tseng, W.Y. Generalized q-sampling imaging. IEEE Trans. Med. Imaging 2010, 29, 1626–1635. [Google Scholar] [PubMed]
- Sporns, O. Graph theory methods: Applications in brain networks. Dialogues Clin. Neurosci. 2018, 20, 111–121. [Google Scholar]
- Shine, J.M. Neuromodulatory Influences on Integration and Segregation in the Brain. Trends Cogn. Sci. 2019, 23, 572–583. [Google Scholar] [CrossRef] [PubMed]
- Bassett, D.S.; Bullmore, E. Small-world brain networks. Neuroscientist 2006, 12, 512–523. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, T.; Hillary, F.G.; Biswal, B.B. Resting network plasticity following brain injury. PLoS ONE 2009, 4, e8220. [Google Scholar] [CrossRef] [PubMed]
- Bullmore, E.; Sporns, O. Complex brain networks: Graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 2009, 10, 186–198. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Ghadery, C.; Cho, S.S.; Mihaescu, A.; Christopher, L.; Valli, M.; Houle, S.; Strafella, A.P. Network Patterns of Beta-Amyloid Deposition in Parkinson’s Disease. Mol. Neurobiol. 2019, 56, 7731–7740. [Google Scholar] [CrossRef] [PubMed]
- Kenett, Y.N.; Beaty, R.E.; Medaglia, J.D. A computational network control theory analysis of depression symptoms. Personal. Neurosci. 2018, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bajaj, S.; Vanuk, J.R.; Smith, R.; Dailey, N.S.; Killgore, W.D.S. Blue-Light Therapy following Mild Traumatic Brain Injury: Effects on White Matter Water Diffusion in the Brain. Front. Neurol. 2017, 8, 616. [Google Scholar] [CrossRef] [PubMed]
- Tzourio-Mazoyer, N.; Landeau, B.; Papathanassiou, D.; Crivello, F.; Etard, O.; Delcroix, N.; Mazoyer, B.; Joliot, M. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 2002, 15, 273–289. [Google Scholar] [CrossRef]
- Behzadi, Y.; Restom, K.; Liau, J.; Liu, T.T. A component based noise correction method (CompCor) for BOLD and perfusion based fMRI. Neuroimage 2007, 37, 90–101. [Google Scholar] [CrossRef] [Green Version]
- Bullmore, E.T.; Bassett, D.S. Brain graphs: Graphical models of the human brain connectome. Annu. Rev. Clin. Psychol. 2011, 7, 113–140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zalesky, A.; Fornito, A.; Bullmore, E.T. Network-based statistic: Identifying differences in brain networks. Neuroimage 2010, 53, 1197–1207. [Google Scholar] [CrossRef]
- Jin, Z.; Bao, Y.; Wang, Y.; Li, Z.; Zheng, X.; Long, S.; Wang, Y. Differences between generalized Q-sampling imaging and diffusion tensor imaging in visualization of crossing neural fibers in the brain. Surg. Radiol. Anat. 2019, 41, 1019–1028. [Google Scholar] [CrossRef] [Green Version]
- Janiri, D.; Moser, D.A.; Doucet, G.E.; Luber, M.J.; Rasgon, A.; Lee, W.H.; Murrough, J.W.; Sani, G.; Eickhoff, S.B.; Frangou, S. Shared Neural Phenotypes for Mood and Anxiety Disorders: A Meta-analysis of 226 Task-Related Functional Imaging Studies. JAMA Psychiatry 2020, 77, 172–179. [Google Scholar] [CrossRef] [Green Version]
- Schmaal, L.; van Harmelen, A.L.; Chatzi, V.; Lippard, E.T.C.; Toenders, Y.J.; Averill, L.A.; Mazure, C.M.; Blumberg, H.P. Imaging suicidal thoughts and behaviors: A comprehensive review of 2 decades of neuroimaging studies. Mol. Psychiatry 2020, 25, 408–427. [Google Scholar] [CrossRef] [Green Version]
- Yuan, C.; Zhu, H.; Ren, Z.; Yuan, M.; Gao, M.; Zhang, Y.; Li, Y.; Meng, Y.; Gong, Q.; Lui, S.; et al. Precuneus-related regional and network functional deficits in social anxiety disorder: A resting-state functional MRI study. Compr. Psychiatry 2018, 82, 22–29. [Google Scholar] [CrossRef] [PubMed]
- Graziano, R.C.; Bruce, S.E.; Paul, R.H.; Korgaonkar, M.S.; Williams, L.M. The effects of bullying in depression on white matter integrity. Behav. Brain Res. 2019, 363, 149–154. [Google Scholar] [CrossRef]
- Wagner, G.; Koch, K.; Schachtzabel, C.; Reichenbach, J.R.; Sauer, H.; Schlosser Md, R.G. Enhanced rostral anterior cingulate cortex activation during cognitive control is related to orbitofrontal volume reduction in unipolar depression. J. Psychiatry Neurosci. 2008, 33, 199–208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phan, K.L.; Wager, T.; Taylor, S.F.; Liberzon, I. Functional neuroanatomy of emotion: A meta-analysis of emotion activation studies in PET and fMRI. Neuroimage 2002, 16, 331–348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matsuo, K.; Glahn, D.C.; Peluso, M.A.; Hatch, J.P.; Monkul, E.S.; Najt, P.; Sanches, M.; Zamarripa, F.; Li, J.; Lancaster, J.L.; et al. Prefrontal hyperactivation during working memory task in untreated individuals with major depressive disorder. Mol. Psychiatry 2007, 12, 158–166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Velzen, L.S.; Kelly, S.; Isaev, D.; Aleman, A.; Aftanas, L.I.; Bauer, J.; Baune, B.T.; Brak, I.V.; Carballedo, A.; Connolly, C.G.; et al. White matter disturbances in major depressive disorder: A coordinated analysis across 20 international cohorts in the ENIGMA MDD working group. Mol. Psychiatry 2020, 25, 1511–1525. [Google Scholar] [CrossRef] [Green Version]
- Gifuni, A.J.; Olie, E.; Ding, Y.; Cyprien, F.; le Bars, E.; Bonafe, A.; Courtet, P.; Jollant, F. Corpus callosum volumes in bipolar disorders and suicidal vulnerability. Psychiatry Res. Neuroimaging 2017, 262, 47–54. [Google Scholar] [CrossRef]
- Balevich, E.C.; Haznedar, M.M.; Wang, E.; Newmark, R.E.; Bloom, R.; Schneiderman, J.S.; Aronowitz, J.; Tang, C.Y.; Chu, K.W.; Byne, W.; et al. Corpus callosum size and diffusion tensor anisotropy in adolescents and adults with schizophrenia. Psychiatry Res. 2015, 231, 244–251. [Google Scholar] [CrossRef] [Green Version]
- Rolls, E.T. The cingulate cortex and limbic systems for action, emotion, and memory. Handb. Clin. Neurol. 2019, 166, 23–37. [Google Scholar]
- Hadland, K.A.; Rushworth, M.F.; Gaffan, D.; Passingham, R.E. The effect of cingulate lesions on social behaviour and emotion. Neuropsychologia 2003, 41, 919–931. [Google Scholar] [CrossRef]
- Pico-Perez, M.; Radua, J.; Steward, T.; Menchon, J.M.; Soriano-Mas, C. Emotion regulation in mood and anxiety disorders: A meta-analysis of fMRI cognitive reappraisal studies. Prog. Neuropsychopharmacol. Biol. Psychiatry 2017, 79 Pt B, 96–104. [Google Scholar] [CrossRef] [Green Version]
- Hayden, B.Y.; Platt, M.L. Neurons in anterior cingulate cortex multiplex information about reward and action. J. Neurosci. 2010, 30, 3339–3346. [Google Scholar] [CrossRef] [Green Version]
- Godlewska, B.R.; Browning, M.; Norbury, R.; Igoumenou, A.; Cowen, P.J.; Harmer, C.J. Predicting Treatment Response in Depression: The Role of Anterior Cingulate Cortex. Int. J. Neuropsychopharmacol. 2018, 21, 988–996. [Google Scholar] [CrossRef] [PubMed]
- Margulies, D.S.; Vincent, J.L.; Kelly, C.; Lohmann, G.; Uddin, L.Q.; Biswal, B.B.; Villringer, A.; Castellanos, F.X.; Milham, M.P.; Petrides, M. Precuneus shares intrinsic functional architecture in humans and monkeys. Proc. Natl. Acad. Sci. USA 2009, 106, 20069–20074. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, W.; Rolls, E.T.; Qiu, J.; Yang, D.; Ruan, H.; Wei, D.; Zhao, L.; Meng, J.; Xie, P.; Feng, J. Functional Connectivity of the Precuneus in Unmedicated Patients With Depression. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 2018, 3, 1040–1049. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tesli, M.; Kauppi, K.; Bettella, F.; Brandt, C.L.; Kaufmann, T.; Espeseth, T.; Mattingsdal, M.; Agartz, I.; Melle, I.; Djurovic, S.; et al. Altered Brain Activation during Emotional Face Processing in Relation to Both Diagnosis and Polygenic Risk of Bipolar Disorder. PLoS ONE 2015, 10, e0134202. [Google Scholar]
- Faget-Agius, C.; Boyer, L.; Padovani, R.; Richieri, R.; Mundler, O.; Lancon, C.; Guedj, E. Schizophrenia with preserved insight is associated with increased perfusion of the precuneus. J. Psychiatry Neurosci. 2012, 37, 297–304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cavanna, A.E.; Trimble, M.R. The precuneus: A review of its functional anatomy and behavioural correlates. Brain 2006, 129 Pt 3, 564–583. [Google Scholar] [CrossRef] [Green Version]
- Sato, W.; Kochiyama, T.; Uono, S.; Kubota, Y.; Sawada, R.; Yoshimura, S.; Toichi, M. The structural neural substrate of subjective happiness. Sci. Rep. 2015, 5, 16891. [Google Scholar] [CrossRef] [Green Version]
- Marwood, L.; Wise, T.; Perkins, A.M.; Cleare, A.J. Meta-analyses of the neural mechanisms and predictors of response to psychotherapy in depression and anxiety. Neurosci. Biobehav. Rev. 2018, 95, 61–72. [Google Scholar] [CrossRef]
- Heesink, L.; Edward Gladwin, T.; Terburg, D.; van Honk, J.; Kleber, R.; Geuze, E. Proximity alert! Distance related cuneus activation in military veterans with anger and aggression problems. Psychiatry Res. Neuroimaging 2017, 266, 114–122. [Google Scholar] [CrossRef]
- Aron, A.; Fisher, H.; Mashek, D.J.; Strong, G.; Li, H.; Brown, L.L. Reward, motivation, and emotion systems associated with early-stage intense romantic love. J. Neurophysiol. 2005, 94, 327–337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alcaro, A.; Panksepp, J.; Witczak, J.; Hayes, D.J.; Northoff, G. Is subcortical-cortical midline activity in depression mediated by glutamate and GABA? A cross-species translational approach. Neurosci. Biobehav. Rev. 2010, 34, 592–605. [Google Scholar] [CrossRef]
- Delgado y Palacios, R.; Verhoye, M.; Henningsen, K.; Wiborg, O.; Van der Linden, A. Diffusion kurtosis imaging and high-resolution MRI demonstrate structural aberrations of caudate putamen and amygdala after chronic mild stress. PLoS ONE 2014, 9, e95077. [Google Scholar] [CrossRef] [Green Version]
- Abdallah, C.G.; Averill, L.A.; Collins, K.A.; Geha, P.; Schwartz, J.; Averill, C.; DeWilde, K.E.; Wong, E.; Anticevic, A.; Tang, C.Y.; et al. Ketamine Treatment and Global Brain Connectivity in Major Depression. Neuropsychopharmacology 2017, 42, 1210–1219. [Google Scholar] [CrossRef]
- Li, B.J.; Friston, K.; Mody, M.; Wang, H.N.; Lu, H.B.; Hu, D.W. A brain network model for depression: From symptom understanding to disease intervention. CNS Neurosci. Ther. 2018, 24, 1004–1019. [Google Scholar] [CrossRef] [PubMed]
- Dusi, N.; Barlati, S.; Vita, A.; Brambilla, P. Brain Structural Effects of Antidepressant Treatment in Major Depression. Curr. Neuropharmacol. 2015, 13, 458–465. [Google Scholar] [CrossRef] [PubMed]
- Hwang, J.; Legarreta, M.; Bueler, C.E.; DiMuzio, J.; McGlade, E.; Lyoo, I.K.; Yurgelun-Todd, D. Increased efficiency of brain connectivity networks in veterans with suicide attempts. Neuroimage Clin. 2018, 20, 318–326. [Google Scholar] [CrossRef] [PubMed]
- Bullmore, E.; Sporns, O. The economy of brain network organization. Nat. Rev. Neurosci. 2012, 13, 336–349. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Y.; Cheng, A.S.K.; Song, T.; Sheng, X.; Cheng, H.; Qiu, Y.; Xie, J.; Chan, C.C.H. Changes in functional brain networks and neurocognitive function in Chinese gynecological cancer patients after chemotherapy: A prospective longitudinal study. BMC Cancer 2019, 19, 386. [Google Scholar] [CrossRef] [PubMed]
- Jia, Z.; Wang, Y.; Huang, X.; Kuang, W.; Wu, Q.; Lui, S.; Sweeney, J.A.; Gong, Q. Impaired frontothalamic circuitry in suicidal patients with depression revealed by diffusion tensor imaging at 3.0 T. J. Psychiatry Neurosci. 2014, 39, 170–177. [Google Scholar] [CrossRef] [Green Version]
- Karger, A. Gender differences in depression. Bundesgesundheitsblatt Gesundh. Gesundh. 2014, 57, 1092–1098. [Google Scholar] [CrossRef]
- Button, K.S.; Ioannidis, J.P.; Mokrysz, C.; Nosek, B.A.; Flint, J.; Robinson, E.S.; Munafo, M.R. Power failure: Why small sample size undermines the reliability of neuroscience. Nat. Rev. Neurosci. 2013, 14, 365–376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miranda, R.; Nolen-Hoeksema, S. Brooding and reflection: Rumination predicts suicidal ideation at 1-year follow-up in a community sample. Behav. Res. Ther. 2007, 45, 3088–3095. [Google Scholar] [CrossRef] [Green Version]
- Williams, J.M.G.; Van der Does, A.J.W.; Barnhofer, T.; Crane, C.; Segal, Z.S. Cognitive reactivity, suicidal ideation and future fluency: Preliminary investigation of a differential activation theory of hopelessness/suicidality. Cogn. Ther. Res. 2008, 32, 83–104. [Google Scholar] [CrossRef] [Green Version]
- Just, M.A.; Pan, L.; Cherkassky, V.L.; McMakin, D.L.; Cha, C.; Nock, M.K.; Brent, D. Machine learning of neural representations of suicide and emotion concepts identifies suicidal youth. Nat. Hum. Behav. 2017, 1, 911–919. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kessler, R.C.; Warner, C.H.; Ivany, C.; Petukhova, M.V.; Rose, S.; Bromet, E.J.; Brown, M., 3rd; Cai, T.; Colpe, L.J.; Cox, K.L.; et al. Predicting suicides after psychiatric hospitalization in US Army soldiers: The Army Study To Assess Risk and rEsilience in Servicemembers (Army STARRS). JAMA Psychiatry 2015, 72, 49–57. [Google Scholar] [CrossRef] [PubMed]
Characteristics | SA (n = 44) | D (n = 56) | HC (n = 55) | ANCOVA | SA vs. HC | SA vs. D | D vs. HC | |||
---|---|---|---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | SD | p-Value | ||||
Age | 41.32 | 9.37 | 45.48 | 10.53 | 39.4 | 10.70 | 0.008 | 0.344 | 0.040 | 0.003 |
Range of age | 20–57 | N/A | 20–60 | N/A | 20–57 | N/A | N/A | N/A | N/A | N/A |
Gender (M/F) | 7/37 | N/A | 24/32 | N/A | 9/46 | N/A | N/A | 0.952 | 0.003 | 0.002 |
Years of education | 11.86 | 2.41 | 13.25 | 2.82 | 14.25 | 2.98 | <0.001 | <0.001 | 0.009 | 0.073 |
HAM-D | 18.25 | 7.73 | 14.89 | 6.54 | 3.93 | 5.51 | <0.001 | <0.001 | 0.024 | <0.001 |
HAM-D (without suicidal factor) | 16.34 | 7.20 | 13.34 | 6.75 | 3.82 | 5.31 | <0.001 | <0.001 | 0.036 | <0.001 |
Anxiety of HADS | 11.84 | 5.34 | 7.95 | 4.46 | 4.31 | 3.63 | <0.001 | <0.001 | <0.001 | <0.001 |
Depression of HADS | 11.72 | 4.46 | 7.14 | 4.57 | 3.30 | 3.22 | <0.001 | <0.001 | <0.001 | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, V.C.-H.; Kao, C.-J.; Tsai, Y.-H.; McIntyre, R.S.; Weng, J.-C. Mapping Brain Microstructure and Network Alterations in Depressive Patients with Suicide Attempts Using Generalized Q-Sampling MRI. J. Pers. Med. 2021, 11, 174. https://doi.org/10.3390/jpm11030174
Chen VC-H, Kao C-J, Tsai Y-H, McIntyre RS, Weng J-C. Mapping Brain Microstructure and Network Alterations in Depressive Patients with Suicide Attempts Using Generalized Q-Sampling MRI. Journal of Personalized Medicine. 2021; 11(3):174. https://doi.org/10.3390/jpm11030174
Chicago/Turabian StyleChen, Vincent Chin-Hung, Chun-Ju Kao, Yuan-Hsiung Tsai, Roger S. McIntyre, and Jun-Cheng Weng. 2021. "Mapping Brain Microstructure and Network Alterations in Depressive Patients with Suicide Attempts Using Generalized Q-Sampling MRI" Journal of Personalized Medicine 11, no. 3: 174. https://doi.org/10.3390/jpm11030174
APA StyleChen, V. C. -H., Kao, C. -J., Tsai, Y. -H., McIntyre, R. S., & Weng, J. -C. (2021). Mapping Brain Microstructure and Network Alterations in Depressive Patients with Suicide Attempts Using Generalized Q-Sampling MRI. Journal of Personalized Medicine, 11(3), 174. https://doi.org/10.3390/jpm11030174