Genetic Polymorphisms of 5-HT Receptors and Antipsychotic-Induced Metabolic Dysfunction in Patients with Schizophrenia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
- Concentration of triglycerides (TG) above 1.7 mmol/L, or lipid-lowering therapy;
- Concentration of high-density lipoproteins (HDL) of less than 1.03 mmol/L in men, or less than 1.29 mmol/L in women;
- Blood pressure (BP) greater than or equal to 130/85 mm Hg, or the usage of antihypertensive therapy;
- Concentration of glucose in blood serum greater than or equal to 5.6 mmol/L, or previously diagnosed type 2 diabetes mellitus.
2.2. Genetic Analysis
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- De Hert, M.; Detraux, J.; van Winkel, R.; Yu, W.; Correll, C.U. Metabolic and cardiovascular adverse effects associated with antipsychotic drugs. Nat. Rev. Endocrinol. 2011, 8, 114–126. [Google Scholar] [CrossRef]
- O’Neill, S.; O’Driscoll, L. Metabolic syndrome: A closer look at the growing epidemic and its associated pathologies. Obes. Rev. 2015, 16, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Rojo, L.E.; Gaspar, P.A.; Silva, H.; Risco, L.; Arena, P.; Cubillos-Robles, K.; Jara, B. Metabolic syndrome and obesity among users of second generation antipsychotics: A global challenge for modern psychopharmacology. Pharmacol. Res. 2015, 101, 74–85. [Google Scholar] [CrossRef]
- Freyberg, Z.; Aslanoglou, D.; Shah, R.; Ballon, J.S. Intrinsic and Antipsychotic Drug-Induced Metabolic Dysfunction in Schizophrenia. Front. Neurosci. 2017, 11, 432. [Google Scholar] [CrossRef]
- Ijaz, S.; Bolea, B.; Davies, S.; Savović, J.; Richards, A.; Sullivan, S.; Moran, P. Antipsychotic polypharmacy and metabolic syndrome in schizophrenia: A review of systematic reviews. BMC Psychiatry 2018, 18, 275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Penninx, B.W.J.H.; Lange, S.M.M. Metabolic syndrome in psychiatric patients: Overview, mechanisms, and implications. Dialogues Clin. Neurosci. 2018, 20, 63–73. [Google Scholar] [CrossRef] [PubMed]
- Panariello, F.; De Luca, V.; de Bartolomeis, A. Weight gain, schizophrenia and antipsychotics: New findings from animal model and pharmacogenomic studies. Schizophr. Res. Treatment 2011, 2011, 459284. [Google Scholar] [CrossRef]
- Stępnicki, P.; Kondej, M.; Kaczor, A.A. Current Concepts and Treatments of Schizophrenia. Molecules 2018, 23, 2087. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aringhieri, S.; Carli, M.; Kolachalam, S.; Verdesca, V.; Cini, E.; Rossi, M.; McCormick, P.J.; Corsini, G.U.; Maggio, R.; Scarselli, M. Molecular targets of atypical antipsychotics: From mechanism of action to clinical differences. Pharmacol. Ther. 2018, 192, 20–41. [Google Scholar] [CrossRef] [PubMed]
- Ballon, J.S.; Pajvani, U.; Freyberg, Z.; Leibel, R.L.; Lieberman, J.A. Molecular pathophysiology of metabolic effects of antipsychotic medications. Trends Endocrinol. Metab. 2014, 25, 593–600. [Google Scholar] [CrossRef] [PubMed]
- Namkung, J.; Kim, H.; Park, S. Peripheral Serotonin: A New Player in Systemic Energy Homeostasis. Mol. Cells 2015, 38, 1023–1028. [Google Scholar] [CrossRef]
- Selvaraj, S.; Arnone, D.; Cappai, A.; Howes, O. Alterations in the serotonin system in schizophrenia: A systematic review and meta-analysis of postmortem and molecular imaging studies. Neurosci. Biobehav. Rev. 2014, 45, 233–245. [Google Scholar] [CrossRef] [PubMed]
- Loonen, A.J.M.; Ivanova, S.A. Circuits regulating pleasure and happiness: Evolution and role in mental disorders. Acta Neuropsychiatr. 2018, 30, 29–42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loonen, A.J.M.; Ivanova, S.A. The evolutionary old forebrain as site of action to develop new psychotropic drugs. J. Psychopharmacol. 2018, 32, 1277–1285. [Google Scholar] [CrossRef] [PubMed]
- Loonen, A.J.M.; Ivanova, S.A. Evolution of circuits regulating pleasure and happiness with the habenula in control. CNS Spectr. 2019, 24, 233–238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loonen, A.J.M.; Ivanova, S.A. Circuits regulating pleasure and happiness in major depression. Med. Hypotheses 2016, 87, 14–21. [Google Scholar] [CrossRef]
- Loonen, A.J.M.; Ivanova, S.A. Circuits Regulating Pleasure and Happiness-Mechanisms of Depression. Front. Hum. Neurosci. 2016, 10, 571. [Google Scholar] [CrossRef] [Green Version]
- Loonen, A.J.M.; Ivanova, S.A. Role of 5-HT2C receptors in dyskinesia. Int. J. Pharm. Pharm. Sci. 2016, 8, 5–10. Available online: https://innovareacademics.in/journals/index.php/ijpps/article/view/8736 (accessed on 4 March 2021).
- Voigt, J.P.; Fink, H. Serotonin controlling feeding and satiety. Behav. Brain Res. 2015, 277, 14–31. [Google Scholar] [CrossRef]
- Wyler, S.C.; Lord, C.C.; Lee, S.; Elmquist, J.K.; Liu, C. Serotonergic Control of Metabolic Homeostasis. Front. Cell Neurosci. 2017, 11, 277. [Google Scholar] [CrossRef] [Green Version]
- Reynolds, G.P. Receptor mechanisms in the treatment of schizophrenia. J. Psychopharmacol. 2004, 18, 340–345. [Google Scholar] [CrossRef]
- Meltzer, H.Y. Serotonergic mechanisms as targets for existing and novel antipsychotics. Handb. Exp. Pharmacol. 2012, 212, 87–124. [Google Scholar] [CrossRef]
- Hannon, J.; Hoyer, D. Molecular biology of 5-HT receptors. Behav. Brain Res. 2008, 195, 198–213. [Google Scholar] [CrossRef]
- Leysen, J.E. 5-HT2 receptors. Curr. Drug Targets CNS Neurol. Disord. 2004, 3, 11–26. [Google Scholar] [CrossRef]
- Lychkova, A.É. Serotoninergic regulation of colonic motor function. Ter. Arkh. 2013, 85, 89–92. Available online: https://ter-arkhiv.ru/0040-3660/article/view/31237 (accessed on 4 March 2021).
- Matsumoto-Miyai, K.; Yoshizumi, M.; Kawatani, M. Regulatory Effects of 5-Hydroxytryptamine Receptors on Voiding Function. Adv. Ther. 2015, 32 (Suppl. S1), 3–15. [Google Scholar] [CrossRef] [PubMed]
- Padhariya, K.; Bhandare, R.; Canney, D.; Velingkar, V. Cardiovascular Concern of 5-HT2B Receptor and Recent Vistas in the Development of Its Antagonists. Cardiovasc. Hematol. Disord. Drug Targets 2017, 17, 86–104. [Google Scholar] [CrossRef] [PubMed]
- Aloyo, V.J.; Berg, K.A.; Spampinato, U.; Clarke, W.P.; Harvey, J.A. Current status of inverse agonism at serotonin2A (5-HT2A) and 5-HT2C receptors. Pharmacol. Ther. 2009, 121, 160–173. [Google Scholar] [CrossRef] [PubMed]
- Karunakaran, S.; Clee, S.M. Genetics of metabolic syndrome: Potential clues from wild-derived inbred mouse strains. Physiol. Genom. 2018, 50, 35–51. [Google Scholar] [CrossRef]
- Stančáková, A.; Laakso, M. Genetics of metabolic syndrome. Rev. Endocr. Metab. Disord. 2014, 15, 243–252. [Google Scholar] [CrossRef] [PubMed]
- Kroeze, W.K.; Hufeisen, S.J.; Popadak, B.A.; Renock, S.M.; Steinberg, S.; Ernsberger, P.; Jayathilake, K.; Meltzer, H.Y.; Roth, B.L. H1-histamine receptor affinity predicts short-term weight gain for typical and atypical antipsychotic drugs. Neuropsychopharmacology 2003, 28, 519–526. [Google Scholar] [CrossRef]
- Li, P.; Tiwari, H.K.; Lin, W.Y.; Allison, D.B.; Chung, W.K.; Leibel, R.L.; Yi, N.; Liu, N. Genetic association analysis of 30 genes related to obesity in a European American population. Int. J. Obes. 2014, 38, 724–729. [Google Scholar] [CrossRef] [Green Version]
- Halder, I.; Muldoon, M.F.; Ferrell, R.E.; Manuck, S.B. Serotonin Receptor 2A (HTR2A) Gene Polymorphisms Are Associated with Blood Pressure, Central Adiposity, and the Metabolic Syndrome. Metab. Syndr. Relat. Disord. 2007, 5, 323–330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, C.; Chen, W.; Chen, C.; Moyzis, R.; He, Q.; Lei, X.; Li, J.; Wang, Y.; Liu, B.; Xiu, D.; et al. Genetic variations in the serotoninergic system contribute to body-mass index in Chinese adolescents. PLoS ONE 2013, 8, e58717. [Google Scholar] [CrossRef] [Green Version]
- Opgen-Rhein, C.; Brandl, E.J.; Müller, D.J.; Neuhaus, A.H.; Tiwari, A.K.; Sander, T.; Dettling, M. Association of HTR2C, but not LEP or INSIG2, genes with antipsychotic-induced weight gain in a German sample. Pharmacogenomics 2010, 11, 773–780. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, G.P.; Zhang, Z.J.; Zhang, X.B. Association of antipsychotic drug-induced weight gain with a 5-HT2C receptor gene polymorphism. Lancet 2002, 359, 2086–2087. [Google Scholar] [CrossRef]
- Reynolds, G.P.; Zhang, Z.; Zhang, X. Polymorphism of the promoter region of the serotonin 5-HT(2C) receptor gene and clozapine-induced weight gain. Am. J. Psychiatry 2003, 160, 677–679. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuan, X.; Yamada, K.; Ishiyama-Shigemoto, S.; Koyama, W.; Nonaka, K. Identification of polymorphic loci in the promoter region of the serotonin 5-HT2C receptor gene and their association with obesity and type II diabetes. Diabetologia 2000, 43, 373–376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zai, C.C.; Tiwari, A.K.; Chowdhury, N.I.; Brandl, E.J.; Shaikh, S.A.; Freeman, N.; Lieberman, J.A.; Meltzer, H.Y.; Kennedy, J.L.; Müller, D.J. Association Study of Serotonin 3 Receptor Subunit Gene Variants in Antipsychotic-Induced Weight Gain. Neuropsychobiology 2016, 74, 169–175. [Google Scholar] [CrossRef] [Green Version]
- Loonen, A.J.M.; Wilffert, B.; Ivanova, S.A. Putative role of pharmacogenetics to elucidate the mechanism of tardive dyskinesia in schizophrenia. Pharmacogenomics 2019, 20, 1199–1223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al Hadithy, A.F.Y.; Ivanova, S.A.; Pechlivanoglou, P.; Semke, A.; Fedorenko, O.; Kornetova, E.; Ryadovaya, L.; Brouwers, J.R.B.J.; Wilffert, B.; Bruggeman, R.; et al. Tardive dyskinesia and DRD3, HTR2A and HTR2C gene polymorphisms in Russian psychiatric inpatients from Siberia. Prog. Neuropsycho. Pharmacol. Biol. Psychiatry 2009, 33, 475–481. [Google Scholar] [CrossRef] [PubMed]
- Ivanova, S.A.; Loonen, A.J.M.; Pechlivanoglou, P.; Freidin, M.B.; Al Hadithy, A.F.Y.; Rudikov, E.V.; Zhukova, I.A.; Govorin, N.V.; Sorokina, V.A.; Fedorenko, O.Y.; et al. NMDA receptor genotypes associated with the vulnerability to develop dyskinesia. Transl. Psychiatry 2012, 2, e67. [Google Scholar] [CrossRef] [PubMed]
- Ivanova, S.A.; Loonen, A.J.M.; Bakker, P.R.; Freidin, M.B.; Ter Woerds, N.J.; Al Hadithy, A.F.Y.; Semke, A.V.; Fedorenko, O.Y.; Brouwers, J.R.B.J.; Bokhan, N.A.; et al. Likelihood of mechanistic roles for dopaminergic, serotonergic and glutamatergic receptors in tardive dyskinesia: A comparison of genetic variants in two independent patient populations. SAGE Open Med. 2016, 4, 2050312116643673. [Google Scholar] [CrossRef] [PubMed]
- Pozhidaev, I.V.; Paderina, D.Z.; Fedorenko, O.Y.; Kornetova, E.G.; Semke, A.V.; Loonen, A.J.M.; Bokhan, N.A.; Wilffert, B.; Ivanova, S.A. 5-Hydroxytryptamine Receptors and Tardive Dyskinesia in Schizophrenia. Front. Mol. Neurosci. 2020, 13, 63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ivanova, S.A.; Osmanova, D.Z.; Freidin, M.B.; Fedorenko, O.Y.; Boiko, A.S.; Pozhidaev, I.V.; Semke, A.V.; Bokhan, N.A.; Agarkov, A.A.; Wilffert, B.; et al. Identification of 5-hydroxytryptamine receptor gene polymorphisms modulating hyperprolactinaemia in antipsychotic drug-treated patients with schizophrenia. World J. Biol. Psychiatry 2017, 18, 239–246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boiko, A.S.; Mednova, I.A.; Kornetova, E.G.; Semke, A.V.; Bokhan, N.A.; Loonen, A.J.M.; Ivanova, S.A. Apolipoprotein serum levels related to metabolic syndrome in patients with schizophrenia. Heliyon 2019, 5, e02033. [Google Scholar] [CrossRef] [Green Version]
- Boiko, A.S.; Mednova, I.A.; Kornetova, E.G.; Bokhan, N.A.; Semke, A.V.; Loonen, A.J.M.; Ivanova, S.A. Cortisol and DHEAS Related to Metabolic Syndrome in Patients with Schizophrenia. Neuropsychiatr. Dis. Treat. 2020, 16, 1051–1058. [Google Scholar] [CrossRef] [Green Version]
- Kornetova, E.G.; Kornetov, A.N.; Mednova, I.A.; Dubrovskaya, V.V.; Boiko, A.S.; Bokhan, N.A.; Loonen, A.J.M.; Ivanova, S.A. Changes in Body Fat and Related Biochemical Parameters Associated With Atypical Antipsychotic Drug Treatment in Schizophrenia Patients With or Without Metabolic Syndrome. Front. Psychiatry 2019, 10, 803. [Google Scholar] [CrossRef]
- Kornetova, E.G.; Kornetov, A.N.; Mednova, I.A.; Lobacheva, O.A.; Gerasimova, V.I.; Dubrovskaya, V.V.; Tolmachev, I.V.; Semke, A.V.; Loonen, A.J.M.; Bokhan, N.A.; et al. Body Fat Parameters, Glucose and Lipid Profiles, and Thyroid Hormone Levels in Schizophrenia Patients with or without Metabolic Syndrome. Diagnostics 2020, 10, 683. [Google Scholar] [CrossRef]
- Mednova, I.A.; Boiko, A.S.; Kornetova, E.G.; Parshukova, D.A.; Semke, A.V.; Bokhan, N.A.; Loonen, A.J.M.; Ivanova, S.A. Adipocytokines and Metabolic Syndrome in Patients with Schizophrenia. Metabolites 2020, 10, 410. [Google Scholar] [CrossRef]
- Andreasen, N.C.; Pressler, M.; Nopoulos, P.; Miller, D.; Ho, B.C. Antipsychotic dose equivalents and dose-years: A standardized method for comparing exposure to different drugs. Biol. Psychiatry 2010, 67, 255–262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alberti, K.G.; Zimmet, P.; Shaw, J. Metabolic syndrome--a new world-wide definition. A Consensus Statement from the International Diabetes Federation. Diabet. Med. 2006, 23, 469–480. [Google Scholar] [CrossRef]
- Łukasiewicz, S.; Polit, A.; Kędracka-Krok, S.; Wędzony, K.; Maćkowiak, M.; Dziedzicka-Wasylewska, M. Hetero-dimerization of serotonin 5-HT(2A) and dopamine D(2) receptors. Biochim. Biophys. Acta 2010, 1803, 1347–1358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palacios, J.M.; Pazos, A.; Hoyer, D. A short history of the 5-HT2C receptor: From the choroid plexus to depression, obesity and addiction treatment. Psychopharmacology 2017, 234, 1395–1418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dourish, C.T.; Hutson, P.H.; Curzon, G. Characteristics of feeding induced by the serotonin agonist 8-hydroxy-2-(di-n-propylamino) tetralin (8-OH-DPAT). Brain Res. Bull. 1985, 15, 377–384. [Google Scholar] [CrossRef]
- Xu, Y.; Jones, J.E.; Kohno, D.; Williams, K.W.; Lee, C.E.; Choi, M.J.; Anderson, J.G.; Heisler, L.K.; Zigman, J.M.; Lowell, B.B.; et al. 5-HT2CRs expressed by pro-opiomelanocortin neurons regulate energy homeostasis. Neuron 2008, 60, 582–589. [Google Scholar] [CrossRef] [Green Version]
- Higgins, G.A.; Fletcher, P.J.; Shanahan, W.R. Lorcaserin: A review of its preclinical and clinical pharmacology and therapeutic potential. Pharmacol. Ther. 2020, 205, 107417. [Google Scholar] [CrossRef]
- D’Agostino, G.; Lyons, D.; Cristiano, C.; Lettieri, M.; Olarte-Sanchez, C.; Burke, L.K.; Greenwald-Yarnell, M.; Cansell, C.; Doslikova, B.; Georgescu, T.; et al. Nucleus of the Solitary Tract Serotonin 5-HT2C Receptors Modulate Food Intake. Cell Metab. 2018, 28, 619–630. [Google Scholar] [CrossRef] [Green Version]
- Malhotra, N.; Grover, S.; Chakrabarti, S.; Kulhara, P. Metabolic syndrome in schizophrenia. Indian J. Psychol. Med. 2013, 35, 227–240. [Google Scholar] [CrossRef] [Green Version]
- Papanastasiou, E. The prevalence and mechanisms of metabolic syndrome in schizophrenia: A review. Ther. Adv. Psychopharmacol. 2013, 3, 33–51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pillinger, T.; McCutcheon, R.A.; Vano, L.; Mizuno, Y.; Arumuham, A.; Hindley, G.; Beck, K.; Natesan, S.; Efthimiou, O.; Cipriani, A.; et al. Comparative effects of 18 antipsychotics on metabolic function in patients with schizophrenia, predictors of metabolic dysregulation, and association with psychopathology: A systematic review and network meta-analysis. Lancet Psychiatry 2020, 7, 64–77. [Google Scholar] [CrossRef]
- Mulder, H.; Cohen, D.; Scheffer, H.; Gispen-de Wied, C.; Arends, J.; Wilmink, F.W.; Franke, B.; Egberts, A.C. HTR2C gene polymorphisms and the metabolic syndrome in patients with schizophrenia: A replication study. J. Clin. Psychopharmacol. 2009, 29, 16–20. [Google Scholar] [CrossRef]
- Bai, Y.M.; Chen, T.T.; Liou, Y.J.; Hong, C.J.; Tsai, S.J. Association between HTR2C polymorphisms and metabolic syndrome in patients with schizophrenia treated with atypical antipsychotics. Schizophr. Res. 2011, 125, 179–186. [Google Scholar] [CrossRef] [PubMed]
- Souza, R.P.; de Luca, V.; Meltzer, H.Y.; Lieberman, J.A.; Kennedy, J.L. Influence of serotonin 3A and 3B receptor genes on clozapine treatment response in schizophrenia. Pharm. Genom. 2010, 20, 274–276. [Google Scholar] [CrossRef] [PubMed]
Parameter | Patients without MetS, n = 349 (73.5%) | Patients with MetS, n = 126 (26.5%) | p-Value | |
---|---|---|---|---|
Gender | Women | 142 (40.7%) | 72 (57.1%) | 0.001 |
Men | 207 (59.3%) | 54 (42.9%) | ||
Age, years M ± SD | 38.72 ± 11.43 | 43.75 ± 11.72 | <0.0001 | |
duration of illness, years Me [Q1; Q3]. | 12.0 [6.0; 20.0] | 17.0 [9.0; 22.0] | 0.001 | |
CPZeq, dose Me [Q1; Q3]. | 400.0 [225.0; 750.0] | 400.0 [203.0; 741.0] | 0.919 | |
Body mass index (BMI) M ± SD | 24.45 ± 4.83 | 30.45 ± 6.36 | <0.0001 |
SNP | Genotypes, Alleles | BMI < 25 | BMI > 25 | OR | 95% CI | χ2 | p Value |
---|---|---|---|---|---|---|---|
HTR2C rs521018 | GG | 12 (13.8) | 5 (5.2) | 0.34 | 0.12–1.02 | 6.85 | 0.033 |
GT | 38 (43.7) | 58 (60.4) | 1.97 | 1.09–3.55 | |||
TT | 37 (42.5) | 33 (34.4) | 0.71 | 0.39–1.29 | |||
G | 62 (35.6) | 68 (35.4) | 0.99 | 0.65–1.52 | 0.00 | 0.965 | |
T | 112 (64.4) | 124 (64.6) | 1.01 | 0.66–1.55 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paderina, D.Z.; Boiko, A.S.; Pozhidaev, I.V.; Bocharova, A.V.; Mednova, I.A.; Fedorenko, O.Y.; Kornetova, E.G.; Loonen, A.J.M.; Semke, A.V.; Bokhan, N.A.; et al. Genetic Polymorphisms of 5-HT Receptors and Antipsychotic-Induced Metabolic Dysfunction in Patients with Schizophrenia. J. Pers. Med. 2021, 11, 181. https://doi.org/10.3390/jpm11030181
Paderina DZ, Boiko AS, Pozhidaev IV, Bocharova AV, Mednova IA, Fedorenko OY, Kornetova EG, Loonen AJM, Semke AV, Bokhan NA, et al. Genetic Polymorphisms of 5-HT Receptors and Antipsychotic-Induced Metabolic Dysfunction in Patients with Schizophrenia. Journal of Personalized Medicine. 2021; 11(3):181. https://doi.org/10.3390/jpm11030181
Chicago/Turabian StylePaderina, Diana Z., Anastasiia S. Boiko, Ivan V. Pozhidaev, Anna V. Bocharova, Irina A. Mednova, Olga Yu. Fedorenko, Elena G. Kornetova, Anton J.M. Loonen, Arkadiy V. Semke, Nikolay A. Bokhan, and et al. 2021. "Genetic Polymorphisms of 5-HT Receptors and Antipsychotic-Induced Metabolic Dysfunction in Patients with Schizophrenia" Journal of Personalized Medicine 11, no. 3: 181. https://doi.org/10.3390/jpm11030181
APA StylePaderina, D. Z., Boiko, A. S., Pozhidaev, I. V., Bocharova, A. V., Mednova, I. A., Fedorenko, O. Y., Kornetova, E. G., Loonen, A. J. M., Semke, A. V., Bokhan, N. A., & Ivanova, S. A. (2021). Genetic Polymorphisms of 5-HT Receptors and Antipsychotic-Induced Metabolic Dysfunction in Patients with Schizophrenia. Journal of Personalized Medicine, 11(3), 181. https://doi.org/10.3390/jpm11030181