Effects of CYP3A5 Polymorphism on Rapid Progression of Chronic Kidney Disease: A Prospective, Multicentre Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Data Collection
2.3. Study Definitions
2.4. Sample Size
2.5. Detection of CYP3A5*3 Gene Polymorphism
2.6. Statistical Analysis
3. Results
3.1. Demographic and Clinical Characteristics
3.2. Allele and Genotype Analysis
3.3. Factors Associated with Rapid CKD Progression
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Saminathan, T.A.; Hooi, L.S.; Mohd Yusoff, M.F.; Ong, L.M.; Bavanandan, S.; Rodzlan Hasani, W.S.; Tan, E.Z.Z.; Wong, I.; Rifin, H.M.; Robert, T.G.; et al. Prevalence of chronic kidney disease and its associated factors in Malaysia; Findings from a nationwide population-based cross-sectional study. BMC Nephrol. 2020, 21, 344. [Google Scholar] [CrossRef] [PubMed]
- Islahudin, F.; Lee, F.Y.; Tengku Abd Kadir, T.N.I.; Abdullah, M.Z.; Makmor-Bakry, M. Continuous medication monitoring: A clinical model to predict adherence to medications among chronic kidney disease patients. Res. Soc. Adm. Pharm. 2021. [Google Scholar] [CrossRef]
- Go, A.S.; Yang, J.; Tan, T.C.; Cabrera, C.S.; Stefansson, B.V.; Greasley, P.J.; Ordonez, J.D.; Kaiser Permanente Northern California CKD Outcomes Study. Contemporary rates and predictors of fast progression of chronic kidney disease in adults with and without diabetes mellitus. BMC Nephrol. 2018, 19, 146. [Google Scholar] [CrossRef] [Green Version]
- Adams, S.M.; Crisamore, K.R.; Empey, P.E. Clinical pharmacogenomics. Clin. J. Am. Soc. Nephrol. 2018, 13, 1561. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zanger, U.M.; Schwab, M. Cytochrome P450 enzymes in drug metabolism: Regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol. Ther. 2013, 138, 103–141. [Google Scholar] [CrossRef] [PubMed]
- Dorji, P.W.; Tshering, G.; Na-Bangchang, K. CYP2C9, CYP2C19, CYP2D6 and CYP3A5 polymorphisms in South-East and East Asian populations: A systematic review. J. Clin. Pharm. Ther. 2019, 44, 508–524. [Google Scholar] [CrossRef] [Green Version]
- Kuehl, P.; Zhang, J.; Lin, Y.; Lamba, J.; Assem, M.; Schuetz, J.; Watkins, P.B.; Daly, A.; Wrighton, S.A.; Hall, S.D.; et al. Sequence diversity in CYP3A promoters and characterization of the genetic basis of polymorphic CYP3A5 expression. Nat. Genet. 2001, 27, 383–391. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.P.; Zuo, X.C.; Huang, Z.J.; Cai, J.J.; Wen, J.; Duan, D.D.; Yuan, H. CYP3A5 polymorphism, amlodipine and hypertension. J. Hum. Hypertens. 2014, 28, 145–149. [Google Scholar] [CrossRef]
- Xiang, Q.; Li, C.; Zhao, X.; Cui, Y.M. The influence of CYP3A5*3 and BCRPC421A genetic polymorphisms on the pharmacokinetics of felodipine in healthy Chinese volunteers. J. Clin. Pharm. Ther. 2017, 42, 345–349. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.-Y.; Zuo, X.-C.; Chen, K.; Wang, J.-L.; Chen, Q.-J.; Zhou, Y.-N.; Yuan, H.; Ma, Y.; Zhu, L.-J.; Peng, Y.-X.; et al. Significant impacts of CYP3A4*1G and CYP3A5*3 genetic polymorphisms on the pharmacokinetics of diltiazem and its main metabolites in Chinese adult kidney transplant patients. J. Clin. Pharm. Ther. 2016, 41, 341–347. [Google Scholar] [CrossRef]
- Jin, Y.; Wang, Y.H.; Miao, J.; Li, L.; Kovacs, R.J.; Marunde, R.; Hamman, M.A.; Philips, S.; Hilligoss, J.; Hall, S.D. Cytochrome P450 3A5 genotype is associated with verapamil response in healthy subjects. Clin. Pharmacol. Ther. 2007, 82, 579–585. [Google Scholar] [CrossRef] [PubMed]
- Langaee, T.Y.; Gong, Y.; Yarandi, H.N.; Katz, D.A.; Cooper-DeHoff, R.M.; Pepine, C.J.; Johnson, J.A. Association of CYP3A5 polymorphisms with hypertension and antihypertensive response to verapamil. Clin. Pharmacol. Ther. 2007, 81, 386–391. [Google Scholar] [CrossRef]
- Schmidt, I.M.; Hübner, S.; Nadal, J.; Titze, S.; Schmid, M.; Bärthlein, B.; Schlieper, G.; Dienemann, T.; Schultheiss, U.T.; Meiselbach, H.; et al. Patterns of medication use and the burden of polypharmacy in patients with chronic kidney disease: The German Chronic Kidney Disease study. Clin. Kidney J. 2019, 12, 663–672. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rüster, C.; Wolf, G. Renin-Angiotensin-aldosterone system and progression of renal disease. J. Am. Soc. Nephrol. 2006, 17, 2985. [Google Scholar] [CrossRef]
- Afshinnia, F.; Zeng, L.; Byun, J.; Wernisch, S.; Deo, R.; Chen, J.; Hamm, L.; Miller, E.R.; Rhee, E.P.; Fischer, M.J.; et al. Elevated lipoxygenase and cytochrome P450 products predict progression of chronic kidney disease. Nephrol. Dial. Transplant. 2018, 35, 303–312. [Google Scholar] [CrossRef]
- Barbour, S.J.; Er, L.; Djurdjev, O.; Karim, M.; Levin, A. Differences in progression of CKD and mortality amongst Caucasian, Oriental Asian and South Asian CKD patients. Nephrol. Dial. Transpl. 2010, 25, 3663–3672. [Google Scholar] [CrossRef] [PubMed]
- Chaplin, M.; Kirkham, J.J.; Dwan, K.; Sloan, D.J.; Davies, G.; Jorgensen, A.L. STrengthening the reporting of pharmacogenetic studies: Development of the STROPS guideline. PLoS Med. 2020, 17, e1003344. [Google Scholar] [CrossRef] [PubMed]
- KDIGO, W.G.C. KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int. Suppl. 2012, 3, 1–150. [Google Scholar]
- Vrijens, B.; De Geest, S.; Hughes, D.A.; Przemyslaw, K.; Demonceau, J.; Ruppar, T.; Dobbels, F.; Fargher, E.; Morrison, V.; Lewek, P.; et al. A new taxonomy for describing and defining adherence to medications. Br. J. Clin. Pharmacol. 2012, 73, 691–705. [Google Scholar] [CrossRef]
- Lee, F.Y.; Islahudin, F.; Makmor-Bakry, M.; Wong, H.-S.; Bavanandan, S. Factors associated with the frequency of antihypertensive drug adjustments in chronic kidney disease patients: A multicentre, 2-year retrospective study. Int. J. Clin. Pharm. 2021. [Google Scholar] [CrossRef] [PubMed]
- Jones, C.; Roderick, P.; Harris, S.; Rogerson, M. Decline in kidney function before and after nephrology referral and the effect on survival in moderate to advanced chronic kidney disease. Nephrol. Dial. Transpl. 2006, 21, 2133–2143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lemeshow, S.; Hosmer, D.W.; Klar, J.; Lwanga, S.K. World Health Organization. Adequacy of Sample size in Health Studies/Stanley Lemeshow; Wiley: Chichester, UK, 1990. [Google Scholar]
- Lucena-Aguilar, G.; Sánchez-López, A.M.; Barberán-Aceituno, C.; Carrillo-Ávila, J.A.; López-Guerrero, J.A.; Aguilar-Quesada, R. DNA source selection for downstream applications based on DNA quality indicators analysis. Biopreserv. Biobank. 2016, 14, 264–270. [Google Scholar] [CrossRef] [Green Version]
- Tahir, N.A.M.; Saffian, S.M.; Islahudin, F.H.; Gafor, A.H.A.; Othman, H.; Manan, H.A.; Makmor-Bakry, M. Effects of CST3 Gene G73A Polymorphism on Cystatin C in a Prospective Multiethnic Cohort Study. Nephron 2020, 144, 204–212. [Google Scholar] [CrossRef]
- Ariffin, N.M.; Islahudin, F.; Kumolosasi, E.; Makmor-Bakry, M. Effects of MAO-A and CYP450 on primaquine metabolism in healthy volunteers. Parasitol. Res. 2019, 118, 1011–1018. [Google Scholar] [CrossRef] [PubMed]
- Hosmer, D.W.J.; Lemeshow, S. Assessing the fit of the model. In Applied Logistic Regression; Hosmer, D.W.J., Lemeshow, S., Eds.; Wiley: Hoboker, NJ, USA, 2000; pp. 156–164. [Google Scholar]
- Shrestha, N. Detecting multicollinearity in regression analysis. Am. J. Appl. Math. Stat. 2020, 8, 39–42. [Google Scholar] [CrossRef]
- Givens, R.C.; Lin, Y.S.; Dowling, A.L.; Thummel, K.E.; Lamba, J.K.; Schuetz, E.G.; Stewart, P.W.; Watkins, P.B. CYP3A5 genotype predicts renal CYP3A activity and blood pressure in healthy adults. J. Appl. Physiol. 2003, 95, 1297–1300. [Google Scholar] [CrossRef] [Green Version]
- Schjoedt, K.J.; Andersen, S.; Rossing, P.; Tarnow, L.; Parving, H.H. Aldosterone escape during blockade of the renin-angiotensin-aldosterone system in diabetic nephropathy is associated with enhanced decline in glomerular filtration rate. Diabetologia 2004, 47, 1936–1939. [Google Scholar] [CrossRef]
- Knights, K.M.; Rowland, A.; Miners, J.O. Renal drug metabolism in humans: The potential for drug-endobiotic interactions involving cytochrome P450 (CYP) and UDP-glucuronosyltransferase (UGT). Br. J. Clin. Pharmacol. 2013, 76, 587–602. [Google Scholar] [CrossRef] [Green Version]
- Higuchi, S.; Kohsaka, S.; Shiraishi, Y.; Katsuki, T.; Nagatomo, Y.; Mizuno, A.; Sujino, Y.; Kohno, T.; Goda, A.; Yoshikawa, T.; et al. Association of renin-angiotensin system inhibitors with long-term outcomes in patients with systolic heart failure and moderate-to-severe kidney function impairment. Eur. J. Int. Med. 2019, 62, 58–66. [Google Scholar] [CrossRef] [PubMed]
- Caravaca-Fontán, F.; Azevedo, L.; Luna, E.; Caravaca, F. Patterns of progression of chronic kidney disease at later stages. Clin. Kidney J. 2018, 11, 246–253. [Google Scholar] [CrossRef] [Green Version]
- Ali, I.; Chinnadurai, R.; Ibrahim, S.T.; Green, D.; Kalra, P.A. Predictive factors of rapid linear renal progression and mortality in patients with chronic kidney disease. BMC Nephrol. 2020, 21, 345. [Google Scholar] [CrossRef] [PubMed]
- O’Hare, A.M.; Choi, A.I.; Bertenthal, D.; Bacchetti, P.; Garg, A.X.; Kaufman, J.S.; Walter, L.C.; Mehta, K.M.; Steinman, M.A.; Allon, M.; et al. Age affects outcomes in chronic kidney disease. J. Am. Soc. Nephrol. 2007, 18, 2758–2765. [Google Scholar] [CrossRef] [Green Version]
- Tsuruya, K.; Yoshida, H.; Nagata, M.; Kitazono, T.; Iseki, K.; Iseki, C.; Fujimoto, S.; Konta, T.; Moriyama, T.; Yamagata, K.; et al. Impact of the triglycerides to high-density lipoprotein cholesterol ratio on the incidence and progression of CKD: A longitudinal study in a large Japanese population. Am. J. Kidney Dis. 2015, 66, 972–983. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Kang, S.; Joo, Y.S.; Lee, C.; Nam, K.H.; Yun, H.-R.; Park, J.T.; Chang, T.I.; Yoo, T.-H.; Kim, S.W.; et al. Smoking, smoking cessation, and progression of chronic kidney disease: Results from KNOW-CKD study. Nicotine Tob. Res. 2020, 23, 92–98. [Google Scholar] [CrossRef] [PubMed]
- Lhotta, K.; Rumpelt, H.J.; König, P.; Mayer, G.; Kronenberg, F. Cigarette smoking and vascular pathology in renal biopsies. Kidney Int. 2002, 61, 648–654. [Google Scholar] [CrossRef] [Green Version]
- Tangkiatkumjai, M.; Boardman, H.; Praditpornsilpa, K.; Walker, D.M. Association of herbal and dietary supplements with progression and complications of chronic kidney disease: A prospective cohort study. Nephrol. (Carlton) 2015, 20, 679–687. [Google Scholar] [CrossRef] [PubMed]
- Lin, M.-Y.; Chiu, Y.-W.; Chang, J.-S.; Lin, H.-L.; Lee, C.T.-C.; Chiu, G.-F.; Kuo, M.-C.; Wu, M.-T.; Chen, H.-C.; Hwang, S.-J. Association of prescribed Chinese herbal medicine use with risk of end-stage renal disease in patients with chronic kidney disease. Kidney Int. 2015, 88, 1365–1373. [Google Scholar] [CrossRef] [Green Version]
- Saeed, S.; Islahudin, F.; Makmor-Bakry, M.; Redzuan, A.M. The practice of complementary and alternative medicine among chronic kidney disease patients. J. Adv. Pharm. Edu. Res. 2018, 8, 30–36. [Google Scholar]
Terminology | Definition | |
---|---|---|
Classification of CKD [18] | Stage 1 | Normal or elevated GFR, with GFR of 90 mL/min/1.73 m2 and above |
Stage 2 | Mildly decreased GFR of 60–89 mL/min/1.73 m2 | |
Stage 3a | Mild to moderately decreased GFR of 45–59 mL/min/1.73 m2 | |
Stage 3b | Moderately to severely decreased GFR of 30–44 mL/min/1.73 m2 | |
Stage 4 | Severely decreased GFR of 15–29 mL/min/1.73 m2 | |
Stage 5 | Low eGFR of less than 15 mL/min/1.73 m2 | |
Albuminuria categorisation [18] | A1 | Protein-to-creatinine ratio (PCR) of less than 15 mg/mmol and below or negative to trace from urine protein reagent strip |
A2 | PCR of 15–50 mg/mmol or trace to + from urine protein reagent strip | |
A3 | PCR of more than 50 mg/mmol, or greater than + from urine protein reagent strip | |
Progression of CKD | Rapid CKD progression | Sustained decline in eGFR of more than 5 mL/min/1.73 m2/year [18], based on the rate of annual eGFR change using linear regression model to identify the eGFR slope using the eGFR collected during the study period [3] |
Types of non-adherence [19] | Initiation phase | Medication is not taken by patient at all |
Implementation phase | A dose is missed, omitted or an extra dose taken | |
Persistence phase | The medication is ceased without the instruction of prescriber | |
Others | TCM consumption | The use of therapies not included in the treatment and medicines prescribed by hospitals or health clinics, such as the use of herbs (or botanicals), as well as over-the-counter nutritional and dietary supplements, based on patient recall [20] |
Characteristics | Non-Rapid CKD Progression (n = 95) | Rapid CKD Progression (n = 29) | Total (n = 124) |
---|---|---|---|
Age, mean (SD) | 53.2 (15.4) | 49.0 (16.2) | 52.2 (15.7) |
Ethnicity, n (%) | |||
Malay ethnicity, n (%) | 55 (57.9) | 16 (55.2) | 71 (57.3) |
Others, n (%) | 40 (42.1) | 13 (44.8) | 53 (42.7) |
Male sex, n (%) | 46 (48.4) | 16 (55.2) | 62 (50.0) |
CYP3A5 polymorphism, n (%) | |||
*1/*1 | 58 (61.1) | 15 (51.7) | 73 (58.9) |
*1/*3 | 33 (34.7) | 10 (34.5) | 43 (34.7) |
*3/*3 | 4 (4.2) | 4 (13.8) | 8 (6.5) |
Stage of CKD, n (%) | |||
1 | 28 (29.5) | 7 (24.1) | 35 (28.2) |
2 | 15 (15.8) | 7 (24.1) | 22 (17.7) |
3a | 17 (17.9) | 6 (20.7) | 23 (18.5) |
3b | 35 (36.8) | 9 (31.0) | 44 (35.5) |
Baseline albuminuria status, n (%) | |||
A1 | 41 (43.2) | 8 (27.6) | 49 (39.5) |
A2 | 17 (17.9) | 7 (24.1) | 24 (19.4) |
A3 | 35 (36.8) | 13 (44.8) | 48 (38.7) |
Missing | 2 (2.1) | 1 (3.4) | 3 (2.4) |
Baseline systolic blood pressure, mmHg, mean (SD) | 133.0 (16.7) | 135.2 (19.3) | 133.6 (17.3) |
CVD, n (%) | 13 (13.7) | 6 (20.7) | 19 (15.3) |
CCF, n (%) | 6 (6.3) | 1 (3.4) | 7 (5.6) |
Diabetes, n (%) | 32 (33.7) | 11 (37.9) | 43 (34.7) |
Dyslipidaemia, n (%) | 60 (63.2) | 22 (75.9) | 82 (66.1) |
Episode of AKI, n (%) | 8 (8.4) | 6 (20.7) | 14 (11.3) |
Gout, n (%) | 23 (24.2) | 6 (20.7) | 29 (23.4) |
Obesity (BMI > 30 kg/m2), n (%) | 12 (12.6) | 6 (20.7) | 18 (14.5) |
Anaemia, n (%) | 36 (37.9) | 13 (44.8) | 49 (39.5) |
Smoking status, n (%) | |||
Non-smoker | 88 (92.6) | 23 (79.3) | 111 (89.5) |
Ex-smoker | 4 (4.2) | 2 (6.9) | 6 (4.8) |
Currently smoking | 3 (3.2) | 4 (13.8) | 7 (5.6) |
Uncontrolled hypertension, n (%) | 71 (77.2) | 23 (79.3) | 94 (77.7) |
Adjustments to antihypertensives, median (range) | 1 (0–15) | 3 (0–19) | 2 (0–19) |
Poor medication adherence, n (%) | 37 (38.9) | 13 (44.8) | 50 (40.3) |
Use of calcium channel blockers, n (%) | 55 (57.9) | 20 (69.0) | 75 (60.5) |
Cessation of RAAS blockade, n (%) | 6 (6.3) | 3 (10.3) | 9 (7.3) |
Use of TCM, n (%) | 10 (10.5) | 6 (20.7) | 16 (12.9) |
Variables | Allele (n = 248) | Genotype (n = 124) | |||||
---|---|---|---|---|---|---|---|
CYP3A5*1 (Wildtype) | CYP3A5*3 (Variant) | p-Value | Homozygous Wild Type (*1/*1) | Heterozygous (*1/*3) | Homozygous (*3/*3) | p-Value | |
Baseline eGFR, mL/min/1.73 m2, mean (SD) | 66.5 (33.0) | 64.9 (32.0) | 0.731 a | 66.1 (32.9) | 68.0 (33.5) | 56.5 (25.8) | 0.438 c |
eGFR at 3 years, mL/min/1.73 m2, mean (SD) | 59.4 (33.1) | 58.5 (32.5) | 0.862 a | 58.2 (32.6) | 63.3 (34.7) | 45.7 (20.9) | 0.030 d |
Baseline albuminuria status, n (%) | 0.487 e | ||||||
A1 | 74 (39.2) | 24 (40.7) | 1.000 b | 29 (39.7) | 16 (37.2) | 4 (50.0) | |
A2 | 37 (19.6) | 12 (20.3) | 13 (17.8) | 12 (27.9) | - | ||
A3 | 72 (38.1) | 23 (39.0) | 28 (38.4) | 15 (34.9) | 4 (50.0) | ||
Missing | 6 (3.2) | - | 3 (4.1) | - | - | ||
Albuminuria category at 3 years, n (%) | 0.029 e | ||||||
A1 | 62 (32.8) | 22 (37.3) | 0.007 b | 24 (32.9) | 14 (32.6) | 4 (50.0) | |
A2 | 61 (32.3) | 7 (11.9) | 27 (37.0) | 7 (16.3) | - | ||
A3 | 65 (34.4) | 29 (49.2) | 22 (30.1) | 21 (48.8) | 4 (50.0) | ||
Missing | 1 (0.5) | 1 (1.7) | - | 1 (2.3) | - |
Variables (Reference) | b | Odds Ratio (95% CI) | p-Value |
---|---|---|---|
Adjustments to antihypertensives | 0.176 | 1.192 (1.086, 1.309) | <0.001 |
Age, years | −0.017 | 0.983 (0.964, 1.002) | 0.074 |
Anaemia of Hb < 13 g/dL (No anaemia) | 0.286 | 1.332 (0.735, 2.414) | 0.345 |
Baseline eGFR, mL/min/1.73 m2 | 0.003 | 1.003 (0.994, 1.012) | 0.583 |
Baseline albuminuria status (A1) | |||
A2 | 0.747 | 2.110 (0.928, 4.797) | 0.075 |
A3 | 0.644 | 1.904 (0.946, 3.832) | 0.071 |
Baseline systolic blood pressure, mmHg | 0.009 | 1.009 (0.992, 1.026) | 0.303 |
CYP3A5*3 (CYP3A5*1) allele | 0.492 | 1.635 (0.850, 3.148) | 0.141 |
Cardiovascular disease (No cardiovascular disease) | 0.498 | 1.645 (0.771, 3.512) | 0.198 |
Congestive cardiac failure (No Congestive cardiac failure) | −0.635 | 0.530 (0.115, 2.439) | 0.415 |
CYP3A5 polymorphism (CYP3A5*1/*1) *1/*3 *3/*3 | |||
0.158 | 1.172 (0.617, 2.225) | 0.628 | |
1.352 | 3.867 (1.341, 11.150) | 0.012 | |
Diabetes (No diabetes) | 0.185 | 1.203 (0.654, 2.214) | 0.552 |
Dyslipidaemia (No dyslipidaemia) | 0.606 | 1.833 (0.938, 3.582) | 0.076 |
Ethnicity (Malay) Others | |||
0.111 | 1.117 (0.618, 2.020) | 0.714 | |
Gout (Absence of gout) | −0.203 | 0.817 (0.399, 1.672) | 0.817 |
Male sex (Female sex) | 0.271 | 1.311 (0.726, 2.366) | 0.369 |
Obesity (No obesity) | 0.590 | 1.804 (0.839, 3.882) | 0.131 |
Occurrence of AKI (No AKI) | 1.043 | 2.837 (1.255, 6.415) | 0.012 |
Poor medication adherence (Good adherence) | 0.242 | 1.274 (0.703, 2.307) | 0.425 |
Smoking status (Non-smoker) Former smoker Current smoker | |||
0.649 | 1.913 (0.552, 6.633) | 0.307 | |
1.630 | 5.101 (1.686, 15.435) | 0.004 | |
Use of TCM (Did not use TCM) | 0.796 | 2.217 (1.010, 4.868) | 0.047 |
Use of calcium channel blockers (Did not use calcium channel blockers) | 0.480 | 1.616 (0.864, 3.024) | 0.133 |
Cessation of RAAS blockade (None) | 0.537 | 1.712 (0.613, 4.782) | 0.305 |
Uncontrolled hypertension (None) | 0.126 | 1.134 (0.550, 2.335) | 0.733 |
Variables (Reference) | b | Adjusted Odds Ratio (95% CI) | p-Value a |
---|---|---|---|
Age, years | −0.038 | 0.963 (0.937, 0.989) | 0.013 |
Adjustments to antihypertensives | 0.158 | 1.172 (1.055, 1.301) | 0.003 |
CYP3A5 polymorphism (CYP3A5*1/*1) *1/*3 *3/*3 | |||
0.052 | 1.053 (0.509, 2.181) | 0.889 | |
1.433 | 4.190 (1.268, 13.852) | 0.019 | |
Dyslipidaemia (No dyslipidaemia) | 0.840 | 2.317 (1.030, 5.211) | 0.042 |
Smoking status (Non-smoker) Former smoker Current smoker | |||
1.016 | 2.763 (0.717, 10.650) | 0.140 | |
1.964 | 7.126 (2.144, 23.685) | 0.001 | |
Use of TCM (Did not use TCM) | 0.987 | 2.684 (1.045, 6.891) | 0.040 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, F.Y.; Islahudin, F.; Ali Nasiruddin, A.Y.; Abdul Gafor, A.H.; Wong, H.-S.; Bavanandan, S.; Mohd Saffian, S.; Md Redzuan, A.; Mohd Tahir, N.A.; Makmor-Bakry, M. Effects of CYP3A5 Polymorphism on Rapid Progression of Chronic Kidney Disease: A Prospective, Multicentre Study. J. Pers. Med. 2021, 11, 252. https://doi.org/10.3390/jpm11040252
Lee FY, Islahudin F, Ali Nasiruddin AY, Abdul Gafor AH, Wong H-S, Bavanandan S, Mohd Saffian S, Md Redzuan A, Mohd Tahir NA, Makmor-Bakry M. Effects of CYP3A5 Polymorphism on Rapid Progression of Chronic Kidney Disease: A Prospective, Multicentre Study. Journal of Personalized Medicine. 2021; 11(4):252. https://doi.org/10.3390/jpm11040252
Chicago/Turabian StyleLee, Fei Yee, Farida Islahudin, Aina Yazrin Ali Nasiruddin, Abdul Halim Abdul Gafor, Hin-Seng Wong, Sunita Bavanandan, Shamin Mohd Saffian, Adyani Md Redzuan, Nurul Ain Mohd Tahir, and Mohd Makmor-Bakry. 2021. "Effects of CYP3A5 Polymorphism on Rapid Progression of Chronic Kidney Disease: A Prospective, Multicentre Study" Journal of Personalized Medicine 11, no. 4: 252. https://doi.org/10.3390/jpm11040252
APA StyleLee, F. Y., Islahudin, F., Ali Nasiruddin, A. Y., Abdul Gafor, A. H., Wong, H. -S., Bavanandan, S., Mohd Saffian, S., Md Redzuan, A., Mohd Tahir, N. A., & Makmor-Bakry, M. (2021). Effects of CYP3A5 Polymorphism on Rapid Progression of Chronic Kidney Disease: A Prospective, Multicentre Study. Journal of Personalized Medicine, 11(4), 252. https://doi.org/10.3390/jpm11040252