Comparison of Hemodynamic Visualization in Cerebral Arteries: Can Magnetic Resonance Imaging Replace Computational Fluid Dynamics?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Outline of the Workflow
2.3. Imaging and Data Acquisition
2.4. 4D Flow MRI Analysis
2.5. MRI Reconstruction and 3D Cerebral Arteries Model
2.6. Computational Fluid Dynamics Analysis
2.7. Assessment of the TOF-MRA SIG
3. Results
3.1. Blood Flow Quantitative Analysis with 4D Flow MRI
3.2. 3D Blood Flow Patterns Derived Using 4D Flow MRI and CFD
3.3. Comparison of WSS Derived by CFD with TOF-MRA SIG
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Donkor, E.S. Stroke in the 21st Century: A Snapshot of the Burden, Epidemiology, and Quality of Life. Stroke Res. Treat. 2018, 2018, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Absher, J.R.; Madeline, L.; Webb, S.W.; Rayes, M. Cerebrovascular Disease. In Reference Module in Neuroscience and Biobehavioral Psychology; Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Prado, C.M.; Ramos, S.G.; Alves-Filho, J.C.; Elias, J.; Cunha, F.Q.; Rossi, A.M. Turbulent flow/low wall shear stress and stretch differentially affect aorta remodeling in rats. J. Hypertens. 2006, 24, 503–515. [Google Scholar] [CrossRef]
- MacMahon, S.; Peto, R.; Collins, R.; Godwin, J.; Cutler, J.; Sorlie, P.; Abbott, R.; Neaton, J.; Dyer, A.; Stamler, J. Blood pressure, stroke, and coronary heart disease *1Part 1, prolonged differences in blood pressure: Prospective observational studies corrected for the regression dilution bias. Lancet 1990, 335, 765–774. [Google Scholar] [CrossRef]
- Mendez, V.; Di Giuseppe, M.; Pasta, S. Comparison of hemodynamic and structural indices of ascending thoracic aortic aneurysm as predicted by 2-way FSI, CFD rigid wall simulation and patient-specific displacement-based FEA. Comput. Biol. Med. 2018, 100, 221–229. [Google Scholar] [CrossRef] [PubMed]
- Thim, T.; Hagensen, M.K.; Falk, E.; Hørlyck, A.; Kim, W.Y.; Niemann, A.K.; Thrysøe, S.A.; Drouet, L.; Paaske, W.P.; Bøtker, H.E. Wall shear stress and local plaque development in stenosed carotid arteries of hypercholesterolemic minipigs. J. Cardiovasc. Dis. Res. 2012, 3, 76–83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Ooij, P.; Potters, W.V.; Guédon, A.; Schneiders, J.J.; Marquering, H.A.; Majoie, C.B.; Van Bavel, E.; Nederveen, A.J. Wall shear stress estimated with phase contrast MRI in an in vitro and in vivo intracranial aneurysm. J. Magn. Reson. Imaging 2013, 38, 876–884. [Google Scholar] [CrossRef]
- Rinaudo, A.; Raffa, G.M.; Scardulla, F.; Pilato, M.; Scardulla, C.; Pasta, S. Biomechanical implications of excessive endograft protrusion into the aortic arch after thoracic endovascular repair. Comput. Biol. Med. 2015, 66, 235–241. [Google Scholar] [CrossRef]
- Schnell, S.; Wu, C.; Ansari, S.A. Four-dimensional MRI flow examinations in cerebral and extracerebral vessels—ready for clinical routine? Curr. Opin. Neurol. 2016, 29, 419–428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chien, A.; Tateshima, S.; Sayre, J.; Castro, M.; Cebral, J.; Viñuela, F. Patient-specific hemodynamic analysis of small internal carotid artery-ophthalmic artery aneurysms. Surg. Neurol. 2009, 72, 444–450. [Google Scholar] [CrossRef] [PubMed]
- Shojima, M.; Oshima, M.; Takagi, K.; Torii, R.; Hayakawa, M.; Katada, K.; Morita, A.; Kirino, T. Magnitude and Role of Wall Shear Stress on Cerebral Aneurysm. Stroke 2004, 35, 2500–2505. [Google Scholar] [CrossRef] [PubMed]
- Hoi, Y.; Woodward, S.H.; Kim, M.; Taulbee, D.B.; Meng, H. Validation of CFD Simulations of Cerebral Aneurysms with Implication of Geometric Variations. J. Biomech. Eng. 2006, 128, 844–851. [Google Scholar] [CrossRef]
- Nishino, K.; Kawaguchi, D.; Sato, H.; Isoda, H.; Kosugi, T. In vitro PIV measurement and CFD analysis of flow patterns in cerebral aneurysm. J. Vis. Soc. Jpn. 2004, 24, 149–152. [Google Scholar] [CrossRef] [Green Version]
- Ford, M.D.; Nikolov, H.N.; Milner, J.S.; Lownie, S.P.; Demont, E.M.; Kalata, W.; Loth, F.; Holdsworth, D.W.; Steinman, D.A. PIV-Measured Versus CFD-Predicted Flow Dynamics in Anatomically Realistic Cerebral Aneurysm Models. J. Biomech. Eng. 2008, 130, 021015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, K.-S.; Lee, S.H.; Ryu, H.U.; Park, S.-H.; Chung, G.-H.; Cho, Y.I.; Jeong, S.-K. Direct Assessment of Wall Shear Stress by Signal Intensity Gradient from Time-of-Flight Magnetic Resonance Angiography. BioMed Res. Int. 2017, 2017, 1–8. [Google Scholar] [CrossRef]
- Dyverfeldt, P.; Bissell, M.; Barker, A.J.; Bolger, A.F.; Carlhäll, C.-J.; Ebbers, T.; Francios, C.J.; Frydrychowicz, A.; Geiger, J.; Giese, D.; et al. 4D flow cardiovascular magnetic resonance consensus statement. J. Cardiovasc. Magn. Reson. 2015, 17, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Ha, H.; Kim, G.B.; Kweon, J.; Lee, S.J.; Kim, Y.-H.; Lee, D.H.; Yang, D.H.; Kim, N. Hemodynamic Measurement Using Four-Dimensional Phase-Contrast MRI: Quantification of Hemodynamic Parameters and Clinical Applications. Korean J. Radiol. 2016, 17, 445–462. [Google Scholar] [CrossRef] [Green Version]
- Cebral, J.R.; Putman, C.M.; Alley, M.T.; Hope, T.; Bammer, R.; Calamante, F. Hemodynamics in normal cerebral arteries: Qualitative comparison of 4D phase-contrast magnetic resonance and image-based computational fluid dynamics. J. Eng. Math. 2009, 64, 367–378. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Ruan, Z.; Dai, X.; Li, S.; Li, S.; Zhang, J.; Chen, J.; Zhang, H.; Xu, H. Quantifying Hemodynamic Changes in Moyamoya Disease Based on Two-Dimensional Cine Phase-Contrast Magnetic Resonance Imaging and Computational Fluid Dynamics. World Neurosurg. 2018, 120, e1301–e1309. [Google Scholar] [CrossRef]
- Cebral, J.R.; Castro, M.A.; Soto, O.; Löhner, R.; Alperin, N. Blood-flow models of the circle of Willis from magnetic resonance data. J. Eng. Math. 2003, 47, 369–386. [Google Scholar] [CrossRef]
- Isoda, H.; Ohkura, Y.; Kosugi, T.; Hirano, M.; Alley, M.T.; Bammer, R.; Pelc, N.J.; Namba, H.; Sakahara, H. Comparison of hemodynamics of intracranial aneurysms between MR fluid dynamics using 3D cine phase-contrast MRI and MR-based computational fluid dynamics. Neuroradiology 2009, 52, 913–920. [Google Scholar] [CrossRef] [Green Version]
- Fukazawa, K.; Ishida, F.; Umeda, Y.; Miura, Y.; Shimosaka, S.; Matsushima, S.; Taki, W.; Suzuki, H. Using Computational Fluid Dynamics Analysis to Characterize Local Hemodynamic Features of Middle Cerebral Artery Aneurysm Rupture Points. World Neurosurg. 2015, 83, 80–86. [Google Scholar] [CrossRef]
- Lee, W.-J.; Jeong, S.-K.; Han, K.-S.; Lee, S.H.; Ryu, Y.J.; Sohn, C.-H.; Jung, K.-H. Impact of Endothelial Shear Stress on the Bilateral Progression of Unilateral Moyamoya Disease. Stroke 2020, 51, 775–783. [Google Scholar] [CrossRef]
- Wahlin, A.; Ambarki, K.; Birgander, R.; Wieben, O.; Johnson, K.; Malm, J.; Eklund, A. Measuring Pulsatile Flow in Cerebral Arteries Using 4D Phase-Contrast MR Imaging. Am. J. Neuroradiol. 2013, 34, 1740–1745. [Google Scholar] [CrossRef] [Green Version]
- Zarrinkoob, L.; Ambarki, K.; Wåhlin, A.; Birgander, R.; Eklund, A.; Malm, J. Blood Flow Distribution in Cerebral Arteries. Br. J. Pharmacol. 2015, 35, 648–654. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Macdonald, M.E.; Frayne, R. Phase contrast MR imaging measurements of blood flow in healthy human cerebral vessel segments. Physiol. Meas. 2015, 36, 1517–1527. [Google Scholar] [CrossRef] [PubMed]
- Bouillot, P.; Delattre, B.M.A.; Brina, O.; Ouared, R.; Farhat, M.; Chnafa, C.; Steinman, D.A.; Lovblad, K.; Pereira, V.M.; Vargas, M.I. 3D phase contrast MRI: Partial volume correction for robust blood flow quantification in small intracranial vessels. Magn. Reson. Med. 2018, 79, 129–140. [Google Scholar] [CrossRef] [PubMed]
- Berg, P.; Stucht, D.; Janiga, G.; Beuing, O.; Speck, O.; Thévenin, D. Cerebral Blood Flow in a Healthy Circle of Willis and Two Intracranial Aneurysms: Computational Fluid Dynamics Versus Four-Dimensional Phase-Contrast Magnetic Resonance Imaging. J. Biomech. Eng. 2014, 136, 041003. [Google Scholar] [CrossRef] [PubMed]
- Boussel, L.; Rayz, V.; Martin, A.; Acevedo-Bolton, G.; Lawton, M.T.; Higashida, R.; Smith, W.S.; Young, W.L.; Saloner, D. Phase-contrast magnetic resonance imaging measurements in intracranial aneurysms in vivo of flow patterns, velocity fields, and wall shear stress: Comparison with computational fluid dynamics. Magn. Reson. Med. 2009, 61, 409–417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hollnagel, D.I.; Summers, P.E.; Poulikakosb, D.; Kolliasa, S.S. Comparative velocity investigations in cerebral arteries and aneurysms: 3D phase-contrast MR angiography, laser Doppler velocimetry and computational fluid dynamics. NMR Biomed. 2009, 22, 795–808. [Google Scholar] [CrossRef]
- Ngo, M.T.; Kim, C.I.; Jung, J.; Chung, G.H.; Lee, D.H.; Kwak, H.S. Four-Dimensional Flow Magnetic Resonance Imaging for Assessment of Velocity Magnitudes and Flow Patterns in The Human Carotid Artery Bifurcation: Comparison with Computational Fluid Dynamics. Diagnostic 2019, 9, 223. [Google Scholar] [CrossRef] [Green Version]
- Wu, C.; Honarmand, A.R.; Schnell, S.; Kuhn, R.; Schoeneman, S.E.; Ansari, S.A.; Carr, J.; Markl, M.; Shaibani, A. Age-Related Changes of Normal Cerebral and Cardiac Blood Flow in Children and Adults Aged 7 Months to 61 Years. J. Am. Hear. Assoc. 2016, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, X.; Zhao, M.; Du, X.; Ruland, S.; Charbel, F.T.; Amin-Hanjani, S. Wall Shear Stress in Major Cerebral Arteries as a Function of Age and Gender-A Study of 301 Healthy Volunteers. J. Neuroimaging 2014, 25, 403–407. [Google Scholar] [CrossRef]
- Harloff, A.; Albrecht, F.; Spreer, J.; Stalder, A.F.; Bock, J.; Frydrychowicz, A.; Schöllhorn, J.; Hetzel, A.; Schumacher, M.; Hennig, J.; et al. 3D blood flow characteristics in the carotid artery bifurcation assessed by flow-sensitive 4D MRI at 3T. Magn. Reson. Med. 2008, 61, 65–74. [Google Scholar] [CrossRef]
- Ku, D.N. Blood Flow in Arteries. Annu. Rev. Fluid Mech. 1997, 29, 399–434. [Google Scholar] [CrossRef]
- Chen, Z.; Qin, H.; Liu, J.; Wu, B.; Cheng, Z.; Jiang, Y.; Liu, L.; Jing, L.; Leng, X.; Jing, J.; et al. Characteristics of Wall Shear Stress and Pressure of Intracranial Atherosclerosis Analyzed by a Computational Fluid Dynamics Model: A Pilot Study. Front. Neurol. 2020, 10. [Google Scholar] [CrossRef] [PubMed]
- Urchuk, S.N.; Plewes, D.B. Mechanisms of flow-induced signal loss in MR angiography. J. Magn. Reson. Imaging 1992, 2, 453–462. [Google Scholar] [CrossRef] [PubMed]
- Cibis, M.; Potters, W.V.; Gijsen, F.J.H.; Marquering, H.; VanBavel, E.; Van Der Steen, A.F.W.; Nederveen, A.J.; Wentzel, J.J. Wall shear stress calculations based on 3D cine phase contrast MRI and computational fluid dynamics: A comparison study in healthy carotid arteries. NMR Biomed. 2014, 27, 826–834. [Google Scholar] [CrossRef] [PubMed]
- Szajer, J.; Ho-Shon, K. A comparison of 4D flow MRI-derived wall shear stress with computational fluid dynamics methods for intracranial aneurysms and carotid bifurcations—A review. Magn. Reson. Imaging 2018, 48, 62–69. [Google Scholar] [CrossRef] [PubMed]
- Lantz, J.; Renner, J.; Karlsson, M. Wall Shear Stress in a Subject Specific Human Aorta—Influence of Fluid-Structure Interaction. Int. J. Appl. Mech. 2011, 3, 759–778. [Google Scholar] [CrossRef] [Green Version]
- Dyvorne, H.; Knight-Greenfield, A.; Jajamovich, G.; Besa, C.; Cui, Y.; Stalder, A.; Markl, M.; Taouli, B. Abdominal 4D Flow MR Imaging in a Breath Hold: Combination of Spiral Sampling and Dynamic Compressed Sensing for Highly Accelerated Acquisition. Radiology 2015, 275, 245–254. [Google Scholar] [CrossRef] [PubMed]
Study | Vascular Segment | PC MRI | Correction Schemes | ||
---|---|---|---|---|---|
ICA | M1 | A1 | |||
Wahlin [24] | 4.0 (0.6) | 2.3 (0.3) | 1.4 (0.5) | 2D | No correction |
Zarrinkoob [25] | 4.3 (0.8) | 2.4 (0.5) | 1.4 (0.3) | 2D | No correction |
MacDonald [26] | 4.9 (1.5) | 2.4 (0.8) | 1.7 (0.7) | 3D | No correction |
Bouillot [27] | 3.4 (0.7) | 1.9 (0.5) | 1.1 (0.4) | 3D | Correction |
This study | 3.8 (0.8) | 2.5 (0.4) | 1.2 (0.5) | 3D | Correction |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ngo, M.T.; Lee, U.Y.; Ha, H.; Jin, N.; Chung, G.H.; Kwak, Y.G.; Jung, J.; Kwak, H.S. Comparison of Hemodynamic Visualization in Cerebral Arteries: Can Magnetic Resonance Imaging Replace Computational Fluid Dynamics? J. Pers. Med. 2021, 11, 253. https://doi.org/10.3390/jpm11040253
Ngo MT, Lee UY, Ha H, Jin N, Chung GH, Kwak YG, Jung J, Kwak HS. Comparison of Hemodynamic Visualization in Cerebral Arteries: Can Magnetic Resonance Imaging Replace Computational Fluid Dynamics? Journal of Personalized Medicine. 2021; 11(4):253. https://doi.org/10.3390/jpm11040253
Chicago/Turabian StyleNgo, Minh Tri, Ui Yun Lee, Hojin Ha, Ning Jin, Gyung Ho Chung, Yeong Gon Kwak, Jinmu Jung, and Hyo Sung Kwak. 2021. "Comparison of Hemodynamic Visualization in Cerebral Arteries: Can Magnetic Resonance Imaging Replace Computational Fluid Dynamics?" Journal of Personalized Medicine 11, no. 4: 253. https://doi.org/10.3390/jpm11040253
APA StyleNgo, M. T., Lee, U. Y., Ha, H., Jin, N., Chung, G. H., Kwak, Y. G., Jung, J., & Kwak, H. S. (2021). Comparison of Hemodynamic Visualization in Cerebral Arteries: Can Magnetic Resonance Imaging Replace Computational Fluid Dynamics? Journal of Personalized Medicine, 11(4), 253. https://doi.org/10.3390/jpm11040253