Personalized Clinical Phenotyping through Systems Medicine and Artificial Intelligence
Abstract
:1. Introduction
2. The Example of Brain Disorders
2.1. Degenerative Parkinsonisms
2.2. Disorders of Consciousness
3. Cardiovascular Diseases: Focus on the Acute Coronary Syndrome
3.1. Plaque Rupture with Systemic Inflammation
3.2. Plaque Rupture without Systemic Inflammation
3.3. Plaque Erosion
3.4. Plaque without Thrombus
4. The Example of Inflammatory Bowel Diseases
5. Results
5.1. Personalized Medicine for Parkinson’s Disease
- to characterize clinical and genetic features and measure the CSF biomarkers in dyskinetic and non-dyskinetic PD patients, in order to test in vitro the modulation of molecular and neuronal LIDs correlates;
- to identify the role of pre- and post-synaptic molecular targets associated to the accumulation of α-synuclein that may contribute to the synaptic alterations underlying LIDs;
- to dissect the role of LRRK2 biology and phosphorylation in the signaling cascade downstream D1 receptors and glutamate receptor activation associated to the synaptic alterations underlying LIDs;
- to identify compounds able to induce LRRK2 phosphorylation or to reduce α-synuclein aggregation and verify the effects of these molecules in PD animals in the prevention of dyskinetic motor behavior following levodopa treatment.
5.2. Personalized Medicine for Disorders of Consciousness
5.3. Personalized Medicine for Acute Coronary Syndrome and other Cardiovascular Diseases
5.4. Personalized Medicine for Inflammatory Bowel Diseases
6. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Aderem, A. Commentrary systems biology. Its practice and challenges. Cell 2005, 121, 511–513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goldberg, A.L. Non-linear dynamics for clinicians: Chaos theory, fractals and complexity at the bedside. Lancet 1996, 347, 1312–1314. [Google Scholar] [CrossRef]
- Whitcomb, D.C. Primer on precision medicine for complex chronic disorders. Clin. Transl. Gastroenterol. 2019, 10, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Cesario, A.; Lohmeyer, F.M.; D’Oria, M.; Manto, A.; Scambia, G. The personalized medicine discourse: Archeology and genealogy. Med. Health Care Philos. 2021, 1–7. [Google Scholar] [CrossRef]
- Schleidegen, S.; Klinger, C.; Bertram, T.; Rogowski, W.; Marckmann, G. What is personalized medicine: Sharpening a vague term based on a systematic literature review. BMC Med. Ethics 2013, 14, 55. [Google Scholar] [CrossRef] [Green Version]
- Redekop, K.; Mldasi, D. The faces of personalized medicine: A framework for understanding its meaning and scope. Value Health 2013, 16, S4–S9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nimmesgern, E.; Benediktsson, I.; Norstedt, I. Personalized Medicine in Europe. Clin. Transl. Sci. 2017, 10, 61–63. [Google Scholar] [CrossRef]
- Erikainen, S.; Chan, S. Contested futures: Envisioning ‘Personalized’, ‘Stratified’, and ‘Precision’ medicine. New Genet. Soc. 2019, 38, 308–330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- MeSH Browser. “Personalized Medicine”. Latest Consultation. Available online: https://meshb.nlm.nih.gov/record/ui?ui=D057285 (accessed on 22 February 2021).
- Heusser, P. Towards integration of ‘personalised’ and ‘person-centered’ medicine: The concept of ‘integrative and personalised health care’. In The Ethics of Personalised Medicine: Critical Perspectives; Vollman, J., Sandow, V., Schildmann, J., Eds.; Routledge: London, UK; New York, NY, USA, 2015; pp. 77–86. [Google Scholar]
- Cesario, A.; Auffray, C.; Russo, P.; Hood, L. P4 medicine needs P4 education. Curr. Pharm. Des. 2014, 20, 6071–6072. [Google Scholar] [CrossRef]
- Karczewski, K.J.; Snyder, M.P. Integrative omics for health and disease. Nat. Rev. Genet. 2018, 19, 299–310. [Google Scholar] [CrossRef] [PubMed]
- Gagniuc, P.; Ionescu-Tirgoviste, C. Gene promoters show chromosome-specificity and reveal chromosome territories in humans. BMC Genom. 2013, 24, 278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Greene, J.A.; Loscalzo, J. Putting the patient back together—Social medicine, network medicine, and the limits of reductionism. N. Eng. J. Med. 2017, 377, 2493–2499. [Google Scholar] [CrossRef] [PubMed]
- Federoff, H.; Gostin, L. Evolving from reductionism to holism: Is there a future for systems medicine? JAMA 2009, 302, 994–996. [Google Scholar] [CrossRef] [PubMed]
- Hood, L.; Balling, R.; Auffray, C. Revolutionizing medicine in the 21st century through systems approaches. Biotechnol. J. 2012, 7, 992–1001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Auffray, C.; Charron, D.; Hood, L. Predictive, preventive, personalized and participatory medicine: Back to the future. Genome Med. 2010, 2, 57. [Google Scholar] [CrossRef]
- Tian, Q.; Price, N.D.; Hood, L. Systems cancer medicine: Towards realization of predictive, preventive, personalized and participatory (P4) medicine. J. Intern. Med. 2012, 271, 111–121. [Google Scholar] [CrossRef] [Green Version]
- Neurology Collaborators GBD. Global, regional, and national burden of neurological disorders, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019, 18, 459–480. [Google Scholar] [CrossRef] [Green Version]
- Tan, L.; Jiang, T.; Tan, L.; Yu, J.T. Toward precision medicine in neurological diseases. Ann. Transl. Med. 2016, 4, 104. [Google Scholar] [CrossRef] [Green Version]
- Williams, D.R.; Litvan, I. Parkinsonian syndromes. Continuum (Minneap Minn) 2013, 19, 1189–1212. [Google Scholar] [CrossRef]
- Caslake, R.; Moore, J.N.; Gordon, J.C.; Harris, C.E.; Counsell, C. Changes in diagnosis with follow-up in an incident cohort of patients with parkinsonism. J. Neurol. Neurosurg. Psychiatry 2008, 79, 1202–1207. [Google Scholar] [CrossRef] [Green Version]
- Parnetti, L.; Gaetani, L.; Eusebi, P.; Paciotti, S.; Hansson, O.; El-Agnaf, O.; Mollenhauer, B.; Blennow, K.; Calabresi, P. CSF and blood biomarkers for Parkinson’s disease. Lancet Neurol. 2019, 18, 573–586. [Google Scholar] [CrossRef]
- Singer, W.; Schmeichel, A.M.; Shahnawaz, M.; Schmelzer, J.D.; Boeve, B.F.; Sletten, D.M.; Gehrking, T.L.; Gehrking, J.A.; Olson, A.D.; Savica, R.; et al. Alpha-Synuclein Oligomers and Neurofilament Light Chain in Spinal Fluid Differentiate Multiple System Atrophy from Lewy Body Synucleinopathies. Ann. Neurol. 2020, 88, 3. [Google Scholar] [CrossRef]
- Shahnawaz, M.; Mukherjee, A.; Pritzkow, S.; Mendez, N.; Rabadia, P.; Liu, X.; Hu, B.; Schmeichel, A.; Singer, W.; Wu, G.; et al. Discriminating alpha-synuclein strains in Parkinson’s disease and multiple system atrophy. Nature 2020, 578, 273–277. [Google Scholar] [CrossRef]
- Magdalinou, N.K.; Paterson, R.W.; Schott, J.M.; Fox, N.C.; Mummery, C.; Blennow, K.; Bhatia, K.; Morris, H.R.; Giunti, P.; Warner, T.T.; et al. A panel of nine cerebrospinal fluid biomarkers may identify patients with atypical parkinsonian syndromes. J. Neurol. Neurosurg. Psychiatry 2015, 86, 1240–1247. [Google Scholar] [CrossRef] [PubMed]
- Gmitterová, K.; Gawinecka, J.; Llorens, F.; Varges, D.; Valkovič, P.; Zerr, I. Cerebrospinal fluid markers analysis in the differential diagnosis of dementia with Lewy bodies and Parkinson’s disease dementia. Eur. Arch. Psychiatry Clin. Neurosci. 2020, 270, 461–470. [Google Scholar] [CrossRef]
- Hall, S.; Janelidze, S.; Surova, Y.; Widner, H.; Zetterberg, H.; Hansson, O. Cerebrospinal fluid concentrations of inflammatory markers in Parkinson’s disease and atypical parkinsonian disorders. Sci. Rep. 2018, 8, 13276. [Google Scholar] [CrossRef]
- Ghiglieri, V.; Calabrese, V.; Calabresi, P. Alpha-synuclein: From early synaptic dysfunction to neurodegeneration. Front. Neurol. 2018, 9, 295. [Google Scholar] [CrossRef] [Green Version]
- Marras, C.; Chaudhuri, K.R. Nonmotor features of Parkinson’s disease subtypes. Mov. Disord. 2016, 31, 1095–1102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Antonini, A.; Bravi, D.; Sandre, M.; Bubacco, L. Immunization therapies for Parkinson’s disease: State of the art and considerations for future clinical trials. Expert Opin. Investig. Drugs 2020, 29, 685–695. [Google Scholar] [CrossRef] [PubMed]
- Davis, T.; Ings, A. Head injury: Triage, assessment, investigation and early management of head injury in children, young people and adults (NICE guideline CG 176). Arch. Disease Child. Educ. Pract. Ed. 2015, 100, 97–100. [Google Scholar] [CrossRef] [PubMed]
- Laureys, S.; Celesia, G.G.; Cohadon, F.; Lavrijsen, J.; León-Carrión, J.; Sannita, W.G.; Sazbon, L.; Schmutzhard, E.; von Wild, K.R.; Zeman, A.; et al. European Task Force on Disorders of Consciousness. Unresponsive wakefulness syndrome: A new name for the vegetative state or apallic syndrome. BMC Med. 2010, 8, 68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giacino, J.T.; Ashwal, S.; Childs, N. The minimally conscious state: Definition and diagnostic criteria. Neurology 2002, 58, 349–353. [Google Scholar] [CrossRef] [PubMed]
- Gerrard, P.; Zafonte, R.; Giacino, J.T. Coma recovery scale-revised: Evivdentiary support for hierarchical grading of level of consciousness. Arch. Phys. Med. Rehabil. 2014, 95, 2335–2341. [Google Scholar] [CrossRef]
- Luaute, J.; Maucort-Boulch, D.; Tell, L.; Quelard, F.; Sarraf, T.; Iwaz, J.; Boisson, D.; Fischer, C. Long-term outcomes of chronic minimally conscious and vegetative states. Neurology 2010, 75, 246–252. [Google Scholar] [CrossRef] [PubMed]
- Jox, R.J.; Bernat, J.L.; Laureys, S.; Eric, E. Disorders of consciousness: Responding to requests for novel diagnostic and therapeutic interventions. Lancet Neurol. 2012, 11, 732–738. [Google Scholar] [CrossRef]
- The Multi-Society Task Force on PVS. Medical aspects of the persistent vegetative state. Parts I and II. N. Engl. J. Med. 1994, 330, 1499–1508, 572–579. [Google Scholar] [CrossRef]
- Estraneo, A.; Moretta, P.; Loreto, V.; Lanzillo, B.; Santoro, L.; Trojano, L. Late recovery after traumatic, anoxic, or hemorrhagic long-lasting vegetative state. Neurology 2010, 75, 239–245. [Google Scholar] [CrossRef]
- Phillips, C.L.; Bruno, M.-A.; Maquet, P.; Boly, M.; Noirhomme, Q.; Schnakers, C.; Vanhaudenhuyse, A.; Bonjean, M.; Hustinx, R.; Moonen, G.; et al. “Relevance vector machine” consciousness classifier applied to cerebral metabolism of vegetative and locked-in patients. Neuroimage 2011, 56, 797–808. [Google Scholar] [CrossRef]
- Katz, D.I.; Polyak, M.; Coughlan, D.; Nichols, M.; Roche, A. Natural history of recovery from brain injury after prolonged disorders of consciousness: Outcome of patients admitted to inpatient rehabilitation with 1–4 year follow-up. Prog. Brain Res. 2009, 177, 73–88. [Google Scholar] [CrossRef]
- Nardone, R.; Sebastianelli, L.; Versace, V.; Brigo, F.; Golaszewski, S.; Manganotti, P.; Saltuari, L.; Trinka, E. Repetitive transcranial magnetic stimulation in traumatic brain injury: Evidence from animal and human studies. Brain Res. Bull. 2020, 159, 44–52. [Google Scholar] [CrossRef]
- Giacino, J.T.; Whyte, J.; Bagiella, E.; Kalmar, K.; Childs, N.; Khademi, A.; Eifert, B.; Long, D.; Katz, D.I.; Cho, S.; et al. Placebo-controlled trial of amantadine for severe traumatic brain injury. N. Engl. J. Med. 2012, 366, 819–826. [Google Scholar] [CrossRef] [Green Version]
- Thibaut, A.; Schiff, N.; Giacino, J.; Laureys, S.; Gosseries, O. Therapeutic interventions in patients with prolonged disorders of consciousness. Lancet Neurol. 2019, 18, 600–614. [Google Scholar] [CrossRef]
- Padua, L.; Cuccagna, C.; Pazzaglia, C. Novel sensory paradigms for neuromodulation in disorders of consciousness in traumatic brain injury. Curr. Opin. Neurol. 2019, 32, 844–849. [Google Scholar] [CrossRef] [PubMed]
- Barwari, T.; Joshi, A.; Mayr, M. MicroRNAs in Cardiovascular Disease. J. Am. Coll. Cardiol. 2016, 68, 2577–2584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joshi, A.; Rienks, M.; Theofilatos, K.; Mayr, M. Systems biology in cardiovascular disease: A multiomics approach. Nat. Rev. Cardiol. 2020, 1–18. [Google Scholar] [CrossRef]
- Cristell, N.; Cianflone, D.; Durante, A.; Ammirati, E.; Vanuzzo, D.; Banfi, M.; Calori, G.; Latib, A.; Crea, F.; Marenzi, G.; et al. High-sensitivity C-reactive protein is within normal levels at the very onset of first ST-segment elevation acute myocardial infarction in 41% of cases: A multiethnic case-control study. J. Am. Coll. Cardiol. 2011, 58, 2654–2661. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crea, F.; Liuzzo, G. Pathogenesis of acute coronary syndromes. J. Am. Coll. Cardiol. 2013, 61, 1–11. [Google Scholar] [CrossRef]
- Liuzzo, G.; Biasucci, L.M.; Gallimore, J.R.; Grillo, R.L.; Rebuzzi, A.G.; Pepys, M.B.; Maseri, A. The prognostic value of C-reactive protein and seum amyloid A protein in severe unstable angina. N. Eng. J. Med. 1994, 331, 417–424. [Google Scholar] [CrossRef]
- Pedicino, D.; Severino, A.; Ucci, S.; Bugli, F.; Flego, D.; Giglio, A.F.; Trotta, F.; Ruggio, A.; Lucci, C.; Iaconelli, A.; et al. Epicardial adipose tissue microbial colonization and inflammasome activation in acute coronary syndrome. Int. J. Cardiol. 2017, 236, 95–99. [Google Scholar] [CrossRef]
- Partida, R.A.; Libby, P.; Crea, F.; Jang, I.K. Plaque erosion: A new in vivo diagnosis and a potential major shift in the management of patients with acute coronary syndromes. Eur. Heart J. 2018, 39, 2070–2076. [Google Scholar] [CrossRef]
- Quillard, T.; Araújo, H.A.; Franck, G.; Shvartz, E.; Sukhova, G.; Libby, P. TLR2 and neutrophils potentiate endothelial stress, apoptosis and detachment: Implications for superficial erosion. Eur. Heart J. 2015, 36, 1394–1404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sato, K.; Kaikita, K.; Nakayama, N.; Horio, E.; Yoshimura, H.; Ono, T.; Ohba, K.; Tsujita, K.; Kojima, S.; Tayama, S.; et al. Coronary vasomotor response to intracoronary acetylcholine injection, clinical features, and long-term prognosis in 873 consecutive patients with coronary spasm: Analysis of a single-center study over 20 years. J. Am. Heart Assoc. 2013, 2, e000227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Montone, R.A.; Niccoli, G.; Fracassi, F.; Russo, M.; Gurgoglione, F.; Cammà, G.; Lanza, G.A.; Crea, F. Patients with acute myocardial infarction and non-obstructive coronary arteries: Safety and prognostic relevance of invasive coronary provocative tests. Eur. Heart J. 2018, 39, 91–98. [Google Scholar] [CrossRef] [PubMed]
- Duewell, P.; Kono, H.; Rayner, K.J.; Sirois, C.M.; Vladimer, G.I.; Bauernfeind, F.G.; Abela, G.S.; Franchi, L.; Nuñez, G.; Schnurr, M.; et al. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature 2010, 464, 1357–1361. [Google Scholar] [CrossRef] [Green Version]
- Lanza, G.A.; Pedrotti, P.; Pasceri, V.; Lucente, M.; Crea, F.; Maseri, A. Autonomic changes associated with spontaneous coronary spasm in patients with variant angina. J. Am. Coll. Cardiol. 1996, 28, 1249–1256. [Google Scholar] [CrossRef] [Green Version]
- Shimokawa, H.; Seto, M.; Katsumata, N.; Amano, M.; Kozai, T.; Yamawaki, T.; Kuwata, K.; Kandabashi, T.; Egashira, K.; Ikegaki, I.; et al. Rho-kinase-mediated pathway induces enhanced myosin light chain phosphorylations in a swine model of coronary artery spasm. Cardiovasc. Res. 1999, 43, 1029–1039. [Google Scholar] [CrossRef] [Green Version]
- Pedicino, D.; Vinci, R.; Giglio, A.F.; Pisano, E.; Porto, I.; Vergallo, R.; Russo, G.; Ruggio, A.; D’Aiello, A.; Flego, D.; et al. Alterations of Hyaluronan Metabolism in Acute Coronary Syndrome: Implications for Plaque Erosion. J. Am. Coll. Cardiol. 2018, 72, 1490–1503. [Google Scholar] [CrossRef]
- Libby, P.; Pasterkamp, G.; Crea, F.; Jang, I.K. Reassessing the Mechanisms of Acute Coronary Syndromes. Circ. Res. 2019, 124, 150–160. [Google Scholar] [CrossRef]
- Virmani, R.; Burke, A.P.; Farb, A. Plaque rupture and plaque erosion. Thromb. Haemost. 1999, 82 (Suppl. 1), 1–3. [Google Scholar]
- Inouye, M.; Abraham, G.; Nelson, C.P.; Wood, A.M.; Sweeting, M.J.; Dudbridge, F.; Lai, F.Y.; Kaptoge, S.; Brozynska, M.; Wang, T.; et al. Genomic Risk Prediction of Coronary Artery Disease in 480,000 Adults: Implications for Primary Prevention. J. Am. Coll. Cardiol. 2018, 72, 1883–1893. [Google Scholar] [CrossRef] [PubMed]
- Zuber, V.; Colijn, J.M.; Klaver, C.; Burgess, S. Selecting likely causal risk factors from high-throughput experiments using multivariable Mendelian randomization. Nat. Commun. 2020, 11, 29. [Google Scholar] [CrossRef] [Green Version]
- Gupta, R.M.; Musunuru, K. Mapping Novel Pathways in Cardiovascular Disease Using eQTL Data: The Past, Present, and Future of Gene Expression Analysis. Front. Genet. 2013, 3, 232. [Google Scholar] [CrossRef] [Green Version]
- Zampetaki, A.; Kiechl, S.; Drozdov, I.; Willeit, P.; Mayr, U.; Prokopi, M.; Mayr, A.; Weger, S.; Oberhollenzer, F.; Bonora, E.; et al. Plasma microRNA profiling reveals loss of endothelial miR-126 and other microRNAs in type 2 diabetes. Circ. Res. 2010, 107, 810–817. [Google Scholar] [CrossRef] [PubMed]
- Jensen, M.K.; Pers, T.H.; Dworzynski, P.; Girman, C.J.; Brunak, S.; Rimm, E.B. Protein interaction-based genome-wide analysis of incident coronary heart disease. Circ. Cardiovasc. Genet. 2011, 4, 549–556. [Google Scholar] [CrossRef]
- Sliz, E.; Kettunen, J.; Holmes, M.V.; Williams, C.O.; Boachie, C.; Wang, Q.; Männikkö, M.; Sebert, S.; Walters, R.; Lin, K.; et al. Metabolomic consequences of genetic inhibition of PCSK9 compared with statin treatment. Circulation 2018, 138, 2499–2512. [Google Scholar] [CrossRef] [PubMed]
- Karatasakis, A.; Danek, B.A.; Karacsonyi, J.; Rangan, B.V.; Roesle, M.K.; Knickelbine, T.; Miedema, M.D.; Khalili, H.; Ahmad, Z.; Abdullah, S.; et al. Effect of PCSK9 Inhibitors on Clinical Outcomes in Patients with Hypercholesterolemia: A Meta-Analysis of 35 Randomized Controlled Trials. J. Am. Heart Assoc. 2017, 6, e006910. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Angelini, G.; Flego, D.; Vinci, R.; Pedicino, D.; Trotta, F.; Ruggio, A.; Piemontese, G.; Galante, D.; Ponzo, M.; Biasucci, L.M.; et al. Matrix metalloproteinase-9 might affect adaptive immunity in non-ST segment elevation acute coronary syndromes by increasing CD31 cleavage on CD4+ T-cells. Eur. Heart J. 2018, 39, 1089–1097. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liuzzo, G.; Kopecky, S.L.; Frye, R.L.; Fallon, W.M.O.; Maseri, A.; Goronzy, J.J.; Weyand, C.M. Perturbation of the T-cell repertoire in patients with unstable angina. Circulation 1999, 100, 2135–2139. [Google Scholar] [CrossRef] [Green Version]
- Liuzzo, G.; Goronzy, J.J.; Yang, H.; Kopecky, S.L.; Holmes, D.R.; Frye, R.L.; Weyand, C.M. Monoclonal T-cell proliferation and plaque instability in acute coronary syndromes. Circulation 2000, 101, 2883–2888. [Google Scholar] [CrossRef] [Green Version]
- Ruggio, A.; Pedicino, D.; Flego, D.; Vergallo, R.; Severino, A.; Lucci, C.; Niccoli, G.; Trani, C.; Burzotta, F.; Aurigemma, C.; et al. Correlation between CD4+CD28null T lymphocytes, regulatory T cells and plaque rupture: An Optical Coherence Tomography study in Acute Coronary Syndromes. Int. J. Cardiol. 2019, 276, 289–292. [Google Scholar] [CrossRef] [PubMed]
- Flego, D.; Severino, A.; Trotta, F.; Previtero, M.; Ucci, S.; Zara, C.; Pedicino, D.; Massaro, G.; Biasucci, L.M.; Liuzzo, G.; et al. Altered CD31 expression and activity in helper T cells of acute coronary syndrome patients. Basic Res. Cardiol. 2014, 109, 448. [Google Scholar] [CrossRef] [PubMed]
- Flego, D.; Severino, A.; Trotta, F.; Previtero, M.; Ucci, S.; Zara, C.; Massaro, G.; Pedicino, D.; Biasucci, L.M.; Liuzzo, G.; et al. Increased PTPN22 expression and defective CREB activation impair regulatory T-cell differentiation in non-ST-segment elevation acute coronary syndromes. J. Am. Coll. Cardiol. 2015, 65, 1175–1186. [Google Scholar] [CrossRef] [PubMed]
- Koskinas, K.C.; Sukhova, G.K.; Baker, A.B.; Papafaklis, M.I.; Chatzizisis, Y.S.; Coskun, A.U.; Quillard, T.; Jonas, M.; Maynard, C.; Antoniadis, A.P.; et al. Thin-capped atheromata with reduced collagen content in pigs develop in coronary arterial regions exposed to persistently low endothelial shear stress. Arter. Thromb. Vasc. Biol. 2013, 33, 1494–1504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shiomi, M.; Ishida, T.; Kobayashi, T.; Nitta, N.; Sonoda, A.; Yamada, S.; Koike, T.; Kuniyoshi, N.; Murata, K.; Hirata, K.-I.; et al. Vasospasm of athero-sclerotic coronary arteries precipitates acute ischiemic myocardial damage in myocardial infarction-prone strain of the Watanabe heritable hyperlidemic rabbits. Arter. Thromb. Vasc. Biol. 2013, 33, 2518–2523. [Google Scholar] [CrossRef] [Green Version]
- Chatzizisis, Y.S.; Baker, A.B.; Sukhova, G.K.; Koskinas, K.C.; Papafaklis, M.I.; Beigel, R.; Jonas, M.; Coskun, A.U.; Stone, B.V.; Maynard, C.; et al. Augmented expression and activity of extracellular matrix-degrading enzymes in regions of low endothelial shear stress colocalize with coronary atheromata with thin fibrous caps in pigs. Circulation 2011, 123, 621–630. [Google Scholar] [CrossRef] [Green Version]
- Ferrante, G.; Nakano, M.; Prati, F.; Niccoli, G.; Mallus, M.T.; Ramazzotti, V.; Montone, R.A.; Kolodgie, F.D.; Virmani, R.; Crea, F. High levels of systemic myeloperoxidase are associated with coronary plaque erosion in patients with acute coronary syndromes: A clinicopathological study. Circulation 2010, 122, 2505–2513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mangiacapra, F.; Del Buono, M.G.; Abbate, A.; Gori, T.; Barbato, E.; Montone, R.A.; Crea, F.; Niccoli, G. Role of endothelial dysfunction in determining angina after percutaneous coronary intervention: Learning from pathophysiology to optimize treatment. Prog. Cardiovasc. Dis. 2020, 63, 233–242. [Google Scholar] [CrossRef]
- Galiuto, L.; de Caterina, A.R.; Porfidia, A.; Paraggio, L.; Barchetta, S.; Locorotondo, G.; Rebuzzi, A.G.; Crea, F. Reversible coronary microvascular dysfunction: A common pathogenetic mechanism in apical ballooning or tako-tsubo syndrome. Eur. Heart J. 2010, 31, 1319–1327. [Google Scholar] [CrossRef] [Green Version]
- King, K.R.; Grazette, L.P.; Paltoo, D.N.; McDevitt, J.T.; Sia, S.K.; Barrett, P.M.; Apple, F.S.; Gurbel, P.A.; Weissleder, R.; Leeds, H.; et al. Point-of-care technologies for precision cardiovascular care and clinical research: National Heart, Lung, and Blood Institute Working Group. JACC Basic Transl. Sci. 2016, 1, 73–86. [Google Scholar] [CrossRef] [Green Version]
- Maaser, C.; Sturm, A.; Vavricka, S.R.; Kucharzik, T.; Fiorino, G.; Annese, V.; Calabrese, E.; Baumgart, D.C.; Bettenworth, D.; Nunes, P.B.; et al. ECCO-ESGAR Guideline for Diagnostic Assessment in IBD Part 1: Initial diagnosis, monitoring of known IBD, detection of complications. J. Crohns Colitis 2019, 13, 144–164. [Google Scholar] [CrossRef] [Green Version]
- Sturm, A.; Maaser, C.; Calabrese, E.; Annese, V.; Fiorino, G.; Kucharzik, T.; Vavricka, S.R.; Verstockt, B.; van Rheenen, P.; Tolan, D.; et al. Ecco-esgar guideline for diagnostic assessment in IBD part 2: IBD scores and general principles and technical aspects. J. Crohns Colitis 2019, 13, 273–284. [Google Scholar] [CrossRef]
- Atreya, R.; Neurath, M.F. Mechanisms of molecular resistance and predictors of response to biological therapy in inflammatory bowel disease. Lancet Gastroenterol. Hepatol. 2018, 3, 790–802. [Google Scholar] [CrossRef]
- Neurath, M.F. Host-microbiota interactions in inflammatory bowel disease. Nat. Rev. Gastroenterol. Hepatol. 2020, 17, 76–77. [Google Scholar] [CrossRef] [PubMed]
- Furey, T.S.; Sethupathy, P.; Sheikh, S.Z. Redefining the IBDs using genome-scale molecular phenotyping. Nat. Rev. Gastroenterol. Hepatol. 2019, 296–311. [Google Scholar] [CrossRef] [PubMed]
- Zorzi, F.; Monteleone, I.; Sarra, M.; Calabrese, E.; Marafini, I.; Cretella, M.; Sedda, S.; Biancone, L.; Pallone, F.; Monteleone, G. Distinct Profiles of Effector Cytokines Mark the Different Phases of Crohn’s Disease. PLoS ONE 2013, 8, e54562. [Google Scholar] [CrossRef]
- Powell, N.; Pantazi, E.; Pavlidis, P.; Tsakmaki, A.; Li, K.; Yang, F.; Parker, A.; Pin, C.; Cozzetto, D.; Minns, D.; et al. Interleukin-22 orchestrates a pathological endoplasmic reticulum stress response transcriptional programme in colonic epithelial cells. Gut 2020, 69, 578–590. [Google Scholar] [CrossRef] [Green Version]
- Lopetuso, L.R.; de Salvo, C.; Pastorelli, L.; Rana, N.; Senkfor, H.N.; Petito, V.; di Martino, L.; Scaldaferri, F.; Gasbarrini, A.; Cominelli, F.; et al. IL-33 promotes recovery from acute colitis by inducing miR-320 to stimulate epithelial restitution and repair. Proc. Natl. Acad. Sci. USA 2018, 115, E9362–E9370. [Google Scholar] [CrossRef] [Green Version]
- Singh, S.; Murad, M.H.; Fumery, M.; Dulai, P.S.; Sandborn, W.J. First- and Second-line Pharmacotherapies for Patients with Moderate to Severely Active Ulcerative Colitis: An Updated Network Meta-Analysis. Clin. Gastroenterol. Hepatol. 2020, 18, 2179–2191.e6. [Google Scholar] [CrossRef]
- Ma, J.; Li, H. The role of gut microbiota in atherosclerosis and hypertension. Front. Pharmacol. 2018, 9, 1082. [Google Scholar] [CrossRef]
- Pulikkan, J.; Mazumder, A.; Grace, T. Role of the Gut Microbiome in Autism Spectrum Disorders. Adv. Exp. Med. Biol. 2019, 1118, 253–269. [Google Scholar] [CrossRef] [PubMed]
- Gurung, M.; Li, Z.; You, H.; Rodrigues, R.; Jump, D.B.; Morgun, A.; Shulzhenko, N. Role of gut microbiota in type 2 diabetes pathophysiology. EBioMedicine 2020, 51, 102590. [Google Scholar] [CrossRef] [Green Version]
- Benhadou, F.; Mintoff, D.; Schnebert, B.; Thio, H. Psoriasis and Microbiota: A Systematic Review. Diseases 2018, 6, 47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gill, T.; Asquith, M.; Rosenbaum, J.T.; Colbert, R.A. The intestinal microbiome in spondyloarthritis. Curr. Opin. Rheumatol. 2015, 27, 319–325. [Google Scholar] [CrossRef] [PubMed]
- Muscogiuri, G.; Cantone, E.; Cassarano, S.; Tuccinardi, D.; Barrea, L.; Savastano, S.; Colao, A. Gut microbiota: A new path to treat obesity. Int. J. Obes. Suppl. 2019, 9, 10–19. [Google Scholar] [CrossRef] [PubMed]
- Pittayanon, R.; Lau, J.T.; Yuan, Y.; Leontiadis, G.I.; Tse, F.; Surette, M.; Moayyedi, P. Gut microbiota in patients with irritable bowel syndrome—A systematic review. Gastroenterology 2019, 157, 97–108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zitvogel, L.; Galluzzi, L.; Viaud, S.; Vétizou, M.; Daillère, R.; Merad, M.; Kroemer, G. Cancer and the gut microbiota: An unexpected link. Sci. Transl. Med. 2015, 7, 271ps1. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, R.R.; Gurung, M.; Li, Z.; García-Jaramillo, M.; Greer, R.; Gaulke, C.; Bauchinger, F.; You, H.; Pederson, J.W.; Vasquez-Perez, S.; et al. Transkingdom interactions between Lactobacilli and hepatic mitochondria attenuate western diet-induced diabetes. Nat. Commun. 2021, 12, 101. [Google Scholar] [CrossRef]
- Sivan, A.; Corrales, L.; Hubert, N.; Williams, J.B.; Aquino-Michaels, K.; Earley, Z.M.; Benyamin, F.W.; Lei, Y.M.; Jabri, B.; Alegre, M.-L.; et al. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science 2015, 350, 1084–1089. [Google Scholar] [CrossRef] [Green Version]
- De Souza, H.S.P.; Fiocchi, C.; Iliopoulos, D. The IBD interactome: An integrated view of aetiology, pathogenesis and therapy. Nat. Rev. Gastroenterol. Hepatol. 2017, 14, 739–749. [Google Scholar] [CrossRef]
- Calabresi, P.; di Filippo, M.; Ghiglieri, V.; Tambasco, N.; Picconi, B. Levodopa-induced dyskinesias in patients with Parkinson’s disease: Filling the bench-to-bedside gap. Lancet Neurol. 2010, 9, 1106–1117. [Google Scholar] [CrossRef]
- Olanow, C.W.; Calabresi, P.; Obeso, J.A. Continuous Dopaminergic Stimulation as a Treatment for Parkinson’s Disease: Current Status and Future Opportunities. Mov. Disord. 2020, 35, 1731–1744. [Google Scholar] [CrossRef]
- Goetz, C.G.; Tilley, B.C.; Shaftman, S.R.; Stebbins, G.T.; Fahn, S.; Martinez-Martin, P.; Poewe, W.; Sampaio, C.; Stern, M.B.; Dodel, R.; et al. Movement Disorder Society-sponsored revision of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS): Scale presentation and clinimetric testing results. Mov. Disord. 2008, 23, 2129–2170. [Google Scholar] [CrossRef] [PubMed]
- Stacy, M.; Hauser, R. Development of a Patient Questionnaire to facilitate recognition of motor and non-motor wearing-off in Parkinson’s disease. J. Neural. Transm. (Vienna) 2007, 114, 211–217. [Google Scholar] [CrossRef]
- Goetz, C.G.; Nutt, J.G.; Stebbins, G.T. The Unified Dyskinesia Rating Scale: Presentation and clinimetric profile. Mov. Disord. 2008, 23, 2398–2403. [Google Scholar] [CrossRef] [PubMed]
- Nasreddine, Z.S.; Phillips, N.A.; Bedirian, V.; Charbonneau, S.; Whitehead, V.; Collin, I.; Cummings, J.L.; Chertkow, H. The Montreal Cognitive Assessment, MoCA: A brief screening tool for mild cognitive impairment. J. Am. Geriatr. Soc. 2005, 53, 695–699. [Google Scholar] [CrossRef] [PubMed]
- Gegg, M.E.; Schapira, A.H.V. The role of glucocerebrosidase in Parkinson disease pathogenesis. FEBS J. 2018, 285, 3591–3603. [Google Scholar] [CrossRef] [Green Version]
- Dachsel, J.C.; Farrer, M.J. LRRK2 and Parkinson disease. Arch. Neurol. 2010, 67, 542–547. [Google Scholar] [CrossRef]
- Maass, F.; Michalke, B.; Willkommen, D.; Leha, A.; Schulte, C.; Tönges, L.; Mollenhauer, B.; Trenkwalder, C.; Rückamp, D.; Börger, M.; et al. Elemental fingerprint: Reassessment of a cerebrospinal fluid biomarker for Parkinson’s disease. Neurobiol. Dis. 2020, 134, 104677. [Google Scholar] [CrossRef] [PubMed]
- Rosenzwelg, M. Animal models for effects of brain lesions and for rehabilitation. In Recovery of Function: Theoretical Considerations for Brain Injury Rehabilitation; University Park Press: Baltimore, MD, USA, 1980; pp. 127–172. [Google Scholar]
- Giacino, J.T. Sensory stimulation: Theoretical perspectives and the evidence for effectiveness. Neurorehabilitation 2019, 6, 69–78. [Google Scholar] [CrossRef]
- Padilla, R.; Domina, A. Effectiveness of sensory stimulation to improve arousal and alertness of people in a coma or persistent vegetative state after traumatic brain injury: A systematic review. Am. J. Occup. Ther. 2016, 70, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Padua, L.; Imbimbo, I.; Aprile, I.; Loreti, C.; Germanotta, M.; Coraci, D.; Piccinini, G.; Pazzaglia, C.; Santilli, C.; Cruciani, A.; et al. Cognitive reserve as a useful variable to address robotic or conventional upper limb rehabilitation treatment after stroke: A multicentre study of the Fondazione Don Carlo Gnocchi. Eur. J. Neurol. 2020, 27, 392–398. [Google Scholar] [CrossRef] [PubMed]
- Wagner, A.K.; Kumar, R.G. TBI Rehabilomics Research: Conceptualizing a humoral triad for designing effective rehabilitation interventions [Internet]. Neuropharmacology 2019, 145 Pt B, 133–144. [Google Scholar] [CrossRef] [PubMed]
- Paydar, S.; Parva, E.; Ghahramani, Z.; Pourahmad, S.; Shayan, L.; Mohammadkarimi, V.; Sabetian, G. Do clinical and paraclinical findings have the power to predict critical conditions of injured patients after traumatic injury resuscitation? Using data mining artificial intelligence. Chin. J. Traumatol. 2021, 24, 48–52. [Google Scholar] [CrossRef] [PubMed]
- Leopold, J.A.; Loscalzo, J. Emerging role of precision medicine in cardiovascular disease. Circ. Res. 2018, 122, 1302–1315. [Google Scholar] [CrossRef] [PubMed]
- Al-Zaiti, S.; Besomi, L.; Bouzid, Z.; Faramand, Z.; Frisch, S.; Martin-Gill, C.; Gregg, R.; Saba, S.; Callaway, C.; Sejdić, E. Machine learning-based prediction of acute coronary syndrome using only the pre-hospital 12-lead electrocardiogram. Nat. Commun. 2020, 11, 3966. [Google Scholar] [CrossRef]
- Goto, S.; Kimura, M.; Katsumata, Y.; Goto, S.; Kamatani, T.; Ichihara, G.; Ko, S.; Sasaki, J.; Fukuda, K.; Sano, M. Artificial intelligence to predict needs for urgent revascularization from 12-leads electrocardiography in emergency patients. PLoS ONE 2019, 14, e0210103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alivernini, S.; Macdonald, L.; Elmesmari, A.; Finlay, S.; Tolusso, B.; Gigante, M.R.; Petricca, L.; Di Mario, C.; Bui, L.; Perniola, S.; et al. Distinct synovial tissue macrophage subsets regulate inflammation and remission in rheumatoid arthritis. Nat. Med. 2020, 26, 1295–1306. [Google Scholar] [CrossRef]
- Privitera, G.; Onali, S.; Pugliese, D.; Renna, S.; Savarino, E.; Viola, A.; Ribaldone, D.G.; Buda, A.; Bezzio, C.; Fiorino, G.; et al. Dual Targeted Therapy: A possible option for the management of refractory Inflammatory Bowel Disease. J. Crohns Colitis 2020, 15, 335–339. [Google Scholar] [CrossRef]
- Allegretti, J.R.; Barnes, E.L.; Stevens, B.; Storm, M.; Ananthakrishnan, A.; Yajnik, V.; Korzenik, J. Predictors of Clinical Response and Remission at 1 Year Among a Multicenter Cohort of Patients with Inflammatory Bowel Disease Treated with Vedolizumab. Dig. Dis. Sci. 2017, 62, 1590–1596. [Google Scholar] [CrossRef]
- Bibbò, S.; Ianiro, G.; Gasbarrini, A.; Cammarota, G. Fecal microbiota transplantation: Past, present and future perspectives. Minerva Gastroenterol. Dietol. 2017, 420–430. [Google Scholar] [CrossRef]
- Quraishi, M.N.; Widlak, M.; Bhala, N.; Moore, D.; Price, M.; Sharma, N.; Iqbal, T.H. Systematic review with meta-analysis: The efficacy of faecal microbiota transplantation for the treatment of recurrent and refractory Clostridium difficile infection. Aliment. Pharmacol. Ther. 2017, 479–493. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paramsothy, S.; Paramsothy, R.; Rubin, D.T.; Kamm, M.A.; Kaakoush, N.O.; Mitchell, H.M.; Castaño-Rodríguez, N. Faecal microbiota transplantation for inflammatory bowel disease: A systematic review and meta-analysis. J. Crohns Colitis 2017, 11, 1180–1199. [Google Scholar] [CrossRef] [Green Version]
- Bibbò, S.; Settanni, C.R.; Porcari, S.; Bocchino, E.; Ianiro, G.; Cammarota, G.; Gasbarrini, A. Fecal Microbiota Transplantation: Screening and Selection to Choose the Optimal Donor. J. Clin. Med. 2020, 9, 1757. [Google Scholar] [CrossRef] [PubMed]
- Lopetuso, L.R.; Corbi, M.; Scaldaferri, F.; Petito, V.; Graziani, C.; Castri, F.; Neri, M.; Gasbarrini, A.; Sgambato, A.; Papa, A. Characterization of mucosal cytokine profile in ulcerative colitis patients under conventional and anti-TNF-a treatment. Eur. J. Gastroenterol. Hepatol. 2020, 32, 1527–1532. [Google Scholar] [CrossRef]
- Takenaka, K.; Ohtsuka, K.; Fujii, T.; Negi, M.; Suzuki, K.; Shimizu, H.; Oshima, S.; Akiyama, S.; Motobayashi, M.; Nagahori, M.; et al. Development and Validation of a Deep Neural Network for Accurate Evaluation of Endoscopic Images from Patients With Ulcerative Colitis. Gastroenterology 2020, 158, 2150–2157. [Google Scholar] [CrossRef] [PubMed]
- Miller, J.; Page, S. Complex Adaptive Systems: An Introduction to Computational Models in Social Life; Princeton University Press: Princeton, NY, USA, 2007. [Google Scholar]
- Robinson, P.N. Deep phenotyping for precison medicine. Hum. Mutat. 2012, 33, 777–780. [Google Scholar] [CrossRef]
Disease | Biomarker | Reference |
---|---|---|
Parkinson’s disease (PD) vs. atypical parkinsonisms [Multiple System Atrophy (MSA), Dementia with Lewy bodies (DLB), Progressive Supranuclear Palsy (PSP), Cortico-basal degeneration (CBD)] MSA vs. DLB |
| [24,25,26,27] |
Parkinson’s disease (PD) vs. atypical parkinsonisms (MSA, PSP, CBD) |
| [26] |
Parkinson’s disease (PD) vs. atypical parkinsonism (MSA, PSP, CBD) |
| [26,28] |
Disease | Biomarker | Reference |
---|---|---|
Disorders of Consciousness (all phenotypes) | • Standard: Coma Recovery Scale revised | [35] |
Systemic disorder | • Vegetative state (awareness, consciousness, responsiveness to motor orders) • Age • Presence of comorbidities | [33,34] [37] [37] |
Traumatic disorder | • Cause of the brain damage • Vegetative state (awareness, consciousness, responsiveness to motor orders) • Age • Presence of comorbidities | [32] [33,34] [37] [37] |
Disease | Biomarker | References |
---|---|---|
Acute Coronary Syndrome [ACS] (all phenotypes) | • Levels of C-reactive protein (CRP) • Plasma Low Density Lipoprotein (LDL)-cholesterol levels • Loss-of-function Proprotein convertase subtilisin/kexin type (PCSK9) variant | [49,50] [46,47,51] [47,48] |
ACS (plaque rupture with systemic inflammation) | • Pro-inflammatory CD4+ lymphocytes with low cell surface expression of the costimulatory molecule CD28 • Reduced number and suppressive function of circulating regulatory T cells (Tregs) • Role of the regulatory mediators upstream of the T-cell receptor in the differentiation and modulation of T-cell number and functions, such as CD31 and protein tyrosine phosphatase N22 | [52,53] [54,55] [54,55] |
ACS (plaque rupture without systemic inflammation) | • Inflammasome activation • Interleukin (IL)-1 • Interleukin (IL)-18 • Catecholamine release due to emotional disturbance; | [56] [56] [56] [49] |
ACS (plaque erosion) | • Neutrophil activation • Macrophages or T lymphocytes • Proteoglycans • Glycosaminoglycans • Arterial Smooth Muscle Cells (SMCs) • Increased enzyme hyaluronidase-2 (HYAL2) expression of monocytes • Increased CD44 expression of endothelial cells | [57,58] [59] [52,60,61] [52,60,61] [52,60] [53,59,62,63] [63] |
ACS (plaque without thrombus) | • Microvascular spasm • Rho-kinase activity | [64,65,66,67] [68] |
Disease | Biomarker | Reference |
---|---|---|
Crohn’s Disease (CD) Ulcerative Colitis (UC) | • Genetic polymorphisms (NOD2, genes of TNF pathway, apoptosis-related genes) • C-reactive protein levels • Faecal calprotectin levels • Autoantibodies (ANCA, ASCA) • Drug trough levels • Anti-drug antibodies • Microbiota diversity and composition | [84,85,86] |
CD postoperative recurrence | • Progressive transition from Th1 to Th1/Th17 immunophenotype | [87] |
Colonic inflammation (UC, possibly colonic CD) | • Interleukin (IL)-22 and IL-33 as dichotomous cytokines (can either promote intestinal inflammation and wound repair) | [88,89] |
TNF-resistance | • Oncostatin M • TREM-1 • Reduced gut microbiota metabolic interchanges | [83,84] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cesario, A.; D’Oria, M.; Bove, F.; Privitera, G.; Boškoski, I.; Pedicino, D.; Boldrini, L.; Erra, C.; Loreti, C.; Liuzzo, G.; et al. Personalized Clinical Phenotyping through Systems Medicine and Artificial Intelligence. J. Pers. Med. 2021, 11, 265. https://doi.org/10.3390/jpm11040265
Cesario A, D’Oria M, Bove F, Privitera G, Boškoski I, Pedicino D, Boldrini L, Erra C, Loreti C, Liuzzo G, et al. Personalized Clinical Phenotyping through Systems Medicine and Artificial Intelligence. Journal of Personalized Medicine. 2021; 11(4):265. https://doi.org/10.3390/jpm11040265
Chicago/Turabian StyleCesario, Alfredo, Marika D’Oria, Francesco Bove, Giuseppe Privitera, Ivo Boškoski, Daniela Pedicino, Luca Boldrini, Carmen Erra, Claudia Loreti, Giovanna Liuzzo, and et al. 2021. "Personalized Clinical Phenotyping through Systems Medicine and Artificial Intelligence" Journal of Personalized Medicine 11, no. 4: 265. https://doi.org/10.3390/jpm11040265
APA StyleCesario, A., D’Oria, M., Bove, F., Privitera, G., Boškoski, I., Pedicino, D., Boldrini, L., Erra, C., Loreti, C., Liuzzo, G., Crea, F., Armuzzi, A., Gasbarrini, A., Calabresi, P., Padua, L., Costamagna, G., Antonelli, M., Valentini, V., Auffray, C., & Scambia, G. (2021). Personalized Clinical Phenotyping through Systems Medicine and Artificial Intelligence. Journal of Personalized Medicine, 11(4), 265. https://doi.org/10.3390/jpm11040265