Risk Assessment for Heroin Use and Craving Score Using Polygenic Risk Score
Abstract
:1. Introduction
2. Materials and methods
2.1. Patients
2.2. Heroin-Use and Craving Questionnaire
2.3. Candidate Variants Selection and Genotyping
2.4. Statistical Analysis
3. Results
Patient Characteristics
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Barbotte, E.; Guillemin, F.; Chau, N.; Lorhandicap, G. Prevalence of impairments, disabilities, handicaps and quality of life in the general population: A review of recent literature. Bull. World Health Organ. 2001, 79, 1047–1055. [Google Scholar] [PubMed]
- Goldman, D.; Oroszi, G.; Ducci, F. The genetics of addictions: Uncovering the genes. Nat. Rev. Genet. 2005, 6, 521–532. [Google Scholar] [CrossRef]
- Kendler, K.S.; Jacobson, K.C.; Prescott, C.A.; Neale, M.C. Specificity of Genetic and Environmental Risk Factors for Use and Abuse/Dependence of Cannabis, Cocaine, Hallucinogens, Sedatives, Stimulants, and Opiates in Male Twins. Am. J. Psychiatry 2003, 160, 687–695. [Google Scholar] [CrossRef] [PubMed]
- Bailey, A.; Yuferov, V.; Bendor, J.; Schlussman, S.D.; Zhou, Y.; Ho, A.; Kreek, M.J. Immediate withdrawal from chronic “binge” cocaine administration increases mu-opioid receptor mRNA levels in rat frontal cortex. Brain Res. Mol. Brain Res. 2005, 137, 258–262. [Google Scholar] [CrossRef]
- Marie-Claire, C.; Jourdaine, C.; Lépine, J.-P.; Bellivier, F.; Bloch, V.; Vorspan, F. Pharmacoepigenomics of opiates and methadone maintenance treatment: Current data and perspectives. Pharmacogenomics 2017, 18, 1359–1372. [Google Scholar] [CrossRef] [PubMed]
- Levran, O.; Randesi, M.; Da Rosa, J.C.; Ott, J.; Rotrosen, J.; Adelson, M.; Kreek, M.J. Overlapping dopaminergic pathway genetic susceptibility to heroin and cocaine addictions in African Americans. Ann. Hum. Genet. 2015, 79, 188–198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weele, J.V.-V.; Qaadir, A.; Palmer, A.; Cook, E.H.; De Wit, H. Association between the Casein Kinase 1 Epsilon Gene Region and Subjective Response to D-Amphetamine. Neuropsychopharmacology 2005, 31, 1056–1063. [Google Scholar] [CrossRef] [Green Version]
- Wand, G.S.; McCaul, M.; Yang, X.; Reynolds, J.; Gotjen, D.; Lee, S.; Ali, A. The Mu-Opioid Receptor Gene Polymorphism (A118G) Alters HPA Axis Activation Induced by Opioid Receptor Blockade. Neuropsychopharmacology 2002, 26, 106–114. [Google Scholar] [CrossRef]
- Xu, K.; Liu, X.-H.; Nagarajan, S.; Gu, X.-Y.; Goldman, D. Relationship of the delta-opioid receptor gene to heroin abuse in a large Chinese case/control sample. Am. J. Med. Genet. 2002, 110, 45–50. [Google Scholar] [CrossRef]
- Vereczkei, A.; Demetrovics, Z.; Szekely, A.; Sárközy, P.; Antal, P.; Szilágyi, Á.; Sasvári-Székely, M.; Barta, C. Multivariate Analysis of Dopaminergic Gene Variants as Risk Factors of Heroin Dependence. PLoS ONE 2013, 8, e66592. [Google Scholar] [CrossRef] [PubMed]
- Mouly, S.; Bloch, V.; Peoc’H, K.; Houze, P.; Labat, L.; Ksouda, K.; Simoneau, G.; Declèves, X.; Bergmann, J.F.; Scherrmann, J.-M.; et al. Methadone dose in heroin-dependent patients: Role of clinical factors, comedications, genetic polymorphisms and enzyme activity. Br. J. Clin. Pharmacol. 2015, 79, 967–977. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nielsen, D.A.; Barral, S.; Proudnikov, D.; Kellogg, S.; Ho, A.; Ott, J.; Kreek, M.J. TPH2 and TPH1: Association of Variants and Interactions with Heroin Addiction. Behav. Genet. 2008, 38, 133–150. [Google Scholar] [CrossRef] [PubMed]
- Burns, J.A.; Kroll, D.S.; Feldman, D.E.; Liu, C.K.; Manza, P.; Wiers, C.E.; Volkow, N.D.; Wang, G.-J. Molecular Imaging of Opioid and Dopamine Systems: Insights into the Pharmacogenetics of Opioid Use Disorders. Front. Psychiatry 2019, 10, 626. [Google Scholar] [CrossRef] [PubMed]
- Tiffany, S.T.; Wray, J.M. The clinical significance of drug craving. Ann. N. Y. Acad. Sci. 2012, 1248, 1–17. [Google Scholar] [CrossRef]
- Mealiffe, M.E.; Stokowski, R.P.; Rhees, B.K.; Prentice, R.L.; Pettinger, M.; Hinds, D.A. Assessment of Clinical Validity of a Breast Cancer Risk Model Combining Genetic and Clinical Information. J. Natl. Cancer Inst. 2010, 102, 1618–1627. [Google Scholar] [CrossRef]
- Uhl, G.R.; Drgon, T.; Johnson, C.; Fatusin, O.O.; Liu, Q.-R.; Contoreggi, C.; Li, C.-Y.; Buck, K.; Crabbe, J. “Higher order” addiction molecular genetics: Convergent data from genome-wide association in humans and mice. Biochem. Pharmacol. 2008, 75, 98–111. [Google Scholar] [CrossRef] [Green Version]
- Xie, X.; Liu, H.; Zhang, J.; Chen, W.; Zhuang, D.; Duan, S.; Zhou, W. Association between genetic variations of NMDA receptor NR3 subfamily genes and heroin addiction in male Han Chinese. Neurosci. Lett. 2016, 631, 122–125. [Google Scholar] [CrossRef]
- Kalivas, P.W.; LaLumiere, R.T.; Knackstedt, L.; Shen, H. Glutamate transmission in addiction. Neuropharmacology 2009, 56, 169–173. [Google Scholar] [CrossRef] [Green Version]
- Olive, M.F.; Cleva, R.M.; Kalivas, P.W.; Malcolm, R.J. Glutamatergic medications for the treatment of drug and behavioral addictions. Pharmacol. Biochem. Behav. 2012, 100, 801–810. [Google Scholar] [CrossRef] [Green Version]
- Nielsen, D.A.; Ji, F.; Yuferov, V.; Ho, A.; He, C.; Ott, J.; Kreek, M.J. Genome-wide association study identifies genes that may contribute to risk for developing heroin addiction. Psychiatr. Genet. 2010, 20, 207–214. [Google Scholar] [CrossRef] [Green Version]
- Levran, O.; Peles, E.; Randesi, M.; Da Rosa, J.C.; Ott, J.; Rotrosen, J.; Adelson, M.; Kreek, M.J. Susceptibility loci for heroin and cocaine addiction in the serotonergic and adrenergic pathways in populations of different ancestry. Pharmacogenomics 2015, 16, 1329–1342. [Google Scholar] [CrossRef] [Green Version]
- Li, T.; Yu, S.; Du, J.; Chen, H.; Jiang, H.; Xu, K.; Fu, Y.; Wang, D.; Zhao, M. Role of Novelty Seeking Personality Traits as Mediator of the Association between COMT and Onset Age of Drug Use in Chinese Heroin Dependent Patients. PLoS ONE 2011, 6, e22923. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.-C.; Ho, I.-K.; Tsou, H.-H.; Liu, S.-W.; Hsiao, C.-F.; Chen, C.-H.; Tan, H.K.-L.; Lin, L.; Wu, C.-S.; Su, L.-W.; et al. Functional Genetic Polymorphisms inCYP2C19Gene in Relation to Cardiac Side Effects and Treatment Dose in a Methadone Maintenance Cohort. OMICS A J. Integr. Biol. 2013, 17, 519–526. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kringen, M.K.; Chalabianloo, F.; Bernard, J.-P.; Bramness, J.G.; Molden, E.; Høiseth, G. Combined Effect of CYP2B6 Genotype and Other Candidate Genes on a Steady-State Serum Concentration of Methadone in Opioid Maintenance Treatment. Ther. Drug Monit. 2017, 39, 550–555. [Google Scholar] [CrossRef] [PubMed]
- Glatt, S.J.; Lasky-Su, J.A.; Zhu, S.C.; Zhang, R.; Zhang, B.; Li, J.; Yuan, X.; Li, J.; Lyons, M.J.; Faraone, S.V.; et al. Genome-wide linkage analysis of heroin dependence in Han Chinese: Results from Wave Two of a multi-stage study. Drug Alcohol Depend. 2008, 98, 30–34. [Google Scholar] [CrossRef] [Green Version]
- Kalsi, G.; Euesden, J.; Coleman, J.R.; Ducci, F.; Aliev, F.; Newhouse, S.J.; Liu, X.; Ma, X.; Wang, Y.; Collier, D.A.; et al. Genome-Wide Association of Heroin Dependence in Han Chinese. PLoS ONE 2016, 11, e0167388. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.-C.; Chu, S.-K.; Huang, C.-L.; Kuo, H.-W.; Wang, S.-C.; Liu, S.-W.; Ho, I.-K.; Liu, Y.-L. Genome-Wide Pharmacogenomic Study on Methadone Maintenance Treatment Identifies SNP rs17180299 and Multiple Haplotypes on CYP2B6, SPON1, and GSG1L Associated with Plasma Concentrations of Methadone R- and S-enantiomers in Heroin-Dependent Patients. PLoS Genet. 2016, 12, e1005910. [Google Scholar] [CrossRef] [Green Version]
Male (n = 259) | Female (n = 67) | ||
---|---|---|---|
Variables | Mean (SD) | Mean (SD) | p-Value |
Age | 43.2 (7.2) | 37.8 (6.3) | <0.0001 |
BMI | 23.0 (2.8) | 21.6 (2.8) | 0.0005 |
Heroin-using and craving score | 27.2 (9.4) | 27.9 (11.8) | 0.6247 |
Urge for heroin | 10.6 (4.5) | 10.7 (5.4) | 0.8429 |
Ability to overcome heroin use | 16.7 (5.8) | 17.3 (7.0) | 0.4946 |
MMT max dose | 73.9 (29.3) | 75.2 (34.7) | 0.7479 |
Heroin onset age (year) | 25.6 (7.4) | 23.2 (6.1) | 0.0138 |
Heroin use duration (year) | 8.6 (5.9) | 8.4 (5.8) | 0.8751 |
Education level, n (%) | |||
Elementary school or less | 18 (7.0) | 5 (7.5) | 0.0682 |
Junior high school | 124 (47.8) | 21 (31.3) | |
Senior high school | 117 (45.2) | 41 (61.2) | |
Marital status, n (%) | |||
Never-married | 151 (58.2) | 39 (58.2) | 0.9447 |
Married | 54 (20.9) | 15 (22.4) | |
Divorced | 54 (20.9) | 13 (19.4) |
Heroin-Using and Craving Score | Urge for Heroin | Ability to Overcome Heroin Use | |||||||
---|---|---|---|---|---|---|---|---|---|
SNP | Allele | Gene | Gene Pathway | p-Value * | p-Value # | p-Value * | p-Value # | p-Value * | p-Value # |
rs2240158 | T > C | GRIN3B | Cognitive function | 0.02318 | 0.0353 | 0.08232 | 0.1102 | 0.02103 | 0.0288 |
rs3983721 | C > T | GRIN3A | Cognitive function | 0.00945 | 0.0109 | 0.074 | 0.105 | 0.00326 | 0.0026 |
rs6583954 | T > C | CYP2C19 | Methadone-metabolizing enzymes | 0.05439 | 0.033 | 0.10597 | 0.0387 | 0.05517 | 0.055 |
rs2129575 | G > T | TPH2 | Dopamine and serotonin pathway | 0.03343 | 0.0474 | 0.05188 | 0.056 | 0.06226 | 0.0948 |
rs174699 | C > T | COMT | Dopamine and serotonin pathway | 0.10576 | 0.069 | 0.08398 | 0.0369 | 0.16704 | 0.1486 |
Gene | SNP | Risk Score | Genotypes | Heroin-Using and Craving Score | Urge for Heroin | Ability to Overcome Heroin Use |
---|---|---|---|---|---|---|
GRIN3B | rs2240158 | 1 | CC | 26.97 (9.99) | 10.51 (4.64) | 16.47 (6.12) |
1 | TC | 27.84 (9.1) | 10.77 (4.31) | 17.07 (5.63) | ||
0 | TT | 17.14 (10.12) | 6.71 (5.15) | 10.43 (5.62) | ||
GRIN3A | rs3983721 | 0 | CC | 26.46 (9.51) | 10.22 (4.69) | 16.29 (5.56) |
0 | CT | 25.37 (9.88) | 9.98 (4.51) | 15.39 (6.05) | ||
1 | TT | 30.64 (9.67) | 11.78 (4.47) | 18.98 (6.3) | ||
CYP2C19 | rs6583954 | 0 | CC | 25.35 (10.22) | 9.97 (4.75) | 15.45 (6.39) |
1 | TC | 27.63 (9.6) | 10.61 (4.59) | 17.02 (5.64) | ||
2 | TT | 30 (9.72) | 12.04 (4.34) | 18.04 (6.17) | ||
TPH2 | rs2129575 | 0 | GG | 26.63 (9.86) | 10.46 (4.75) | 16.23 (5.56) |
0 | GT | 25.62 (10.04) | 9.89 (4.65) | 15.79 (6.32) | ||
1 | TT | 29.57 (9.55) | 11.62 (4.43) | 17.95 (5.9) | ||
COMT | rs174699 | 1 | CC | 29.48 (10.25) | 11.76 (4.63) | 17.83 (6.43) |
0 | CT | 26.5 (9.18) | 10.24 (4.33) | 16.31 (5.62) | ||
0 | TT | 25.82 (10.57) | 10 (4.98) | 15.82 (6.35) |
Genotypes | Heroin-Using and Craving score | Urge for Heroin | Ability to Overcome Heroin Use | ||||||
---|---|---|---|---|---|---|---|---|---|
Gene | Variants | Genetic Mode | (Risk Score) | R2 | p-Value | R2 | p-Value | R2 | p-Value |
GRIN3B | rs2240158 | Recessive | T(0) vs. C+TC(1) | 0.042333 | 0.0107 | 0.034026 | 0.0358 | 0.04399 | 0.0092 |
GRIN3A | rs3983721 | Recessive | T(0) vs. C+CT(1) | 0.042856 | 0.005 | 0.026848 | 0.04 | 0.052769 | 0.0017 |
CYP2C19 | rs6583954 | Additive | CC(0) | 0.039135 | 0.0094 | 0.033026 | 0.0156 | 0.038139 | 0.0159 |
TPH2 | rs2129575 | Recessive | T(0) vs. G+GT(1) | 0.035141 | 0.02 | 0.029815 | 0.0241 | 0.03363 | 0.032 |
COMT | rs174699 | Recessive | C(0) vs. T+CT(1) | 0.03043 | 0.0308 | 0.032585 | 0.0152 | 0.027691 | 0.0529 |
Combined effects | Genetic risk alleles * | Additive | 0–6 | 0.061242 | 0.001 | 0.046914 | 0.0071 | 0.063081 | 0.0008 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, C.-L.; Chen, P.-H.; Lane, H.-Y.; Ho, I.-K.; Chung, C.-M. Risk Assessment for Heroin Use and Craving Score Using Polygenic Risk Score. J. Pers. Med. 2021, 11, 259. https://doi.org/10.3390/jpm11040259
Huang C-L, Chen P-H, Lane H-Y, Ho I-K, Chung C-M. Risk Assessment for Heroin Use and Craving Score Using Polygenic Risk Score. Journal of Personalized Medicine. 2021; 11(4):259. https://doi.org/10.3390/jpm11040259
Chicago/Turabian StyleHuang, Chieh-Liang, Ping-Ho Chen, Hsien-Yuan Lane, Ing-Kang Ho, and Chia-Min Chung. 2021. "Risk Assessment for Heroin Use and Craving Score Using Polygenic Risk Score" Journal of Personalized Medicine 11, no. 4: 259. https://doi.org/10.3390/jpm11040259
APA StyleHuang, C. -L., Chen, P. -H., Lane, H. -Y., Ho, I. -K., & Chung, C. -M. (2021). Risk Assessment for Heroin Use and Craving Score Using Polygenic Risk Score. Journal of Personalized Medicine, 11(4), 259. https://doi.org/10.3390/jpm11040259