Prolonged P300 Latency in Antipsychotic-Free Subjects with At-Risk Mental States Who Later Developed Schizophrenia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Electroencephalogram (EEG) Recording
2.3. Statistical Methods
3. Results
3.1. Profiles of Subjects
3.2. Group Comparison of P300 in Healthy Control, ARMS, and Schizophrenia
3.3. P300 between ARMS-P and ARMS-NP
3.4. Relationship between P300 and Cognitive Functions
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Green, M.F. What are the functional consequences of neurocognitive deficits in schizophrenia? Am. J. Psychiatry 1996, 153, 321–330. [Google Scholar] [CrossRef] [PubMed]
- McGlashan, T.H.; Zipursky, R.B.; Perkins, D.; Addington, J.; Miller, T.; Woods, S.W.; Hawkins, K.A.; Hoffman, R.E.; Preda, A.; Epstein, I.; et al. Randomized, double-blind trial of olanzapine versus placebo in patients prodromally symptomatic for psychosis. Am. J. Psychiatry 2006, 163, 790–799. [Google Scholar] [CrossRef] [PubMed]
- McGorry, P.D.; Yung, A.R.; Phillips, L.J.; Yuen, H.P.; Francey, S.; Cosgrave, E.M.; Germano, D.; Bravin, J.; McDonald, T.; Blair, A.; et al. Randomized Controlled Trial of Interventions Designed to Reduce the Risk of Progression to First-Episode Psychosis in a Clinical Sample With Subthreshold Symptoms. Arch. Gen. Psychiatry 2002, 59, 921–928. [Google Scholar] [CrossRef] [PubMed]
- Morrison, A.P.; French, P.; Walford, L.; Lewis, S.W.; Kilcommons, A.; Green, J.; Parker, S.; Bentall, R.P. Cognitive therapy for the prevention of psychosis in people at ultra-high risk: Randomised controlled trial. Br. J. Psychiatry 2004, 185, 291–297. [Google Scholar] [CrossRef] [Green Version]
- Fusar-Poli, P.; Borgwardt, S.; Bechdolf, A.; Addington, J.; Riecher-Rossler, A.; Schultze-Lutter, F.; Keshavan, M.; Wood, S.; Ruhrmann, S.; Seidman, L.J.; et al. The psychosis high-risk state: A comprehensive state-of-the-art review. JAMA Psychiatry 2013, 70, 107–120. [Google Scholar] [CrossRef] [PubMed]
- Fusar-Poli, P.; Bonoldi, I.; Yung, A.R.; Borgwardt, S.; Kempton, M.J.; Valmaggia, L.; Barale, F.; Caverzasi, E.; McGuire, P. Predicting psychosis: Meta-analysis of transition outcomes in individuals at high clinical risk. Arch. Gen. Psychiatry 2012, 69, 220–229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fusar-Poli, P.; Bechdolf, A.; Taylor, M.J.; Bonoldi, I.; Carpenter, W.T.; Yung, A.R.; McGuire, P. At Risk for Schizophrenic or Affective Psychoses? A Meta-Analysis of DSM/ICD Diagnostic Outcomes in Individuals at High Clinical Risk. Schizophr. Bull. 2013, 39, 923–932. [Google Scholar] [CrossRef] [Green Version]
- Kawasaki, Y.; Suzuki, M.; Kherif, F.; Takahashi, T.; Zhou, S.-Y.; Nakamura, K.; Matsui, M.; Sumiyoshi, T.; Seto, H.; Kurachi, M. Multivariate voxel-based morphometry successfully differentiates schizophrenia patients from healthy controls. NeuroImage 2007, 34, 235–242. [Google Scholar] [CrossRef]
- Higuchi, Y.; Sumiyoshi, T.; Kawasaki, Y.; Matsui, M.; Arai, H.; Kurachi, M. Electrophysiological basis for the ability of olanzapine to improve verbal memory and functional outcome in patients with schizophrenia: A LORETA analysis of P300. Schizophr. Res. 2008, 101, 320–330. [Google Scholar] [CrossRef]
- Lin, Y.-T.; Liu, C.-M.; Chiu, M.-J.; Liu, C.-C.; Chien, Y.-L.; Hwang, T.-J.; Jaw, F.-S.; Shan, J.-C.; Hsieh, M.H.; Hwu, H.-G. Differentiation of Schizophrenia Patients from Healthy Subjects by Mismatch Negativity and Neuropsychological Tests. PLOS ONE 2012, 7, e34454. [Google Scholar] [CrossRef]
- Takahashi, T.; Zhou, S.-Y.; Nakamura, K.; Tanino, R.; Furuichi, A.; Kido, M.; Kawasaki, Y.; Noguchi, K.; Seto, H.; Kurachi, M.; et al. A follow-up MRI study of the fusiform gyrus and middle and inferior temporal gyri in schizophrenia spectrum. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2011, 35, 1957–1964. [Google Scholar] [CrossRef] [PubMed]
- Takayanagi, Y.; Takahashi, T.; Orikabe, L.; Mozue, Y.; Kawasaki, Y.; Nakamura, K.; Sato, Y.; Itokawa, M.; Yamasue, H.; Kasai, K.; et al. Classification of First-Episode Schizophrenia Patients and Healthy Subjects by Automated MRI Measures of Regional Brain Volume and Cortical Thickness. PLoS ONE 2011, 6, e21047. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niznikiewicz, M.A. Neurobiological approaches to the study of clinical and genetic high risk for developing psychosis. Psychiatry Res. 2019, 277, 17–22. [Google Scholar] [CrossRef] [PubMed]
- Näätänen, R.; Todd, J.; Schall, U. Mismatch negativity (MMN) as biomarker predicting psychosis in clinically at-risk individuals. Biol. Psychol. 2016, 116, 36–40. [Google Scholar] [CrossRef] [PubMed]
- Higuchi, Y.; Sumiyoshi, T.; Ito, T.; Suzuki, M. Perospirone Normalized P300 and Cognitive Function in a Case of Early Psychosis. J. Clin. Psychopharmacol. 2013, 33, 263–266. [Google Scholar] [CrossRef]
- Higuchi, Y.; Sumiyoshi, T.; Seo, T.; Miyanishi, T.; Kawasaki, Y.; Suzuki, M. Mismatch Negativity and Cognitive Performance for the Prediction of Psychosis in Subjects with At-Risk Mental State. PLoS ONE 2013, 8, e54080. [Google Scholar] [CrossRef]
- Polich, J.; Kok, A. Cognitive and biological determinants of P300: An integrative review. Biol. Psychol. 1995, 41, 103–146. [Google Scholar] [CrossRef]
- Johnson, R., Jr. A triarchic model of P300 amplitude. Psychophysiology 1986, 23, 367–384. [Google Scholar] [CrossRef]
- Nieman, D.; Koelman, J.; Linszen, D.; Bour, L.; Dingemans, P.; de Visser, B.O. Clinical and neuropsychological correlates of the P300 in schizophrenia. Schizophr. Res. 2002, 55, 105–113. [Google Scholar] [CrossRef]
- Sutton, S.; Braren, M.; Zubin, J.; John, E.R. Evoked-Potential Correlates of Stimulus Uncertainty. Science 1965, 150, 1187–1188. [Google Scholar] [CrossRef]
- Bashore, T.R.; van der Molen, M.W. Discovery of the P300: A tribute. Biol. Psychol. 1991, 32, 155–171. [Google Scholar] [CrossRef]
- Kawasaki, Y.; Maeda, Y.; Higashima, M.; Nagasawa, T.; Koshino, Y.; Suzuki, M.; Ide, Y. Reduced auditory P300 amplitude, medial temporal volume reduction and psychopathology in schizophrenia. Schizophr. Res. 1997, 26, 107–115. [Google Scholar] [CrossRef]
- Roth, W.T.; Pfefferbaum, A.; Horvath, T.B.; Berger, P.; Kopell, B.S. P3 reduction in auditory evoked potentials of schizophrenics. Electroencephalogr. Clin. Neurophysiol. 1980, 49, 497–505. [Google Scholar] [CrossRef]
- Bruder, G.E.; Tenke, C.E.; Towey, J.P.; Leite, P.; Fong, R.; Stewart, J.E.; McGrath, P.J.; Quitkin, F.M. Brain ERPs of depressed patients to complex tones in an oddball task: Relation of reduced P3 asymmetry to physical anhedonia. Psychophysiology 1998, 35, 54–63. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Y.-Q.; Tang, Y.-X.; Chan, R.C.K.; Sun, X.-Y.; He, J. P300 Aberration in First-Episode Schizophrenia Patients: A Meta-Analysis. PLoS ONE 2014, 9, e97794. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hünerli, D.; Emek-Savaş, D.D.; Çavuşoğlu, B.; Çolakoğlu, B.D.; Ada, E.; Yener, G.G. Mild cognitive impairment in Parkinson’s disease is associated with decreased P300 amplitude and reduced putamen volume. Clin. Neurophysiol. 2019, 130, 1208–1217. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz, F.T.; Ozkaynak, S.S.; Barcin, E. Contribution of auditory P300 test to the diagnosis of mild cognitive impairment in Parkinson’s disease. Neurol. Sci. 2017, 38, 2103–2109. [Google Scholar] [CrossRef] [PubMed]
- Wada, M.; Kurose, S.; Miyazaki, T.; Nakajima, S.; Masuda, F.; Mimura, Y.; Nishida, H.; Ogyu, K.; Tsugawa, S.; Mashima, Y.; et al. The P300 event-related potential in bipolar disorder: A systematic review and meta-analysis. J. Affect. Disord. 2019, 256, 234–249. [Google Scholar] [CrossRef]
- Zhong, B.-L.; Xu, Y.-M.; Xie, W.-X.; Li, Y. Can P300 aid in the differential diagnosis of unipolar disorder versus bipolar disorder depression? A meta-analysis of comparative studies. J. Affect. Disord. 2019, 245, 219–227. [Google Scholar] [CrossRef] [PubMed]
- Peisch, V.; Rutter, T.; Wilkinson, C.L.; Arnett, A.B. Sensory processing and P300 event-related potential correlates of stimulant response in children with attention-deficit/hyperactivity disorder: A critical review. Clin. Neurophysiol. 2021, 132, 953–966. [Google Scholar] [CrossRef] [PubMed]
- Cui, T.; Wang, P.P.; Liu, S.; Zhang, X. P300 amplitude and latency in autism spectrum disorder: A meta-analysis. Eur. Child Adolesc. Psychiatry 2016, 26, 177–190. [Google Scholar] [CrossRef]
- Ozgürdal, S.; Gudlowski, Y.; Witthaus, H.; Kawohl, W.; Uhl, I.; Hauser, M.; Gorynia, I.; Gallinat, J.; Heinze, M.; Heinz, A.; et al. Reduction of auditory event-related P300 amplitude in subjects with at-risk mental state for schizophrenia. Schizophr. Res. 2008, 105, 272–278. [Google Scholar] [CrossRef]
- Bramon, E.; Shaikh, M.; Broome, M.; Lappin, J.; Bergé, D.; Day, F.; Woolley, J.; Tabraham, P.; Madre, M.; Johns, L.; et al. Abnormal P300 in people with high risk of developing psychosis. NeuroImage 2008, 41, 553–560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Tricht, M.J.; Nieman, D.H.; Koelman, J.H.; van der Meer, J.N.; Bour, L.J.; de Haan, L.; Linszen, D.H. Reduced parietal P300 amplitude is associated with an increased risk for a first psychotic episode. Biol. Psychiatry 2010, 68, 642–648. [Google Scholar] [CrossRef] [PubMed]
- Fusar-Poli, P.; Crossley, N.; Woolley, J.; Carletti, F.; Perez-Iglesias, R.; Broome, M.; Johns, L.; Tabraham, P.; Bramon, E.; McGuire, P. White matter alterations related to P300 abnormalities in individuals at high risk for psychosis: An MRI–EEG study. J. Psychiatry Neurosci. 2011, 36, 239–248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nieman, D.H.; Ruhrmann, S.; Dragt, S.; Soen, F.; Van Tricht, M.J.; Koelman, J.H.T.M.; Bour, L.J.; Velthorst, E.; Becker, H.E.; Weiser, M.; et al. Psychosis Prediction: Stratification of Risk Estimation With Information-Processing and Premorbid Functioning Variables. Schizophr. Bull. 2014, 40, 1482–1490. [Google Scholar] [CrossRef] [Green Version]
- Tang, Y.; Wang, J.; Zhang, T.; Xu, L.; Qian, Z.; Cui, H.; Tang, X.; Li, H.; Whitfield-Gabrieli, S.; Shenton, M.E.; et al. P300 as an index of transition to psychosis and of remission: Data from a clinical high risk for psychosis study and review of literature. Schizophr. Res. 2020, 226, 74–83. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Lee, T.H.; Kim, J.-H.; Hong, H.; Lee, T.Y.; Lee, Y.; Salisbury, D.F.; Kwon, J.S. Decomposing P300 into correlates of genetic risk and current symptoms in schizophrenia: An inter-trial variability analysis. Schizophr. Res. 2018, 192, 232–239. [Google Scholar] [CrossRef] [PubMed]
- Sumiyoshi, T.; Higuchi, Y.; Itoh, T.; Matsui, M.; Arai, H.; Suzuki, M.; Kurachi, M.; Sumiyoshi, C.; Kawasaki, Y. Effect of perospirone on P300 electrophysiological activity and social cognition in schizophrenia: A three-dimensional analysis with sLORETA. Psychiatry Res. Neuroimaging 2009, 172, 180–183. [Google Scholar] [CrossRef] [PubMed]
- Umbricht, D.; Javitt, D.; Novak, G.; Bates, J.; Pollack, S.; Lieberman, J.; Kane, J. Effects of clozapine on auditory event-related potentials in schizophrenia. Biol. Psychiatry 1998, 44, 716–725. [Google Scholar] [CrossRef]
- Mizuno, M.; Suzuki, M.; Matsumoto, K.; Murakami, M.; Takeshi, K.; Miyakoshi, T.; Ito, F.; Yamazawa, R.; Kobayashi, H.; Nemoto, T.; et al. Clinical practice and research activities for early psychiatric intervention at Japanese leading centres. Early Interv. Psychiatry 2009, 3, 5–9. [Google Scholar] [CrossRef] [PubMed]
- Yung, A.R.; Yuen, H.P.; McGorry, P.D.; Phillips, L.J.; Kelly, D.; Dell’Olio, M.; Francey, S.M.; Cosgrave, E.M.; Killackey, E.; Stanford, C.; et al. Mapping the Onset of Psychosis: The Comprehensive Assessment of At-Risk Mental States. Aust. N. Z. J. Psychiatry 2005, 39, 964–971. [Google Scholar] [CrossRef]
- Kay, S.R.; Fiszbein, A.; Opler, L.A. The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophr. Bull. 1987, 13, 261–276. [Google Scholar] [CrossRef]
- Matsuoka, K.; Uno, M.; Kasai, K.; Koyama, K.; Kim, Y. Estimation of premorbid IQ in individuals with Alzheimer’s disease using Japanese ideographic script (Kanji) compound words: Japanese version of National Adult Reading Test. Psychiatry Clin. Neurosci. 2006, 60, 332–339. [Google Scholar] [CrossRef]
- Kaneda, Y.; Sumiyoshi, T.; Keefe, R.; Ishimoto, Y.; Numata, S.; Ohmori, T. Brief Assessment of Cognition in Schizophrenia: Validation of the Japanese version. Psychiatry Clin. Neurosci. 2007, 61, 602–609. [Google Scholar] [CrossRef] [PubMed]
- Keefe, R.S.; Goldberg, T.; Harvey, P.D.; Gold, J.M.; Poe, M.P.; Coughenour, L. The Brief Assessment of Cognition in Schizophrenia: Reliability, sensitivity, and comparison with a standard neurocognitive battery. Schizophr. Res. 2004, 68, 283–297. [Google Scholar] [CrossRef] [PubMed]
- Higuchi, Y.; Sumiyoshi, T.; Seo, T.; Suga, M.; Takahashi, T.; Nishiyama, S.; Komori, Y.; Kasai, K.; Suzuki, M. Associations between daily living skills, cognition, and real-world functioning across stages of schizophrenia; a study with the Schizophrenia Cognition Rating Scale Japanese version. Schizophr. Res. Cogn. 2017, 7, 13–18. [Google Scholar] [CrossRef] [PubMed]
- Kaneda, Y.; Ueoka, Y.; Sumiyoshi, T.; Yasui-Furukori, N.; Ito, T.; Higuchi, Y.; Suzuki, M.; Ohmori, T. Schizophrenia Cognition Rating Scale Japanese version (SCoRS-J) as a co-primary measure assessing cognitive function in schizophrenia. Nihon Shinkei Seishin Yakurigaku Zasshi 2011, 31, 259–262. [Google Scholar]
- Keefe, R.S.; Poe, M.; Walker, T.M.; Kang, J.W.; Harvey, P.D. The Schizophrenia Cognition Rating Scale: An Interview-Based Assessment and Its Relationship to Cognition, Real-World Functioning, and Functional Capacity. Am. J. Psychiatry 2006, 163, 426–432. [Google Scholar] [CrossRef] [PubMed]
- Hall, R.C. Global Assessment of Functioning. J. Psychosom. Res. 1995, 36, 267–275. [Google Scholar] [CrossRef]
- Kaneda, Y.; Ohmori, T.; Okahisa, Y.; Sumiyoshi, T.; Pu, S.; Ueoka, Y.; Takaki, M.; Nakagome, K.; Sora, I. Measurement and Treatment Research toImprove Cognition in Schizophrenia Consensus Cognitive Battery: Validation of the Japanese version. Psychiatry Clin. Neurosci. 2013, 67, 182–188. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, S.; Tanabe, E.; Yara, K.; Matsuura, M.; Matsushima, E.; Kojima, T. Impairment of exploratory eye movement in schizophrenia patients and their siblings. Psychiatry Clin. Neurosci. 2008, 62, 487–493. [Google Scholar] [CrossRef] [PubMed]
- Hall, M.-H.; Jensen, J.E.; Du, F.; Smoller, J.W.; O’Connor, L.; Spencer, K.M.; Öngür, D. Frontal P3 event-related potential is related to brain glutamine/glutamate ratio measured in vivo. Neuroimage 2015, 111, 186–191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Michie, P.T.; Kent, A.; Stienstra, R.; Castine, R.; Johnston, J.; Dedman, K.; Wichmann, H.; Box, J.; Rock, D.; Rutherford, E.; et al. Phenotypic markers as risk factors in schizophrenia: Neurocognitive functions. Aust. N. Z. J. Psychiatry 2000, 34, 74–85. [Google Scholar] [CrossRef]
- Jackson, A.; Seneviratne, U. EEG changes in patients on antipsychotic therapy: A systematic review. Epilepsy Behav. 2019, 95, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Fusar-Poli, P.; Crossley, N.; Woolley, J.; Carletti, F.; Perez-Iglesias, R.; Broome, M.; Johns, L.; Tabraham, P.; Bramon, E.; McGuire, P. Gray matter alterations related to P300 abnormalities in subjects at high risk for psychosis: Longitudinal MRI-EEG study. Neuroimage 2011, 55, 320–328. [Google Scholar] [CrossRef] [PubMed]
- Van der Stelt, O.; Lieberman, J.A.; Belger, A. Auditory P300 in high-risk, recent-onset and chronic schizophrenia. Schizophr. Res. 2005, 77, 309–320. [Google Scholar] [CrossRef]
- Mori, Y.; Kurosu, S.; Hiroyama, Y.; Niwa, S.-I. Prolongation of P300 latency is associated with the duration of illness in male schizophrenia patients. Psychiatry Clin. Neurosci. 2007, 61, 471–478. [Google Scholar] [CrossRef]
- Van Dinteren, R.; Arns, M.; Jongsma, M.L.; Kessels, R.P. P300 development across the lifespan: A systematic review and meta-analysis. PLoS ONE 2014, 9, e87347. [Google Scholar] [CrossRef] [PubMed]
- Soltani, M.; Knight, R.T. Neural origins of the P300. Crit. Rev. Neurobiol. 2000, 14, 199–224. [Google Scholar] [CrossRef] [PubMed]
- Linden, D.E.J. The P300: Where in the Brain Is It Produced and What Does It Tell Us? Neuroscience 2005, 11, 563–576. [Google Scholar] [CrossRef] [PubMed]
- Shenton, M.E.; Dickey, C.C.; Frumin, M.; McCarley, R.W. A review of MRI findings in schizophrenia. Schizophr. Res. 2001, 49, 1–52. [Google Scholar] [CrossRef] [Green Version]
- Yamaguchi, S.; Knight, R.T. Anterior and posterior association cortex contributions to the somatosensory P300. J. Neurosci. 1991, 11, 2039–2054. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bramon, E.; McDonald, C.; Croft, R.J.; Landau, S.; Filbey, F.; Gruzelier, J.H.; Sham, P.C.; Frangou, S.; Murray, R.M. Is the P300 wave an endophenotype for schizophrenia? A meta-analysis and a family study. NeuroImage 2005, 27, 960–968. [Google Scholar] [CrossRef]
- Blackwood, D.H.R.; Clair, D.M.S.; Muir, W.J.; Duffy, J.C. Auditory P300 and Eye Tracking Dysfunction in Schizophrenic Pedigrees. Arch. Gen. Psychiatry 1991, 48, 899–909. [Google Scholar] [CrossRef]
- Turetsky, B.I.; Cannon, T.D.; Gur, R.E. P300 subcomponent abnormalities in schizophrenia: III. Deficits In unaffected siblings of schizophrenic probands. Biol. Psychiatry 2000, 47, 380–390. [Google Scholar] [CrossRef]
- Winterer, G.; Egan, M.F.; Raedler, T.; Sanchez, C.; Jones, D.W.; Coppola, R.; Weinberger, D.R. P300 and Genetic Risk for Schizophrenia. Arch. Gen. Psychiatry 2003, 60, 1158–1167. [Google Scholar] [CrossRef] [Green Version]
- Bramon, E.; Rabe-Hesketh, S.; Sham, P.; Murray, R.M.; Frangou, S. Meta-analysis of the P300 and P50 waveforms in schizophrenia. Schizophr. Res. 2004, 70, 315–329. [Google Scholar] [CrossRef] [PubMed]
- Lieberman, J.A.; Small, S.A.; Girgis, R.R. Early Detection and Preventive Intervention in Schizophrenia: From Fantasy to Reality. Am. J. Psychiatry 2019, 176, 794–810. [Google Scholar] [CrossRef]
- Schmidt, A.; Cappucciati, M.; Radua, J.; Rutigliano, G.; Rocchetti, M.; Dell’Osso, L.; Politi, P.; Borgwardt, S.; Reilly, T.; Valmaggia, L.; et al. Improving Prognostic Accuracy in Subjects at Clinical High Risk for Psychosis: Systematic Review of Predictive Models and Meta-analytical Sequential Testing Simulation. Schizophr. Bull. 2016, 43, 375–388. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bourisly, A.K. Effects of aging on P300 between late young-age and early middle-age adulthood: An electroencephalogram event-related potential study. Neuroreport 2016, 27, 999–1003. [Google Scholar] [CrossRef] [PubMed]
H | ARMS | Sch | Effect Size | Group Comparison | |
---|---|---|---|---|---|
(n = 28) | (n = 33) | (n = 39) | |||
Male/female | 16/12 | 23/10 | 16/23 | - | χ2 = 6.00, p = 0.05, n.s. |
Age (years) | 21.7 (5.0) | 19.2 (4.6) | 24.4 (7.2) | - | F(2,97) = 7.93, p = 0.001 **, ARMS < Sch |
Age of onset (years) | - | - | 24.4 (6.6) | - | - |
Duration of illness (years) | - | - | 2.7 (3.0) | - | - |
JART a | 102.5 (7.4) | 96.9 (10.0) | 99.3 (11.1) | - | F(2,85) = 1.91, p = 0.15, n.s. |
PANSS: positive symptom | - | 13.1 (3.7) | 16.7 (5.8) | - | p = 0.003 **, ARMS < Sch |
negative symptom | - | 19.5 (7.2) | 19.1 (7.4) | - | p = 0.81, n.s. |
general psychopathology | - | 34.9 (8.9) | 36.5 (9.1) | - | p = 0.45, n.s. |
mGAF | - | 46.5 (9.1) | 34.1 (8.6) | - | p < 0.001 **, ARMS > Sch |
SCoRS | - | 4.7 (2.2) | 5.8 (2.3) | - | p = 0.069, n.s. |
BACS a,b: verbal memory | −0.16 (1.1) | −0.54 (1.4) | −1.46 (1.6) | 0.12 | F(2,86) = 5.81, p = 0.004 **, H, ARMS > Sch |
working memory | 0.10 (0.8) | −0.9 (1.3) | −1.32 (1.3) | 0.15 | F(2,86) = 7.99, p = 0.001 **, H > ARMS, Sch |
motor function | −0.15 (1.0) | −1.31 (1.7) | −2.04 (1.5) | 0.18 | F(2,86) = 9.45, p < 0.001 **, H > ARMS, Sch |
verbal fluency | 0.096 (1.0) | −0.96 (1.2) | −1.44 (1.3) | 0.19 | F(2,86) = 9.84, p < 0.001 **, H > ARMS, Sch |
attention | 0.70 (0.8) | −0.22 (1.5) | −1.60 (1.3) | 0.32 | F(2,86) = 20.97, p < 0.001 **, H > ARMS > Sch |
executive function | 0.29 (1.1) | −0.36 (1.3) | −1.47 (1.9) | 0.16 | F(2,86) = 8.64, p < 0.001 **, H, ARMS > Sch |
composite score c | 0.14 (0.5) | −0.72 (1.0) | −1.55 (1.2) | 0.28 | F(2,86) = 17.52, p < 0.001 **, H > ARMS > Sch |
P300 Amplitude (µV):T3 | 9.26 (4.5) | 6.12 (3.1) | 5.14 (2.6) | 0.20 | F(2,97) = 11.76, p < 0.001 **, H > ARMS, Sch |
T4 | 9.30 (5.5) | 6.50 (4.1) | 4.04 (3.0) | 0.20 | F(2.97) = 12.19, p < 0.001 **, H > ARMS, Sch |
Fz | 13.59 (7.2) | 8.46 (6.3) | 4.80 (4.2) | 0.27 | F(2,97) = 17.89, p < 0.001 **, H > ARMS > Sch |
Cz | 19.51 (8.6) | 13.08 (6.3) | 7.07 (3.6) | 0.40 | F(2,97) = 32.33, p < 0.001 **, H > ARMS > Sch |
Pz | 20.57 (8.9) | 15.66 (4.9) | 9.4 (3.9) | 0.37 | F(2,97) = 28.39 p < 0.001 **, H > ARMS > Sch |
P300 Latency (msec):T3 | 327.8 (35.9) | 325.5 (32.5) | 347.1 (52.9) | 0.07 | F(2,97) = 2.78, p = 0.067, n.s. |
T4 | 326.3 (29.5) | 320.1 (39.0) | 343.4 (52.6) | 0.06 | F(2,97) = 2.88, 0.061, n.s. |
Fz | 323.6 (30.9) | 322.9 (38.6) | 343.9 (52.7) | 0.05 | F(2,97) = 2.76, p = 0.068, n.s. |
Cz | 314.8 (29.1) | 315.3 (36.1) | 340.5 (52.2) | 0.08 | F(2,97) = 4.43, p = 0.014 *, H, ARMS < Sch |
Pz | 313.5 (29.5) | 314.9 (32.5) | 339.0 (45.7) | 0.10 | F(2,97) = 5.17, p = 0.007 **, H, ARMS < Sch |
ARMS-NP (n = 25) | ARMS-P (n = 8) | Group Comparison | |
---|---|---|---|
Male/female | 17/8 | 6/2 | χ2 = 0.14, p = 0.70, n.s. |
Age (years) | 18.7 (3.8) | 20.5 (6.6) | p = 0.33, n.s. |
JART | 98.1 (9.6) | 93.3 (11.1) | p = 0.25, n.s. |
PANSS: positive symptom | 12.9 (4.1) | 13.8 (2.1) | p = 0.53, n.s. |
negative symptom | 19.6 (8.0) | 19.2 (4.3) | p = 0.85, n.s. |
general psychopathology | 34.1 (9.1) | 37.2 (8.4) | p = 0.40, n.s. |
mGAF | 48.6 (9.0) | 41.7 (7.9) | p = 0.096, n.s. |
SCoRS | 4.1 (1.9) | 6.6 (2.0) | p = 0.004 ** |
BACS: verbal memory | −0.36 (1.4) | −1.1 (1.3) | p = 0.21, n.s. |
working memory | −0.65 (1.1) | −1.70 (1.8) | p = 0.060, n.s. |
motor function | −1.09 (1.8) | −2.02 (1.4) | p = 0.20, n.s. |
verbal fluency | −0.78 (1.1) | −1.50 (1.4) | p = 0.16, n.s. |
attention | 0.06 (1.5) | −1.12 (1.4) | p = 0.063, n.s. |
executive function | −0.17 (0.96) | −0.94 (2.2) | p = 0.17, n.s. |
composite score | −0.50 (0.94) | −1.40 (1.25) | p = 0.038 * |
Amplitude (µV):T3 | 6.06 (3.0) | 6.30 (3.8) | p = 0.85, n.s. |
T4 | 7.18 (3.9) | 4.37 (4.4) | p = 0.099, n.s. |
Fz | 8.94 (6.6) | 6.96 (5.7) | p = 0.45, n.s. |
Cz | 14.14 (6.0) | 9.79 (6.7) | p = 0.094, n.s. |
Pz | 16.27 (5.2) | 13.76 (3.3) | p = 0.21, n.s. |
Latency (msec):T3 | 318.9 (30.5) | 346.5 (31.8) | p = 0.039 * |
T4 | 317.2 (40.0) | 329.0 (36.6) | p = 0.49, n.s. |
Fz | 315.9 (35.7) | 344.7 (41.3) | p = 0.65, n.s. |
Cz | 306.5 (34.5) | 342.7 (27.3) | p = 0.011 * |
Pz | 307.7 (29.3) | 337.5 (33.3) | p = 0.022 * |
Entire Subject a | ARMS (n = 33) | Schizophrenia (n = 39) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Amplitude (µV) | Latency (msec) | Amplitude (µV) | Latency (msec) | Amplitude (µV) | Latency (msec) | |||||||
rs | p | rs | p | rs | p | rs | p | rs | p | rs | p | |
JART | −0.03 | 0.77 | 0.08 | 0.44 | −0.08 | 0.65 | 0.07 | 0.71 | 0.10 | 0.56 | 0.01 | 0.95 |
PANSS: positive symptom | −0.15 | 0.20 | 0.02 | 0.86 | −0.08 | 0.68 | 0.05 | 0.78 | 0.12 | 0.47 | −0.11 | 0.50 |
negative symptom | −0.19 | 0.12 | 0.21 | 0.09 | −0.30 | 0.09 | 0.15 | 0.41 | −0.28 | 0.10 | 0.31 | 0.06 |
general psychopathology | −0.22 | 0.07 | 0.08 | 0.51 | −0.08 | 0.68 | 0.17 | 0.34 | −0.34 | 0.04 * | −0.022 | 0.90 |
mGAF | 0.46 | 0.003 ** | −0.14 | 0.29 | 0.48 | 0.02 * | 0.09 | 0.67 | 0.14 | 0.46 | −0.095 | 0.61 |
SCoRS | −0.22 | 0.07 | 0.17 | 0.16 | −0.11 | 0.54 | 0.16 | 0.36 | −0.17 | 0.33 | 0.11 | 0.52 |
BACS: verbal memory | 0.25 | 0.01 | −0.10 | 0.35 | 0.02 | 0.65 | −0.02 | 0.92 | 0.31 | 0.06 | −0.04 | 0.80 |
working memory | 0.21 | 0.04 | −0.19 | 0.06 | −0.21 | 0.23 | −0.15 | 0.40 | 0.28 | 0.10 | −0.12 | 0.48 |
motor function | 0.41 | <0.001 b | −0.22 | 0.04 | 0.03 | 0.86 | −0.28 | 0.10 | 0.27 | 0.10 | −0.14 | 0.54 |
verbal fluency | 0.28 | 0.007 | −0.24 | 0.02 | −0.03 | 0.87 | −0.17 | 0.34 | 0.17 | 0.31 | −0.85 | 0.62 |
attention | 0.50 | <0.001 b | −0.33 | 0.001 b | 0.06 | 0.74 | −0.16 | 0.36 | 0.43 | 0.01 | −0.24 | 0.14 |
executive function | 0.36 | 0.003 b | −0.15 | 0.14 | 0.06 | 0.74 | −0.002 | 0.99 | 0.37 | 0.03 | −0.20 | 0.22 |
BACS composite score | 0.43 | <0.001 ** | −0.28 | 0.006 * | 0.01 | 0.95 | −0.22 | 0.20 | 0.34 | 0.04 * | −0.16 | 0.33 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Higuchi, Y.; Sumiyoshi, T.; Tateno, T.; Nakajima, S.; Sasabayashi, D.; Nishiyama, S.; Mizukami, Y.; Takahashi, T.; Suzuki, M. Prolonged P300 Latency in Antipsychotic-Free Subjects with At-Risk Mental States Who Later Developed Schizophrenia. J. Pers. Med. 2021, 11, 327. https://doi.org/10.3390/jpm11050327
Higuchi Y, Sumiyoshi T, Tateno T, Nakajima S, Sasabayashi D, Nishiyama S, Mizukami Y, Takahashi T, Suzuki M. Prolonged P300 Latency in Antipsychotic-Free Subjects with At-Risk Mental States Who Later Developed Schizophrenia. Journal of Personalized Medicine. 2021; 11(5):327. https://doi.org/10.3390/jpm11050327
Chicago/Turabian StyleHiguchi, Yuko, Tomiki Sumiyoshi, Takahiro Tateno, Suguru Nakajima, Daiki Sasabayashi, Shimako Nishiyama, Yuko Mizukami, Tsutomu Takahashi, and Michio Suzuki. 2021. "Prolonged P300 Latency in Antipsychotic-Free Subjects with At-Risk Mental States Who Later Developed Schizophrenia" Journal of Personalized Medicine 11, no. 5: 327. https://doi.org/10.3390/jpm11050327
APA StyleHiguchi, Y., Sumiyoshi, T., Tateno, T., Nakajima, S., Sasabayashi, D., Nishiyama, S., Mizukami, Y., Takahashi, T., & Suzuki, M. (2021). Prolonged P300 Latency in Antipsychotic-Free Subjects with At-Risk Mental States Who Later Developed Schizophrenia. Journal of Personalized Medicine, 11(5), 327. https://doi.org/10.3390/jpm11050327