Future Perspectives of Proton Therapy in Minimizing the Toxicity of Breast Cancer Radiotherapy
Abstract
:1. Introduction
2. Review Methodology
3. Toxicity of Breast Cancer Proton Therapy
3.1. Cardiopulmonary Toxicity
3.1.1. Accelerated Partial Breast Irradiation
3.1.2. Whole Breast Irradiation
3.2. Skin Toxicity
3.3. Potential Causes of the Toxicity
3.3.1. Respiratory Motion
3.3.2. A Biological and Technical Issue
4. Future Perspectives
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Brada, M.; Pijls-Johannesma, M.; De Ruysscher, D. Current Clinical Evidence for Proton Therapy. Cancer J. 2009, 15, 319–324. [Google Scholar] [CrossRef] [PubMed]
- Endo, M.; Robert, R. Wilson (1914–2000): The first scientist to propose particle therapy—Use of particle beam for cancer treatment. Radiol. Phys. Technol. 2018, 11, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilson, R.R. Radiological Use of Fast Protons. Radiology 1946, 47, 487–491. [Google Scholar] [CrossRef] [PubMed]
- Slater, J.D.; Rossi, C.J.; Yonemoto, L.T.; Bush, D.A.; Jabola, B.R.; Levy, R.P.; Grove, R.I.; Preston, W.; Slater, J.M. Proton therapy for prostate cancer: The initial Loma Linda University experience. Int. J. Radiat. Oncol. 2004, 59, 348–352. [Google Scholar] [CrossRef]
- Particle Therapy Facilities in Clinical Operation (Last Update: May 2021). Available online: https://www.ptcog.ch/index.php/facilities-in-operation (accessed on 13 May 2021).
- Braunstein, L.Z.; Cahlon, O. Potential Morbidity Reduction with Proton Radiation Therapy for Breast Cancer. Semin. Radiat. Oncol. 2018, 28, 138–149. [Google Scholar] [CrossRef]
- Doyen, J.; Falk, A.T.; Floquet, V.; Hérault, J.; Hannoun-Lévi, J.-M. Proton beams in cancer treatments: Clinical outcomes and dosimetric comparisons with photon therapy. Cancer Treat Rev. 2016, 43, 104–112. [Google Scholar] [CrossRef]
- Paganetti, H. Proton Therapy Physics. 2019. Available online: http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=1943899 (accessed on 23 November 2020).
- Suchorska, W.M. Radiobiological models in prediction of radiation cardiotoxicity. Rep. Pract. Oncol. Radiother. 2020, 25, 46–49. [Google Scholar] [CrossRef]
- Chowdhary, M.; Lee, A.; Gao, S.; Wang, D.; Barry, P.N.; Diaz, R.; Bagadiya, N.R.; Park, H.S.; Yu, J.B.; Wilson, L.D.; et al. Is Proton Therapy a “Pro” for Breast Cancer? A Comparison of Proton vs. Non-proton Radiotherapy Using the National Cancer Database. Front. Oncol. 2019, 8, 678. [Google Scholar] [CrossRef] [Green Version]
- Verma, V.; Shah, C.; Mehta, M.P. Clinical Outcomes and Toxicity of Proton Radiotherapy for Breast Cancer. Clin. Breast Cancer 2016, 16, 145–154. [Google Scholar] [CrossRef]
- Verma, V.; Iftekaruddin, Z.; Badar, N.; Hartsell, W.; Chang, J.H.-C.; Gondi, V.; Pankuch, M.; Gao, M.; Schmidt, S.; Kaplan, D.; et al. Proton beam radiotherapy as part of comprehensive regional nodal irradiation for locally advanced breast cancer. Radiother. Oncol. 2017, 123, 294–298. [Google Scholar] [CrossRef]
- Shah, C.; Badiyan, S.; Berry, S.; Khan, A.J.; Goyal, S.; Schulte, K.; Nanavati, A.; Lynch, M.; Vicini, F.A. Cardiac dose sparing and avoidance techniques in breast cancer radiotherapy. Radiother. Oncol. 2014, 112, 9–16. [Google Scholar] [CrossRef] [PubMed]
- Darby, S.C.; Ewertz, M.; McGale, P.; Bennet, A.M.; Blom-Goldman, U.; Brønnum, D.; Correa, C.; Cutter, D.; Gagliardi, G.; Gigante, B.; et al. Risk of Ischemic Heart Disease in Women after Radiotherapy for Breast Cancer. N. Engl. J. Med. 2013, 368, 987–998. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stick, L.B.; Yu, J.; Maraldo, M.V.; Aznar, M.C.; Pedersen, A.N.; Bentzen, S.M. Joint Estimation of Cardiac Toxicity and Recurrence Risks After Comprehensive Nodal Photon Versus Proton Therapy for Breast Cancer. Int. J. Radiat. Oncol. 2017, 97, 754–761. [Google Scholar] [CrossRef] [Green Version]
- Olsen, D.R.; Bruland, Ø.S.; Frykholm, G.; Norderhaug, I.N. Proton therapy—A systematic review of clinical effectiveness. Radiother. Oncol. 2007, 83, 123–132. [Google Scholar] [CrossRef] [PubMed]
- Šteiner, I. Pathology of radiation induced heart disease. Rep. Pract. Oncol. Radiother. 2020, 25, 178–181. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Q.; Kirova, Y.M.; Cao, L.; Arsene-Henry, A.; Chen, J. Cardiotoxicity associated with radiotherapy in breast cancer: A question-based review with current literatures. Cancer Treat Rev. 2018, 68, 9–15. [Google Scholar] [CrossRef]
- Soumarová, R.; Rušinová, L. Cardiotoxicity of breast cancer radiotherapy—Overview of current results. Rep. Pract. Oncol. Radiother. 2020, 25, 182–186. [Google Scholar] [CrossRef]
- Campos, J.A.S.; Contreras, G.A.V.; Tudela, B.T. Hypofractionated radiation therapy for early breast cancer: Follow up of a new treatment standard. Rep. Pract. Oncol. Radiother. 2020, 25, 886–889. [Google Scholar] [CrossRef]
- Duma, M.N.; Molls, M.; Trott, K.R. From heart to heart for breast cancer patients—Cardiovascular toxicities in breast cancer radiotherapy. Strahlenther. Onkol. 2014, 190, 5–7. [Google Scholar] [CrossRef] [Green Version]
- Lühr, A.; von Neubeck, C.; Pawelke, J.; Seidlitz, A.; Peitzsch, C.; Bentzen, S.M. “Radiobiology of Proton Therapy”: Results of an international expert workshop. Radiother. Oncol. 2018, 128, 56–67. [Google Scholar] [CrossRef]
- Valachis, A.; Nilsson, C. Cardiac risk in the treatment of breast cancer: Assessment and management. Breast Cancer Targets Ther. 2015, 7, 21–35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lancellotti, P.; Nkomo, V.T.; Badano, L.P.; Bergler-Klein, J.; Bogaert, J.; Davin, L.; Cosyns, B.; Coucke, P.; Dulgheru, R.; Edvardsen, T.; et al. Expert consensus for multi-modality imaging evaluation of cardiovascular complications of radiotherapy in adults: A report from the European Association of Cardiovascular Imaging and the American Society of Echocardiography. Eur. Heart J. Cardiovasc. Imaging 2013, 14, 721–740. [Google Scholar] [CrossRef] [PubMed]
- Gocer, G.P.S.; Ozer, E.E. Effect of radiotherapy on coronary arteries and heart in breast-conserving surgery: A dosimetric analysis. Radiol. Oncol. 2020, 54, 128–134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taghian, A.G.; Kozak, K.R.; Katz, A.; Adams, J.; Lu, H.-M.; Powell, S.N.; Delaney, T.F. Accelerated partial breast irradiation using proton beams: Initial dosimetric experience. Int. J. Radiat. Oncol. 2006, 65, 1404–1410. [Google Scholar] [CrossRef]
- Kozak, K.R.; Katz, A.; Adams, J.; Crowley, E.M.; Nyamwanda, J.A.; Feng, J.K.; Doppke, K.P.; Delaney, T.F.; Taghian, A.G. Dosimetric comparison of proton and photon three-dimensional, conformal, external beam accelerated partial breast irradiation techniques. Int. J. Radiat. Oncol. 2006, 65, 1572–1578. [Google Scholar] [CrossRef] [PubMed]
- Toscas, J.I.; Linero, D.; Rubio, I.; Hidalgo, A.; Arnalte, R.; Escudé, L. Boosting the tumor bed from deep-seated tumors in early-stage breast cancer: A planning study between electron, photon, and proton beams. Radiother. Oncol. 2010, 96, 192–198. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, X.; Li, X.; Amos, R.A.; Shaitelman, S.F.; Hoffman, K. Accelerated partial-breast irradiation using intensity-modulated proton radiotherapy: Do uncertainties outweigh potential benefits? Br. J. Radiol. 2013, 86, 20130176. [Google Scholar] [CrossRef]
- Galland-Girodet, S.; Pashtan, I.; Macdonald, S.M.; Ancukiewicz, M.; Hirsch, A.E.; Kachnic, L.A.; Specht, M.; Gadd, M.; Smith, B.L.; Powell, S.N.; et al. Long-term Cosmetic Outcomes and Toxicities of Proton Beam Therapy Compared with Photon-Based 3-Dimensional Conformal Accelerated Partial-Breast Irradiation: A Phase 1 Trial. Int. J. Radiat. Oncol. 2014, 90, 493–500. [Google Scholar] [CrossRef]
- Hansen, T.M.; Bartlett, G.K.; Mannina, E.M.; Srivastava, S.P.; Cox, J.A.; Das, I.J. Dosimetric Comparison of Treatment Techniques: Brachytherapy, Intensity-Modulated Radiation Therapy, and Proton Beam in Partial Breast Irradiation. Int. J. Part. Ther. 2015, 2, 376–384. [Google Scholar] [CrossRef] [Green Version]
- Fogliata, A.; Bolsi, A.; Cozzi, L. Critical appraisal of treatment techniques based on conventional photon beams, intensity modulated photon beams and proton beams for therapy of intact breast. Radiother. Oncol. 2002, 62, 137–145. [Google Scholar] [CrossRef]
- Lomax, A.J.; Cella, L.; Weber, D.; Kurtz, J.M.; Miralbell, R. Potential role of intensity-modulated photons and protons in the treatment of the breast and regional nodes. Int. J. Radiat. Oncol. 2003, 55, 785–792. [Google Scholar] [CrossRef]
- Ares, C.; Khan, S.; MacArtain, A.M.; Heuberger, J.; Goitein, G.; Gruber, G. Postoperative Proton Radiotherapy for Localized and Locoregional Breast Cancer: Potential for Clinically Relevant Improvements? Int. J. Radiat. Oncol. 2010, 76, 685–697. [Google Scholar] [CrossRef] [PubMed]
- Jimenez, R.B.; Goma, C.; Nyamwanda, J.; Kooy, H.M.; Halabi, T.; Napolitano, B.N.; McBride, S.M.; Taghian, A.G.; Lu, H.-M.; Macdonald, S.M. Intensity modulated proton therapy for postmastectomy radiation of bilateral implant reconstructed breasts: A treatment planning study. Radiother. Oncol. 2013, 107, 213–217. [Google Scholar] [CrossRef]
- Xu, N.; Ho, M.W.; Li, Z.; Morris, C.G.; Mendenhall, N.P. Can Proton Therapy Improve the Therapeutic Ratio in Breast Cancer Patients at Risk for Nodal Disease? Am. J. Clin. Oncol. 2014, 37, 568–574. [Google Scholar] [CrossRef] [PubMed]
- Flejmer, A.M.; Nyström, P.W.; Dohlmar, F.; Josefsson, D.; Dasu, A. Potential Benefit of Scanned Proton Beam versus Photons as Adjuvant Radiation Therapy in Breast Cancer. Int. J. Part. Ther. 2015, 1, 845–855. [Google Scholar] [CrossRef]
- Fagundes, M.; Hug, E.B.; Pankuch, M.; Fang, C.; McNeeley, S.; Mao, L.; Lavilla, M.; Schmidt, S.L.; Ward, C.; Cahlon, O.; et al. Proton Therapy for Local-regionally Advanced Breast Cancer Maximizes Cardiac Sparing. Int. J. Part. Ther. 2015, 1, 827–844. [Google Scholar] [CrossRef] [Green Version]
- Lin, L.L.; Vennarini, S.; Dimofte, A.; Ravanelli, D.; Shillington, K.; Batra, S. Proton beam versus photon beam dose to the heart and left anterior descending artery for left-sided breast cancer. Acta Oncol. 2015, 54, 1032–1039. [Google Scholar] [CrossRef]
- Bradley, J.A.; Dagan, R.; Ho, M.W.; Rutenberg, M.; Morris, C.G.; Li, Z.; Mendenhall, N.P. Initial Report of a Prospective Dosimetric and Clinical Feasibility Trial Demonstrates the Potential of Protons to Increase the Therapeutic Ratio in Breast Cancer Compared with Photons. Int. J. Radiat. Oncol. 2016, 95, 411–421. [Google Scholar] [CrossRef]
- De Rose, F.; Cozzi, L.; Meattini, I.; Fogliata, A.; Franceschini, D.; Franzese, C. The Potential Role of Intensity-modulated Proton Therapy in the Regional Nodal Irradiation of Breast Cancer: A Treatment Planning Study. Clin. Oncol. 2020, 32, 26–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- MacDonald, S.M.; Patel, S.A.; Hickey, S.; Specht, M.; Isakoff, S.J.; Gadd, M. Proton Therapy for Breast Cancer After Mastectomy: Early Outcomes of a Prospective Clinical Trial. Int. J. Radiat. Oncol. 2013, 86, 484–490. [Google Scholar] [CrossRef] [PubMed]
- Mast, M.E.; Vredeveld, E.J.; Credoe, H.M.; Van Egmond, J.; Heijenbrok, M.W.; Hug, E.B.; Kalk, P.; Van Kempen-Harteveld, L.M.L.; Korevaar, E.W.; Van Der Laan, H.P.; et al. Whole breast proton irradiation for maximal reduction of heart dose in breast cancer patients. Breast Cancer Res. Treat. 2014, 148, 33–39. [Google Scholar] [CrossRef] [Green Version]
- Cuaron, J.J.; Chon, B.; Tsai, H.; Goenka, A.; DeBlois, D.; Ho, A.; Powell, S.; Hug, E.; Cahlon, O. Early Toxicity in Patients Treated with Postoperative Proton Therapy for Locally Advanced Breast Cancer. Int. J. Radiat. Oncol. 2015, 92, 284–291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patel, S.A.; Lu, H.-M.; Nyamwanda, J.A.; Jimenez, R.B.; Taghian, A.G.; MacDonald, S.M. Postmastectomy radiation therapy technique and cardiopulmonary sparing: A dosimetric comparative analysis between photons and protons with free breathing versus deep inspiration breath hold. Pract. Radiat. Oncol. 2017, 7, e377–e384. [Google Scholar] [CrossRef] [PubMed]
- Ödén, J.; Toma-Dasu, I.; Eriksson, K.; Flejmer, A.M.; Dasu, A. The influence of breathing motion and a variable relative biological effectiveness in proton therapy of left-sided breast cancer. Acta Oncol. 2017, 56, 1428–1436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tommasino, F.; Durante, M.; D’Avino, V.; Liuzzi, R.; Conson, M.; Farace, P.; Palma, G.; Schwarz, M.; Cella, L.; Pacelli, R. Model-based approach for quantitative estimates of skin, heart, and lung toxicity risk for left-side photon and proton irradiation after breast-conserving surgery. Acta Oncol. 2017, 56, 730–736. [Google Scholar] [CrossRef] [Green Version]
- Luo, L.; Cuaron, J.; Braunstein, L.; Gillespie, E.; Kahn, A.; McCormick, B.; Mah, D.; Chon, B.; Tsai, H.; Powell, S.; et al. Early outcomes of breast cancer patients treated with post-mastectomy uniform scanning proton therapy. Radiother. Oncol. 2019, 132, 250–256. [Google Scholar] [CrossRef] [PubMed]
- Common Terminology Criteria for Adverse Events (CTCAE). Available online: https://ctep.cancer.gov/protocoldevelopment/electronic_applications/ctc.htm (accessed on 13 May 2021).
- Liang, X.; Bradley, J.A.; Zheng, D.; Rutenberg, M.; Yeung, D.; Mendenhall, N. Prognostic factors of radiation dermatitis following passive-scattering proton therapy for breast cancer. Radiat. Oncol. 2018, 13, 72. [Google Scholar] [CrossRef] [PubMed]
- Bush, D.A.; Do, S.; Lum, S.; Garberoglio, C.; Mirshahidi, H.; Patyal, B.; Grove, R.; Slater, J.D. Partial Breast Radiation Therapy with Proton Beam: 5-Year Results with Cosmetic Outcomes. Int. J. Radiat. Oncol. 2014, 90, 501–505. [Google Scholar] [CrossRef]
- Kaczmarek, K. Rozwiązania w zakresie zarządzania ruchomością narządową i unieruchomień stosowanych w radioterapii podczas konferencji ESTRO 36 w Wiedniu: Sprawozdanie z konferencji ESTRO 36 w Wiedniu na panelu dla elektroradiologów. Lett. Oncol. Sci. 2019, 16, 8–11. [Google Scholar] [CrossRef]
- Skrobała, A. Czy istnieje „najlepszy” sposób kontroli ruchomości oddechowej pacjenta w trakcie radioterapii?; w świetle doniesień konferencyjnych ASTRO 59, San Diego, USA. Lett. Oncol. Sci. 2020, 17, 57–63. [Google Scholar] [CrossRef]
- Planowanie Leczenia i Dozymetria w Radioterapii (Tom 2)-Julian Malicki, Krzysztof Ślosarek, Via Medica. Available online: https://medbook.com.pl/ksiazka/pokaz/id/16064/tytul/planowanie-leczenia-i-dozymetria-w-radioterapii-tom-2-malicki-slosarek-via-medica (accessed on 16 April 2020).
- Giraud, P.; Houle, A. Respiratory Gating for Radiotherapy: Main Technical Aspects and Clinical Benefits. ISRN Pulmonol. 2013, 2013, 519602. [Google Scholar] [CrossRef]
- Smyth, L.M.; Knight, K.A.; Aarons, Y.K.; Wasiak, J. The cardiac dose-sparing benefits of deep inspiration breath-hold in left breast irradiation: A systematic review. J. Med. Radiat. Sci. 2015, 62, 66–73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loap, P.; Kirov, K.; Kirova, Y. Cardiotoxicity in breast cancer patients treated with radiation therapy: From evidences to controversies. Crit. Rev. Oncol. Hematol. 2020, 156, 103121. [Google Scholar] [CrossRef]
- Rice, L.; Goldsmith, C.; Green, M.M.; Cleator, S.; Price, P.M. An effective deep-inspiration breath-hold radiotherapy technique for left-breast cancer: Impact of post-mastectomy treatment, nodal coverage, and dose schedule on organs at risk. Breast Cancer Targets Ther. 2017, 9, 437–446. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lundkvist, J.; Ekman, M.; Ericsson, S.R.; Isacsson, U.; Jönsson, B.; Glimelius, B. Economic evaluation of proton radiation therapy in the treatment of breast cancer. Radiother. Oncol. 2005, 75, 179–185. [Google Scholar] [CrossRef]
- Mohan, R.; Grosshans, D. Proton therapy—Present and future. Adv. Drug. Deliv. Rev. 2017, 109, 26–44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Ruysscher, D.; Sterpin, E.; Haustermans, K.; Depuydt, T. Tumour Movement in Proton Therapy: Solutions and Remaining Questions: A Review. Cancers 2015, 7, 1143–1153. [Google Scholar] [CrossRef] [PubMed]
- Engelsman, M.; Schwarz, M.; Dong, L. Physics Controversies in Proton Therapy. Semin. Radiat. Oncol. 2013, 23, 88–96. [Google Scholar] [CrossRef] [PubMed]
- Chang, J.Y.; Li, H.; Zhu, X.R.; Liao, Z.; Zhao, L.; Liu, A. Clinical Implementation of Intensity Modulated Proton Therapy for Thoracic Malignancies. Int. J. Radiat. Oncol. 2014, 90, 809–818. [Google Scholar] [CrossRef] [Green Version]
- Newhauser, W.; Fontenot, J.; Koch, N.; Dong, L.; Lee, A.; Zheng, Y. Monte Carlo simulations of the dosimetric impact of radiopaque fiducial markers for proton radiotherapy of the prostate. Phys. Med. Biol. 2007, 52, 2937–2952. [Google Scholar] [CrossRef]
- Matsuura, T.; Miyamoto, N.; Shimizu, S.; Fujii, Y.; Umezawa, M.; Takao, S. Integration of a real-time tumor monitoring system into gated proton spot-scanning beam therapy: An initial phantom study using patient tumor trajectory data: Integration of real-time tumor-monitoring into gated proton therapy. Med. Phys. 2013, 40, 071729. [Google Scholar] [CrossRef]
- Wilkens, J.J.; Oelfke, U. Optimization of radiobiological effects in intensity modulated proton therapy: Optimization of radiobiological effects in IMPT. Med. Phys. 2005, 32, 455–465. [Google Scholar] [CrossRef] [PubMed]
- Mohan, R.; Peeler, C.R.; Guan, F.; Bronk, L.; Cao, W.; Grosshans, D.R. Radiobiological issues in proton therapy. Acta Oncol. 2017, 56, 1367–1373. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paganetti, H.; van Luijk, P. Biological Considerations When Comparing Proton Therapy with Photon Therapy. Semin. Radiat. Oncol. 2013, 23, 77–87. [Google Scholar] [CrossRef] [PubMed]
- Paganetti, H.; Niemierko, A.; Ancukiewicz, M.E.; Gerweck, L.; Goitein, M.; Loeffler, J.S.; Suit, H.D. Relative biological effectiveness (RBE) values for proton beam therapy. Int. J. Radiat. Oncol. 2002, 53, 407–421. [Google Scholar] [CrossRef]
- Grassberger, C.; Trofimov, A.; Lomax, A.; Paganetti, H. Variations in Linear Energy Transfer within Clinical Proton Therapy Fields and the Potential for Biological Treatment Planning. Int. J. Radiat. Oncol. 2011, 80, 1559–1566. [Google Scholar] [CrossRef] [Green Version]
- Choi, C.; Park, S.; Cho, W.K.; Choi, D.H. Cyclin D1 is Associated with Radiosensitivity of Triple-Negative Breast Cancer Cells to Proton Beam Irradiation. Int. J. Mol. Sci. 2019, 20, 4943. [Google Scholar] [CrossRef] [Green Version]
- Bravatà, V.; Minafra, L.; Cammarata, F.P.; Pisciotta, P.; Lamia, D.; Marchese, V.; Petringa, G.; Manti, L.; Ap Cirrone, G.; Gilardi, M.C.; et al. Gene expression profiling of breast cancer cell lines treated with proton and electron radiations. Br. J. Radiol. 2018, 91, 20170934. [Google Scholar] [CrossRef]
- Sridharan, V.; Tripathi, P.; Sharma, S.K.; Moros, E.G.; Corry, P.M.; Lieblong, B.J.; Kaschina, E.; Unger, T.; Thoene-Reineke, C.; Hauer-Jensen, M.; et al. Cardiac Inflammation after Local Irradiation Is Influenced by the Kallikrein-Kinin System. Cancer Res. 2012, 72, 4984–4992. [Google Scholar] [CrossRef] [Green Version]
- Langendijk, J.A.; Lambin, P.; De Ruysscher, D.; Widder, J.; Bos, M.; Verheij, M. Selection of patients for radiotherapy with protons aiming at reduction of side effects: The model-based approach. Radiother. Oncol. 2013, 107, 267–273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kamp, F.; Carlson, D.J.; Wilkens, J.J. Rapid implementation of the repair-misrepair-fixation (RMF) model facilitating online adaption of radiosensitivity parameters in ion therapy. Phys. Med. Biol. 2017, 62, N285–N296. [Google Scholar] [CrossRef]
- Bravatà, V.; Minafra, L.; Russo, G.; Forte, G.I.; Cammarata, F.P.; Ripamonti, M.; Casarino, C.; Augello, G.; Costantini, F.; Barbieri, G.; et al. High-dose Ionizing Radiation Regulates Gene Expression Changes in the MCF7 Breast Cancer Cell Line. Anticancer Res. 2015, 35, 2577–2591. [Google Scholar] [PubMed]
- Corbin, K.S.; Mutter, R.W. Proton therapy for breast cancer: Progress & pitfalls. Breast Cancer Manag. 2018, 7, BMT06. [Google Scholar] [CrossRef]
- Hug, E.B. Proton Therapy for Primary Breast Cancer. Breast Care 2018, 13, 168–172. [Google Scholar] [CrossRef] [PubMed]
- Ratosa, I.; Jenko, A.; Sljivic, Z.; Pirnat, M.; Oblak, I. Breast size and dose to cardiac substructures in adjuvant three-dimensional conformal radiotherapy compared to tangential intensity modulated radiotherapy. Radiol. Oncol. 2020, 54, 470–479. [Google Scholar] [CrossRef] [PubMed]
First Author | Year | Number of Patients | Target | Total Dose [Gy] | Delivery Technique | OAR | Mean Dose | Dmax | V5 | V20 |
---|---|---|---|---|---|---|---|---|---|---|
Taghian [26] | 2006 | 25 | APBI | 32 | 3DCPT | Heart | 0 | - | 0.00% | 0.00% |
Lungs | - | - | 3.00% | 1.00% | ||||||
Kozak [27] | 2006 | 24 | APBI | 32 | 3DCPT | Heart | 0.1 | - | 0.00% | 0.00% |
Left Lung | 0.5 | - | 3.00% | 1.00% | ||||||
Toscas [28] | 2010 | 14 | APBI, deep-seated tumors | 16 | IMPT | Heart | 0.01 | - | 0.00% | - |
Left Lung | 0.2 | - | V3:1.80% | V10:0.20% | ||||||
Right Lung | 0.01 | - | V3:0.00% | - | ||||||
Wang [29] | 2013 | 11 | APBI | 38.5 | PSPB | Heart | - | 3.2 | - | - |
Lungs | 0.61 | - | 3.50% | 0.10% | ||||||
Galland-Girodet [30] | 2014 | 19 | APBI | 32 | PSPB | Heart | 0 | 3.8 | 0.40% | 0% |
Lungs | 0.5 | 20.4 | 3.10% | 0.70% | ||||||
Hansen [31] | 2015 | 12 | APBI, breast cancer treated with SAVI | 34 | PSPB | Heart | 0.0 | 0.43% | - | - |
Left Lung | 0.04 | 34.41% | - | - |
First Author | Year | Number of Patients | Target | Total Dose [Gy] | Delivery Technique | OAR | Mean Dose | Dmax | V5 | V20 |
---|---|---|---|---|---|---|---|---|---|---|
Fogliata [32] | 2002 | 5 | whole breast, left-sided breast cancer | 50 | PBS | Heart | 2.2 | 19.3 | - | - |
Lungs | 3.5 | 43.8 | 10.40% | - | ||||||
Lomax [33] | 2003 | no patients, the analyses of plans | whole breast, internal mammary, supraclavicular, and axillary nodes | 50 | PBS | Heart | 5.8 | 53.8 | 39.0 | - |
Lung | 12.6 | - | - | V50:11.5 | ||||||
Ares [34] | 2010 | 20 | whole breast, left-sided breast cancer | 50 | PBS | Heart | 1.0 | - | 2.0 | V22.5:0.0 |
Left Lung | 7.0 | - | 0.0 | 17.0 | ||||||
Right Lung | 0.0 | - | 0.0 | 0.0 | ||||||
MacDonald [42] | 2013 | 12 | whole breast, left-sided breast cancer after mastectomy | 50.4 | 3DCPT | Heart | 0.44 | - | - | 0.01% |
Lungs | 6 | - | - | 12.70% | ||||||
Jimenez [35] | 2013 | 5 | whole breast, left-sided breast cancer, bilateral implants | 50.4 | IMPT | Heart | - | - | 2.80% | 0.40% |
Left Lung | - | - | 14.90% | 4.30% | ||||||
Right Lung | - | - | 13.50% | 4.10% | ||||||
Mast [43] | 2014 | 20 | whole breast | 42.56 | IMPT | BH | ||||
Heart | 0.1 | 0.3 | 0.1% | 0.0% | ||||||
LAD-region | 0.3 | 1.8 | 0.4% | 0.0% | ||||||
Left Lung | 1.5 | 23.6 | 7.1% | 2.5% | ||||||
FB | ||||||||||
Heart | 0.2 | 1.2 | 0.5 | 0.1 | ||||||
LAD-region | 0.7 | 4.5 | 2.8 | 9.7 | ||||||
Left Lung | 1.6 | 27 | 7.7 | 2.8 | ||||||
Xu [36] | 2014 | 10 | whole breast, left-sided breast cancer | 50 | 3DCPT | Heart | 1 | - | 7% | 0% |
Left Lung | 5.5 | - | 50% | 31% | ||||||
Right Lung | 0.4 | - | 1% | 0% | ||||||
Flejmer [37] | 2015 | 10 | whole breast, breast cancer (5 left-sided and 5 right-sided) postoperative radiation treatment | 50 | IMPT | Heart | 0.2 | - | - | - |
LAD-region | 1.4 | - | - | - | ||||||
Left Lung | 6.3 | - | V10:25.8% | 10.50% | ||||||
Right Lung | 0 | - | - | - | ||||||
Fagundes [38] | 2015 | 10 | left-sided stage III breast cancer after mastectomy, the chest wall, axilla levels I to III, the supraclavicular and internal mammary nodes (IMN) | 50.4 | PBS | Heart | 1.2 | - | - | V25:1.2 |
LAD-region | 7 | 27.6 | - | - | ||||||
Left Lung | - | - | 41.30 | 0.28 | ||||||
Right Lung | - | - | 0.3 | 0.04 | ||||||
Cuaron [44] | 2015 | 30 | 27 left-sided, 3 right-sided, nonmetastatic breast cancer, postoperative, unfavourable cardiopulmonary anatomy | 50.4 | PBS | Heart | 1 | - | 5.00% | 1.16% |
Lungs | - | - | 34.35% | 7.31% | ||||||
Lin [39] | 2015 | 10 | whole breast, left-sided breast cancer | 50 | PBS | Heart | 0.011 | - | 0.00% | 0.00% |
LAD-region | 0.031 | - | - | - | ||||||
Lungs | 0.88 | - | 4.70% | 0.00% | ||||||
Bradley [40] | 2015 | 10 | whole breast, BCT-breast-conserving therapy, postmastectomy | 50.4 | PBS | Heart | 0.6 | - | 2.70% | 1.00% |
LAD-region | 1.7 | 30.5 | - | - | ||||||
Left Lung | 11.0 | - | 35.30% | 21.60% | ||||||
Patel [45] | 2017 | 10 | whole breast, left breast cancer referred for PMRT | 50.4 | PBS | BH | ||||
Heart | 0.7 | - | - | 0.40% | ||||||
LAD-region | - | 4.6 | - | - | ||||||
Left Lung | 7.5 | - | - | 14.43% | ||||||
FB | ||||||||||
Heart | 0.98 | - | - | 0.86% | ||||||
LAD-region | - | 4.58 | - | - | ||||||
Left Lung | 7.49 | - | - | 14.43% | ||||||
Oden [46] | 2017 | 12 | whole breast, left-sided breast cancer | 50 | IMPT | Heart | 0.1 | - | - | - |
LAD-region | 1.6 | - | - | - | ||||||
Left Lung | 1.3 | - | - | 1.40% | ||||||
Tommasino [47] | 2017 | 10 | whole breast, postoperative left-sided breast cancer, after conserving surgery | 50 | IMPT | Heart | 0.5 | - | - | 0.60% |
LAD-region | 0.7 | - | - | - | ||||||
Left Lung | 3.3 | - | - | 5.80% | ||||||
Luo [48] | 2018 | 42 | whole breast, left-sided breast cancer after mastectomy | 50.4 | 3DCPT | Heart | 0.7 | 16.3 | 4.30% | 0.50% |
Left Lung | - | - | 34.00% | 16.10% | ||||||
De Rose [41] | 2019 | 20 | 10 in the breast-conserving surgery group and 10 post-mastectomy patients | 50 | IMPT | Heart | 0.4 | - | - | - |
Left Lung | 6.2 | - | 28.50% | 12.20% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Musielak, M.; Suchorska, W.M.; Fundowicz, M.; Milecki, P.; Malicki, J. Future Perspectives of Proton Therapy in Minimizing the Toxicity of Breast Cancer Radiotherapy. J. Pers. Med. 2021, 11, 410. https://doi.org/10.3390/jpm11050410
Musielak M, Suchorska WM, Fundowicz M, Milecki P, Malicki J. Future Perspectives of Proton Therapy in Minimizing the Toxicity of Breast Cancer Radiotherapy. Journal of Personalized Medicine. 2021; 11(5):410. https://doi.org/10.3390/jpm11050410
Chicago/Turabian StyleMusielak, Marika, Wiktoria M. Suchorska, Magdalena Fundowicz, Piotr Milecki, and Julian Malicki. 2021. "Future Perspectives of Proton Therapy in Minimizing the Toxicity of Breast Cancer Radiotherapy" Journal of Personalized Medicine 11, no. 5: 410. https://doi.org/10.3390/jpm11050410
APA StyleMusielak, M., Suchorska, W. M., Fundowicz, M., Milecki, P., & Malicki, J. (2021). Future Perspectives of Proton Therapy in Minimizing the Toxicity of Breast Cancer Radiotherapy. Journal of Personalized Medicine, 11(5), 410. https://doi.org/10.3390/jpm11050410