Effect of MACC1 Genetic Polymorphisms and Environmental Risk Factors in the Occurrence of Oral Squamous Cell Carcinoma
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. MACC1 SNP Selection and DNA Extraction and Genotyping
2.3. Statistical Analysis
3. Results
3.1. Clinicopathological Characteristics of OSCC Patients
3.2. Association of MACC1 Genetic Variants with the Incidence of OSCC
3.3. MACC1 Genetic Polymorphism and Environmental Risk Factor Betel Quid Chewing
3.4. The Effect of SNP rs975263 on Oral Cancer Patients with Betel Quid Chewing
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [Green Version]
- Mehrotra, R.; Yadav, S. Oral squamous cell carcinoma: Etiology, pathogenesis and prognostic value of genomic alterations. Indian J. Cancer 2006, 43, 60–66. [Google Scholar] [CrossRef] [Green Version]
- Gillison, M.L.; Koch, W.M.; Capone, R.B.; Spafford, M.; Westra, W.H.; Wsu, L.; Zahurak, M.L.; Daniel, R.W.; Viglione, M.; Symer, D.E.; et al. Evidence for a causal association between human papillomavirus and a subset of head and neck cancers. J. Natl. Cancer Inst. 2000, 92, 709–720. [Google Scholar] [CrossRef] [PubMed]
- Lee, L.A.; Huang, C.G.; Tsao, K.C.; Liao, C.T.; Kang, C.J.; Chang, K.P.; Huang, S.F.; Chen, I.H.; Fang, T.J.; Li, H.Y.; et al. Increasing rates of low-risk human papillomavirus infections in patients with oral cavity squamous cell carcinoma: Association with clinical outcomes. J. Clin. Virol. 2013, 57, 331–337. [Google Scholar] [CrossRef]
- Lee, L.A.; Huang, C.G.; Tsao, K.C.; Liao, C.T.; Kang, C.J.; Chang, K.P.; Huang, S.F.; Chen, I.H.; Fang, T.J.; Li, H.Y.; et al. Human papillomavirus infections are common and predict mortality in a retrospective cohort study of taiwanese patients with oral cavity cancer. Medicine 2015, 94, 2069. [Google Scholar] [CrossRef]
- Ndiaye, C.; Mena, M.; Alemany, L.; Arbyn, M.; Castellsague, X.; Laporte, L.; Bosch, F.X.; de Sanjose, S.; Trottier, H. Hpv DNA, e6/e7 mrna, and p16ink4a detection in head and neck cancers: A systematic review and meta-analysis. Lancet Oncol. 2014, 15, 1319–1331. [Google Scholar] [CrossRef]
- Chen, Y.J.; Chang, J.T.; Liao, C.T.; Wang, H.M.; Yen, T.C.; Chiu, C.C.; Lu, Y.C.; Li, H.F.; Cheng, A.J. Head and neck cancer in the betel quid chewing area: Recent advances in molecular carcinogenesis. Cancer Sci. 2008, 99, 1507–1514. [Google Scholar] [CrossRef] [PubMed]
- Stein, U.; Walther, W.; Arlt, F.; Schwabe, H.; Smith, J.; Fichtner, I.; Birchmeier, W.; Schlag, P.M. Macc1, a newly identified key regulator of hgf-met signaling, predicts colon cancer metastasis. Nat. Med. 2009, 15, 59–67. [Google Scholar] [CrossRef]
- Boissinot, M.; Vilaine, M.; Hermouet, S. The hepatocyte growth factor (hgf)/met axis: A neglected target in the treatment of chronic myeloproliferative neoplasms? Cancers 2014, 6, 1631–1669. [Google Scholar] [CrossRef] [PubMed]
- Galimi, F.; Torti, D.; Sassi, F.; Isella, C.; Cora, D.; Gastaldi, S.; Ribero, D.; Muratore, A.; Massucco, P.; Siatis, D.; et al. Genetic and expression analysis of met, macc1, and hgf in metastatic colorectal cancer: Response to met inhibition in patient xenografts and pathologic correlations. Clin. Cancer Res. 2011, 17, 3146–3156. [Google Scholar] [CrossRef] [Green Version]
- Chundong, G.; Uramoto, H.; Onitsuka, T.; Shimokawa, H.; Iwanami, T.; Nakagawa, M.; Oyama, T.; Tanaka, F. Molecular diagnosis of macc1 status in lung adenocarcinoma by immunohistochemical analysis. Anticancer Res. 2011, 31, 1141–1145. [Google Scholar]
- Lu, G.; Zhou, L.; Zhang, X.; Zhu, B.; Wu, S.; Song, W.; Gong, X.; Wang, D.; Tao, Y. The expression of metastasis-associated in colon cancer-1 and kai1 in gastric adenocarcinoma and their clinical significance. World J. Surg. Oncol. 2016, 14, 276. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.P.; Qu, J.H.; Chang, X.J.; Lu, Y.Y.; Bai, W.L.; Dong, Z.; Wang, H.; An, L.J.; Xu, Z.X.; Wang, C.P.; et al. High intratumoral metastasis-associated in colon cancer-1 expression predicts poor outcomes of cryoablation therapy for advanced hepatocellular carcinoma. J. Transl. Med. 2013, 11, 41. [Google Scholar] [CrossRef] [Green Version]
- Yu, L.; Zhu, B.; Wu, S.; Zhou, L.; Song, W.; Gong, X.; Wang, D. Evaluation of the correlation of vasculogenic mimicry, aldh1, kiss-1, and macc1 in the prediction of metastasis and prognosis in ovarian carcinoma. Diagn. Pathol. 2017, 12, 23. [Google Scholar] [CrossRef] [Green Version]
- Zhou, L.; Yu, L.; Zhu, B.; Wu, S.; Song, W.; Gong, X.; Wang, D. Metastasis-associated in colon cancer-1 and aldehyde dehydrogenase 1 are metastatic and prognostic biomarker for non-small cell lung cancer. BMC Cancer 2016, 16, 876. [Google Scholar] [CrossRef] [Green Version]
- Li, H.F.; Liu, Y.Q.; Shen, Z.J.; Gan, X.F.; Han, J.J.; Liu, Y.Y.; Li, H.G.; Huang, Z.Q. Downregulation of macc1 inhibits invasion, migration and proliferation, attenuates cisplatin resistance and induces apoptosis in tongue squamous cell carcinoma. Oncol. Rep. 2015, 33, 651–660. [Google Scholar] [CrossRef] [PubMed]
- Meng, F.; Li, H.; Shi, H.; Yang, Q.; Zhang, F.; Yang, Y.; Kang, L.; Zhen, T.; Dai, S.; Dong, Y.; et al. Macc1 down-regulation inhibits proliferation and tumourigenicity of nasopharyngeal carcinoma cells through akt/beta-catenin signaling pathway. PLoS ONE 2013, 8, e60821. [Google Scholar]
- Schmid, F.; Burock, S.; Klockmeier, K.; Schlag, P.M.; Stein, U. Snps in the coding region of the metastasis-inducing gene macc1 and clinical outcome in colorectal cancer. Mol. Cancer 2012, 11, 49. [Google Scholar] [CrossRef] [Green Version]
- Lang, A.H.; Geller-Rhomberg, S.; Winder, T.; Stark, N.; Gasser, K.; Hartmann, B.; Kohler, B.; Grizelj, I.; Drexel, H.; Muendlein, A. A common variant of the macc1 gene is significantly associated with overall survival in colorectal cancer patients. BMC Cancer 2012, 12, 20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, Z.; Gao, S.; Yang, Z.; Xie, H.; Zhang, C.; Lin, B.; Wu, L.; Zheng, S.; Zhou, L. Single nucleotide polymorphisms in the metastasis-associated in colon cancer-1 gene predict the recurrence of hepatocellular carcinoma after transplantation. Int. J. Med. Sci. 2014, 11, 142–150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, C.H.; Hsieh, M.J.; Lee, H.L.; Yang, S.F.; Su, S.C.; Lee, W.J.; Chou, Y.E. Effects of macc1 polymorphisms on hepatocellular carcinoma development and clinical characteristics. J. Cancer 2020, 11, 1641–1647. [Google Scholar] [CrossRef] [Green Version]
- Muendlein, A.; Hubalek, M.; Geller-Rhomberg, S.; Gasser, K.; Winder, T.; Drexel, H.; Decker, T.; Mueller-Holzner, E.; Chamson, M.; Marth, C.; et al. Significant survival impact of macc1 polymorphisms in her2 positive breast cancer patients. Eur. J. Cancer 2014, 50, 2134–2141. [Google Scholar] [CrossRef]
- Sun, Y.H.; Chou, Y.H.; Ou, C.C.; Ng, S.C.; Shen, H.P.; Lee, Y.C.; Hsu, C.F.; Yang, S.F.; Wang, P.H. Investigation of metastasis-associated in colon cancer-1 genetic variants in the development and clinicopathologcial characteristics of uterine cervical cancer in taiwanese women. Int. J. Med. Sci. 2020, 17, 490–497. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, C.T.; Lee, H.L.; Chiou, H.L.; Chou, C.H.; Wang, P.H.; Yang, S.F.; Chou, Y.E. Impacts of wnt1-inducible signaling pathway protein 1 polymorphism on hepatocellular carcinoma development. PLoS ONE 2018, 13, e0198967. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, H.L.; Cheng, H.L.; Liu, Y.F.; Chou, M.C.; Yang, S.F.; Chou, Y.E. Functional genetic variant of ww domain-containing oxidoreductase (wwox) gene is associated with hepatocellular carcinoma risk. PLoS ONE 2017, 12, e0176141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shiu, J.S.; Hsieh, M.J.; Chiou, H.L.; Wang, H.L.; Yeh, C.B.; Yang, S.F.; Chou, Y.E. Impact of adam10 gene polymorphisms on hepatocellular carcinoma development and clinical characteristics. Int. J. Med. Sci. 2018, 15, 1334–1340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Su, S.C.; Hsieh, M.J.; Chou, Y.E.; Fan, W.L.; Yeh, C.B.; Yang, S.F. Effects of rage gene polymorphisms on the risk and progression of hepatocellular carcinoma. Medicine 2015, 94, e1396. [Google Scholar] [CrossRef] [PubMed]
- Wong, K.M.; Langlais, K.; Tobias, G.S.; Fletcher-Hoppe, C.; Krasnewich, D.; Leeds, H.S.; Rodriguez, L.L.; Godynskiy, G.; Schneider, V.A.; Ramos, E.M.; et al. The dbgap data browser: A new tool for browsing dbgap controlled-access genomic data. Nucleic Acids Res. 2017, 45, D819–D826. [Google Scholar] [CrossRef] [PubMed]
- Abecasis, G.R.; Auton, A.; Brooks, L.D.; DePristo, M.A.; Durbin, R.M.; Handsaker, R.E.; Kang, H.M.; Marth, G.T.; McVean, G.A. An integrated map of genetic variation from 1,092 human genomes. Nature 2012, 491, 56–65. [Google Scholar] [PubMed] [Green Version]
- Karczewski, K.J.; Francioli, L.C.; Tiao, G.; Cummings, B.B.; Alföldi, J.; Wang, Q.; Collins, R.L.; Laricchia, K.M.; Ganna, A.; Birnbaum, D.P.; et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 2020, 581, 434–443. [Google Scholar] [CrossRef]
- Radoi, L.; Luce, D. A review of risk factors for oral cavity cancer: The importance of a standardized case definition. Community Dent. Oral Epidemiol. 2013, 41, 97–109. [Google Scholar] [CrossRef] [PubMed]
- Kao, S.Y.; Lim, E. An overview of detection and screening of oral cancer in taiwan. Chin. J. Dent. Res. 2015, 18, 7–12. [Google Scholar] [PubMed]
- Chang, M.C.; Chan, C.P.; Chen, Y.J.; Hsien, H.C.; Chang, Y.C.; Yeung, S.Y.; Jeng, P.Y.; Cheng, R.H.; Hahn, L.J.; Jeng, J.H. Areca nut components stimulate adam17, il-1alpha, pge2 and 8-isoprostane production in oral keratinocyte: Role of reactive oxygen species, egf and jak signaling. Oncotarget 2016, 7, 16879–16894. [Google Scholar] [CrossRef] [Green Version]
- Dai, Z.J.; Liu, X.H.; Kang, H.F.; Wang, X.J.; Jin, T.B.; Zhang, S.Q.; Feng, T.; Ma, X.B.; Wang, M.; Feng, Y.J.; et al. Genetic variation in metastasis-associated in colon cancer-1 and the risk of breast cancer among the chinese han population: A strobe-compliant observational study. Medicine 2016, 95, e2801. [Google Scholar] [CrossRef]
- Thierry-Mieg, D.; Thierry-Mieg, J. Aceview: A comprehensive cdna-supported gene and transcripts annotation. Genome Biol. 2006, 7 (Suppl. 1), S12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lemos, C.; Hardt, M.S.; Juneja, M.; Voss, C.; Forster, S.; Jerchow, B.; Haider, W.; Blaker, H.; Stein, U. Macc1 induces tumor progression in transgenic mice and colorectal cancer patients via increased pluripotency markers nanog and oct4. Clin. Cancer Res. 2016, 22, 2812–2824. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Butkinaree, C.; Park, K.; Hart, G.W. O-linked beta-n-acetylglucosamine (o-glcnac): Extensive crosstalk with phosphorylation to regulate signaling and transcription in response to nutrients and stress. Biochim. Biophys. Acta 2010, 1800, 96–106. [Google Scholar] [CrossRef] [Green Version]
- Hart, G.W.; Slawson, C.; Ramirez-Correa, G.; Lagerlof, O. Cross talk between o-glcnacylation and phosphorylation: Roles in signaling, transcription, and chronic disease. Annu Rev. Biochem. 2011, 80, 825–858. [Google Scholar] [CrossRef] [Green Version]
- Slawson, C.; Hart, G.W. Dynamic interplay between o-glcnac and o-phosphate: The sweet side of protein regulation. Curr. Opin. Struct. Biol. 2003, 13, 631–636. [Google Scholar] [CrossRef] [PubMed]
- Pearlman, S.M.; Serber, Z.; Ferrell, J.E., Jr. A mechanism for the evolution of phosphorylation sites. Cell 2011, 147, 934–946. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, H.; Han, W. Protein post-translational modifications in head and neck cancer. Front. Oncol. 2020, 10, 571944. [Google Scholar] [CrossRef] [PubMed]
- Hsu, C.Y.; Fu, S.H.; Chien, M.W.; Liu, Y.W.; Chen, S.J.; Sytwu, H.K. Post-translational modifications of transcription factors harnessing the etiology and pathophysiology in colonic diseases. Int. J. Mol. Sci. 2020, 21, 3207. [Google Scholar] [CrossRef] [PubMed]
Variable | Controls (n = 1200) | Patients (n = 911) | p Value ♀ |
---|---|---|---|
Age (yrs) | 53.9 ± 10.0 | 55.1 ± 11.0 | |
<55 | 566 (47.2%) | 442 (48.5%) | p = 0.538 |
≥55 | 634 (52.8%) | 469 (51.5%) | |
Betel quid chewing | |||
No | 1001 (83.4%) | 196 (21.4%) | p < 0.001 * |
Yes | 199 (16.6%) | 715 (78.5%) | |
Cigarette smoking | |||
No | 564 (47.0%) | 102 (11.2%) | p < 0.001 * |
Yes | 636 (53.0%) | 809 (88.8%) | |
Alcohol drinking | |||
No | 963 (80.3%) | 421 (46.2%) | p < 0.001 * |
Yes | 237 (19.7%) | 490 (53.8%) | |
Stage | |||
I | 245 (26.9%) | ||
II | 206 (22.6%) | ||
III | 78 (8.6%) | ||
IV | 382 (41.9%) | ||
Tumor T status | |||
T1 | 273 (30.0%) | ||
T2 | 253 (27.7%) | ||
T3 | 72 (7.9%) | ||
T4 | 313 (34.4%) | ||
Lymph node status | |||
N0 | 617 (67.7%) | ||
N1 | 90 (9.9%) | ||
N2 | 168 (18.4%) | ||
N3 | 36 (4.0%) | ||
Distant metastasis | |||
M0 | 902 (99.0%) | ||
M1 | 9 (1.0%) | ||
Cell differentiation | |||
Well | 128 (14.1%) | ||
Moderate | 738 (81.0%) | ||
Poor | 45 (4.9%) |
Variable | Controls (%) | Patients (%) | OR a (95% CI) | AOR b (95% CI) |
---|---|---|---|---|
rs3095007 | ||||
GG | 1003 (83.6%) | 764 (83.9%) | 1.00 | 1.00 |
GT | 188 (15.7%) | 142 (15.6%) | 0.992 (0.782–1.257) | 0.908 (0.668–1.233) |
TT | 9 (0.7%) | 5 (0.5%) | 0.729 (0.243–2.185) | 0.470 (0.121–1.820) |
GT + TT | 197 (16.4%) | 147 (16.1%) | 0.980 (0.776–1.237) | 0.883 (0.654–1.193) |
rs1990172 | ||||
GG | 892 (74.3%) | 683 (75.0%) | 1.00 | 1.00 |
GT | 294 (24.5%) | 208 (22.8%) | 0.924 (0.754–1.133) | 0.853 (0.657–1.109) |
TT | 14 (1.2%) | 20 (2.2%) | 1.866 (0.936–3.721) | 2.021 (0.823–4.961) |
GT + TT | 308 (25.7%) | 228 (25.0%) | 0.967 (0.793–1.179) | 0.900 (0.697–1.163) |
rs4721888 | ||||
GG | 634 (52.8%) | 460 (50.5%) | 1.00 | 1.00 |
GC | 484 (40.3%) | 382 (41.9%) | 1.088 (0.909–1.302) | 1.272 (1.007–1.607) p = 0.044 |
CC | 82 (6.9%) | 69 (7.6%) | 1.160 (0.824–1.633) | 1.414 (0.911–2.196) |
GC + CC | 566 (47.2%) | 451 (49.5%) | 1.098 (0.924–1.305) | 1.292 (1.033–1.617) p = 0.025 |
rs975263 | ||||
TT | 820 (68.3%) | 623 (68.4%) | 1.00 | 1.00 |
TC | 350 (29.2%) | 260 (28.5%) | 0.978 (0.808–1.184) | 1.008 (0.787–1.290) |
CC | 30 (2.5%) | 28 (3.1%) | 1.228 (0.726–2.078) | 1.079 (0.550–2.116) |
TC + CC | 380 (31.7%) | 288 (31.6%) | 0.998 (0.829–1.201) | 1.014 (0.798–1.288) |
rs3735615 | ||||
GG | 866 (72.2%) | 655 (71.9%) | 1.00 | 1.00 |
GC | 311 (25.9%) | 238 (26.1%) | 1.012 (0.831–1.232) | 0.849 (0.659–1.096) |
CC | 23 (1.9%) | 18 (2.0%) | 1.035 (0.554–1.933) | 0.797 (0.356–1.786) |
GC + CC | 334 (27.8%) | 256 (28.1%) | 1.013 (0.836–1.228) | 0.846 (0.660–1.084) |
Variable | Controls (N = 199) n (%) | Patients (N = 715) n (%) | OR a (95% CI) | AOR b (95% CI) |
---|---|---|---|---|
rs3095007 | ||||
GG | 163 (81.9%) | 595 (83.2%) | 1.00 | 1.00 |
GT | 34 (17.1%) | 115 (16.1%) | 0.927 (0.609–1.410) | 0.930 (0.608–1.421) |
TT | 2 (1.0%) | 5 (0.7%) | 0.685 (0.132–3.562) | 0.687 (0.129–3.650) |
GT + TT | 36 (18.1%) | 120 (16.8%) | 0.913 (0.606–1.377) | 0.916 (0.605–1.388) |
rs1990172 | ||||
GG | 137 (68.8%) | 539 (75.4%) | 1.00 | 1.00 |
GT | 60 (30.2%) | 160 (22.4%) | 0.678 (0.447–0.963) | 0.686 (0.481–0.978) |
TT | 2 (1.0%) | 16 (2.2%) | 2.033 (0.462–8.949) | 2.020 (0.455–8.970) |
GT + TT | 62 (31.2%) | 176 (24.6%) | 0.722 (0.511–1.019) | 0.729 (0.515–1.033) |
rs4721888 | ||||
GG | 120 (60.3%) | 365 (51.0%) | 1.00 | 1.00 |
GC | 67 (33.7%) | 298 (41.7%) | 1.462 (1.045–2.046) p = 0.027 | 1.466 (1.045–2.057) p = 0.044 |
CC | 12 (6.0%) | 52 (7.3%) | 1.425 (0.736–2.758) | 1.463 (0.750–2.853) |
GC + CC | 79 (39.7%) | 350 (49.0%) | 1.457 (1.058–2.005) p = 0.021 | 1.466 (1.062–2.024) p = 0.020 |
rs975263 | ||||
TT | 135 (67.8%) | 488 (68.3%) | 1.00 | 1.00 |
TC | 58 (29.1%) | 203 (28.4%) | 0.968 (0.683–1.372) | 0.977 (0.687–1.389) |
CC | 6 (3.0%) | 24 (3.4%) | 1.107 (0.443–2.762) | 1.178 (0.467–2.972) |
TC + CC | 64 (32.2%) | 227 (31.7%) | 0.981 (0.701–1.374) | 0.995 (0.708–1.399) |
rs3735615 | ||||
GG | 131 (65.8%) | 507 (70.9%) | 1.00 | 1.00 |
GC | 63 (31.7%) | 192 (26.9%) | 0.787 (0.559–1.110) | 0.805 (0.569–1.138) |
CC | 5 (2.5%) | 16 (2.2%) | 0.827 (0.297–2.298) | 0.796 (0.278–2.278) |
GC + CC | 68 (34.2%) | 208 (29.1%) | 0.790 (0.566–1.104) | 0.804 (0.574–1.128) |
Variable | Controls (N = 1001) n (%) | Patients (N = 196) n (%) | OR a (95% CI) | AOR b (95% CI) |
---|---|---|---|---|
rs3095007 | ||||
GG | 840 (83.9%) | 169 (86.2%) | 1.00 | 1.00 |
GT | 154 (15.4%) | 27 (13.8%) | 0.871 (0.561–1.355) | 0.876 (0.559–1.372) |
TT | 7 (0.7%) | 0 (0.0%) | --- | --- |
GT + TT | 161 (16.1%) | 27 (13.8%) | 0.834 (0.537–1.294) | 0.835 (0.534–1.306) |
rs1990172 | ||||
GG | 755 (75.4%) | 144 (73.5%) | 1.00 | 1.00 |
GT | 234 (23.4%) | 48 (24.5%) | 1.075 (0.752–1.539) | 1.075 (0.747–1.549) |
TT | 12 (1.2%) | 4 (2.0%) | 1.748 (0.556–5.495) | 2.036 (0.631–6.569) |
GT + TT | 246 (24.6%) | 52 (26.5%) | 1.108 (0.782–1.570) | 1.117 (0.783–1.593) |
rs4721888 | ||||
GG | 514 (51.3%) | 95 (48.5%) | 1.00 | 1.00 |
GC | 417 (41.7%) | 84 (42.9%) | 1.090 (0.791–1.502) | 1.118 (0.806–1.551) |
CC | 70 (7.0%) | 17 (8.7%) | 1.314 (0.741–2.331) | 1.311 (0.729–2.358) |
GC + CC | 487 (48.7%) | 101 (51.5%) | 1.122 (0.826–1.524) | 1.147 (0.839–1.567) |
rs975263 | ||||
TT | 685 (68.4%) | 135 (68.9%) | 1.00 | 1.00 |
TC | 292 (29.2%) | 57 (29.1%) | 0.990 (0.706–1.390) | 1.029 (0.728–1.453) |
CC | 24 (2.4%) | 4 (2.0%) | 0.846 (0.289–2.477) | 0.885 (0.297–2.642) |
TC + CC | 316 (31.6%) | 61 (31.1%) | 0.979 (0.704–1.363) | 1.018 (0.727–1.426) |
rs3735615 | ||||
GG | 735 (73.4%) | 148 (75.5%) | 1.00 | 1.00 |
GC | 248 (24.8%) | 46 (23.5%) | 0.921 (0.642–1.321) | 0.899 (0.623–1.299) |
CC | 18 (1.8%) | 2 (1.0%) | 0.552 (0.127–2.404) | 0.598 (0.135–2.643) |
GC + CC | 266 (26.6%) | 48 (24.5%) | 0.896 (0.629–1.277) | 0.880 (0.613–1.263) |
Parameters | MACC1 rs975263 (Betel Quid Chewers) | |||
---|---|---|---|---|
TT (n = 488) n (%) | TC + CC (n = 227) n (%) | OR a (95% CI) | p Value | |
Clinical Stage | ||||
I/II | 238 (48.8%) | 118 (52.0%) | 1.00 | p = 0.424 |
III/IV | 250 (51.2%) | 109 (48.0%) | 0.879 (0.642–1.205) | |
Tumor size | ||||
≤T2 | 264 (54.1%) | 140 (61.7%) | 1.00 | p = 0.057 |
>T2 | 224 (45.9%) | 87 (38.3%) | 0.732 (0.531–1.010) | |
Lymph node metastasis | ||||
No | 346 (70.9%) | 143 (63.0%) | 1.00 | p = 0.034 * |
Yes | 142 (29.1%) | 84 (37.0%) | 1.431 (1.026–1.996) | |
Cell differentiation | ||||
Well | 72 (14.8%) | 34 (15.0%) | 1.00 | p = 0.937 |
Moderate/Poor | 416 (85.2%) | 193 (85.0%) | 0.982 (0.631–1.529) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, R.-H.; Chuang, C.-Y.; Lin, C.-W.; Su, S.-C.; Chang, L.-C.; Wu, S.-W.; Liu, Y.-F.; Yang, S.-F. Effect of MACC1 Genetic Polymorphisms and Environmental Risk Factors in the Occurrence of Oral Squamous Cell Carcinoma. J. Pers. Med. 2021, 11, 490. https://doi.org/10.3390/jpm11060490
Hu R-H, Chuang C-Y, Lin C-W, Su S-C, Chang L-C, Wu S-W, Liu Y-F, Yang S-F. Effect of MACC1 Genetic Polymorphisms and Environmental Risk Factors in the Occurrence of Oral Squamous Cell Carcinoma. Journal of Personalized Medicine. 2021; 11(6):490. https://doi.org/10.3390/jpm11060490
Chicago/Turabian StyleHu, Rei-Hsing, Chun-Yi Chuang, Chiao-Wen Lin, Shih-Chi Su, Lun-Ching Chang, Ssu-Wei Wu, Yu-Fan Liu, and Shun-Fa Yang. 2021. "Effect of MACC1 Genetic Polymorphisms and Environmental Risk Factors in the Occurrence of Oral Squamous Cell Carcinoma" Journal of Personalized Medicine 11, no. 6: 490. https://doi.org/10.3390/jpm11060490
APA StyleHu, R. -H., Chuang, C. -Y., Lin, C. -W., Su, S. -C., Chang, L. -C., Wu, S. -W., Liu, Y. -F., & Yang, S. -F. (2021). Effect of MACC1 Genetic Polymorphisms and Environmental Risk Factors in the Occurrence of Oral Squamous Cell Carcinoma. Journal of Personalized Medicine, 11(6), 490. https://doi.org/10.3390/jpm11060490