Effect of Genetic Variability in 20 Pharmacogenes on Concentrations of Tamoxifen and Its Metabolites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Cohort
2.2. Sample Collection and Quantification of Tamoxifen and Metabolites
2.3. Germline DNA Isolation, Genotyping, and Activity Phenotype Prediction
2.4. Statistical Analysis and Data Analyses
3. Results
3.1. Patient Data and Genetics
3.2. Concentrations of Tamoxifen Metabolites
3.3. Genetic Associations with Tamoxifen Metabolites
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Early Breast Cancer Trialists’ Collaborative Group (EBCTCG). Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: An overview of the randomised trials. Lancet 2005, 365, 1687–1717. [Google Scholar] [CrossRef]
- Johnson, M.D.; Zuo, H.; Lee, K.-H.; Trebley, J.P.; Rae, J.M.; Weatherman, R.V.; Desta, Z.; Flockhart, D.A.; Skaar, T.C. Pharmacological Characterization of 4-hydroxy-N-desmethyl Tamoxifen, a Novel Active Metabolite of Tamoxifen. Breast Cancer Res. Treat. 2004, 85, 151–159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Helland, T.; Henne, N.; Bifulco, E.; Naume, B.; Borgen, E.; Kristensen, V.N.; Kvaløy, J.T.; Lash, T.L.; Alnæs, G.I.G.; van Schaik, R.H.; et al. Serum concentrations of active tamoxifen metabolites predict long-term survival in adjuvantly treated breast cancer patients. Breast Cancer Res. 2017, 19, 125. [Google Scholar] [CrossRef]
- Helland, T.; Naume, B.; Hustad, S.; Bifulco, E.; Kvaløy, J.T.; Saetersdal, A.B.; Synnestvedt, M.; Lende, T.H.; Gilje, B.; Mjaaland, I.; et al. Low Z-4OHtam concentrations are associated with adverse clinical outcome among early stage premenopausal breast cancer patients treated with adjuvant tamoxifen. Mol. Oncol. 2021, 15, 957–967. [Google Scholar] [CrossRef] [PubMed]
- Saladores, P.; Mürdter, T.; Eccles, D.; Chowbay, B.; Zgheib, N.K.; Winter, S.; Ganchev, B.; Eccles, B.; Gerty, S.; Tfayli, A.; et al. Tamoxifen metabolism predicts drug concentrations and outcome in premenopausal patients with early breast cancer. Pharm. J. 2015, 15, 84–94. [Google Scholar] [CrossRef] [Green Version]
- Madlensky, L.; Natarajan, L.; Tchu, S.; Pu, M.; Mortimer, J.; Flatt, S.W.; Nikoloff, D.M.; Hillman, G.; Fontecha, M.R.; Lawrence, H.J.; et al. Tamoxifen metabolite concentrations, CYP2D6 genotype, and breast cancer outcomes. Clin. Pharmacol. Ther. 2011, 89, 718–725. [Google Scholar] [CrossRef] [PubMed]
- Barginear, M.F.; Jaremko, M.; Peter, I.; Yu, C.; Kasai, Y.; Kemeny, M.; Raptis, G.; Desnick, R.J. Increasing tamoxifen dose in breast cancer patients based on CYP2D6 genotypes and endoxifen levels: Effect on active metabolite isomers and the antiestrogenic activity score. Clin. Pharmacol. Ther. 2011, 90, 605–611. [Google Scholar] [CrossRef]
- Jager, N.G.L.; Rosing, H.; Linn, S.C.; Schellens, J.H.M.; Beijnen, J.H. Importance of highly selective LC-MS/MS analysis for the accurate quantification of tamoxifen and its metabolites: Focus on endoxifen and 4-hydroxytamoxifen. Breast Cancer Res. Treat. 2012, 133, 793–798. [Google Scholar] [CrossRef] [Green Version]
- de Vries Schultink, A.H.M.; Alexi, X.; van Werkhoven, E.; Madlensky, L.; Natarajan, L.; Flatt, S.W.; Zwart, W.; Linn, S.C.; Parker, B.A.; Wu, A.H.B.; et al. An Antiestrogenic Activity Score for tamoxifen and its metabolites is associated with breast cancer outcome. Breast Cancer Res. Treat. 2017, 161, 567–574. [Google Scholar] [CrossRef]
- Gaedigk, A.; Ingelman-Sundberg, M.; Miller, N.A.; Leeder, J.S.; Whirl-Carrillo, M.; Klein, T.E.; PharmVar Steering Committee. The Pharmacogene Variation (PharmVar) Consortium: Incorporation of the Human Cytochrome P450 (CYP) Allele Nomenclature Database. Clin. Pharmacol. Ther. 2018, 103, 399–401. [Google Scholar] [CrossRef] [Green Version]
- Mürdter, T.E.; Schroth, W.; Bacchus-Gerybadze, L.; Winter, S.; Heinkele, G.; Simon, W.; Fasching, P.A.; Fehm, T.; German Tamoxifen and AI Clinicians Group; Eichelbaum, M.; et al. Activity levels of tamoxifen metabolites at the estrogen receptor and the impact of genetic polymorphisms of phase I and II enzymes on their concentration levels in plasma. Clin. Pharmacol. Ther. 2011, 89, 708–717. [Google Scholar] [CrossRef]
- Helland, T.; Alsomairy, S.; Lin, C.; Søiland, H.; Mellgren, G.; Hertz, D.L. Generating a Precision Endoxifen Prediction Algorithm to Advance Personalized Tamoxifen Treatment in Patients with Breast Cancer. J. Pers. Med. 2021, 11, 201. [Google Scholar] [CrossRef] [PubMed]
- Lunde, S.; Helland, T.; Jonassen, J.; Haugstøyl, M.; Austdal, M.; Lode, K.; Hagen, K.; Gripsrud, B.; Lind, R.; Gjerde, J.; et al. A Prospective, Longitudinal, Breast Cancer Biobank (PBCB) in Western Norway. European Biobank Week (EBW). 2018. [Google Scholar] [CrossRef]
- Helland, T.; Hagen, K.B.; Haugstøyl, M.E.; Kvaløy, J.T.; Lunde, S.; Lode, K.; Lind, R.A.; Gripsrud, B.H.; Jonsdottir, K.; Gjerde, J.; et al. Drug monitoring of tamoxifen metabolites predicts vaginal dryness and verifies a low discontinuation rate from the Norwegian Prescription Database. Breast Cancer Res. Treat. 2019, 177, 185–195. [Google Scholar] [CrossRef] [PubMed]
- Marcath, L.A.; Kidwell, K.M.; Robinson, A.C.; Vangipuram, K.; Burness, M.L.; Griggs, J.J.; Poznak, C.V.; Schott, A.F.; Hayes, D.F.; Henry, N.L.; et al. Patients carrying CYP2C8*3 have shorter systemic paclitaxel exposure. Pharmacogenomics 2019, 20, 95–104. [Google Scholar] [CrossRef]
- Caudle, K.E.; Sangkuhl, K.; Whirl-Carrillo, M.; Swen, J.J.; Haidar, C.E.; Klein, T.E.; Gammal, R.S.; Relling, M.V.; Scott, S.A.; Hertz, D.L.; et al. Standardizing CYP2D6 Genotype to Phenotype Translation: Consensus Recommendations from the Clinical Pharmacogenetics Implementation Consortium and Dutch Pharmacogenetics Working Group. Clin. Transl. Sci. 2020, 13, 116–124. [Google Scholar] [CrossRef] [Green Version]
- Sanchez-Spitman, A.B.; Swen, J.J.; Dezentje, V.O.; Moes, D.J.A.R.; Gelderblom, H.; Guchelaar, H.J. Clinical pharmacokinetics and pharmacogenetics of tamoxifen and endoxifen. Expert Rev. Clin. Pharmacol. 2019, 12, 523–536. [Google Scholar] [CrossRef]
- Yang, G.; Nowsheen, S.; Aziz, K.; Georgakilas, A.G. Toxicity and adverse effects of Tamoxifen and other anti-estrogen drugs. Pharmacol. Ther. 2013, 139, 392–404. [Google Scholar] [CrossRef]
- Neven, P.; Jongen, L.; Lintermans, A.; Van Asten, K.; Blomme, C.; Lambrechts, D.; Poppe, A.; Wildiers, H.; Dieudonné, A.-S.; Brouckaert, O.; et al. Tamoxifen Metabolism and Efficacy in Breast Cancer: A Prospective Multicenter Trial. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2018, 24, 2312–2318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wakeling, A.E.; Slater, S.R. Estrogen-receptor binding and biologic activity of tamoxifen and its metabolites. Cancer Treat. Rep. 1980, 64, 741–744. [Google Scholar]
- Katzenellenbogen, B.S.; Norman, M.J.; Eckert, R.L.; Peltz, S.W.; Mangel, W.F. Bioactivities, estrogen receptor interactions, and plasminogen activator-inducing activities of tamoxifen and hydroxy-tamoxifen isomers in MCF-7 human breast cancer cells. Cancer Res. 1984, 44, 112–119. [Google Scholar] [PubMed]
- Ahmad, I. Tamoxifen a pioneering drug: An update on the therapeutic potential of tamoxifen derivatives. Eur. J. Med. Chem. 2018, 143, 515–531. [Google Scholar]
- Brauch, H.; Jordan, V.C. Targeting of tamoxifen to enhance antitumour action for the treatment and prevention of breast cancer: The ‘personalised’ approach? Eur. J. Cancer 2009, 45, 2274–2283. [Google Scholar] [CrossRef]
- Brauch, H.; Mürdter, T.E.; Eichelbaum, M.; Schwab, M. Pharmacogenomics of tamoxifen therapy. Clin. Chem. 2009, 55, 1770–1782. [Google Scholar] [CrossRef] [Green Version]
- Klein, D.J.; Thorn, C.F.; Desta, Z.; Flockhart, D.A.; Altman, R.B.; Klein, T.E. PharmGKB summary: Tamoxifen pathway, pharmacokinetics. Pharm. Genom. 2013, 23, 643–647. [Google Scholar] [CrossRef] [Green Version]
- Teft, W.A.; Gong, I.Y.; Dingle, B.; Potvin, K.; Younus, J.; Vandenberg, T.A.; Brackstone, M.; Perera, F.E.; Choi, Y.-H.; Zou, G.; et al. CYP3A4 and seasonal variation in vitamin D status in addition to CYP2D6 contribute to therapeutic endoxifen level during tamoxifen therapy. Breast Cancer Res. Treat. 2013, 139, 95–105. [Google Scholar] [CrossRef]
- Antunes, M.V.; de Oliveira, V.; Raymundo, S.; Staudt, D.E.; Gössling, G.; Biazús, J.V.; Cavalheiro, J.A.; Rosa, D.D.; Mathy, G.; Wallemacq, P.; et al. CYP3A4*22 is related to increased plasma levels of 4-hydroxytamoxifen and partially compensates for reduced CYP2D6 activation of tamoxifen. Pharmacogenomics 2015, 16, 601–617. [Google Scholar] [CrossRef] [PubMed]
- Antunes, M.V.; Timm, T.A.d.F.; de Oliveira, V.; Staudt, D.E.; Raymundo, S.; Gössling, G.; Biazús, J.V.; Cavalheiro, J.A.; Rosa, D.D.; Wallemacq, P.; et al. Influence of CYP2D6 and CYP3A4 Phenotypes, Drug Interactions, and Vitamin D Status on Tamoxifen Biotransformation. Ther. Drug Monit. 2015, 37, 733–744. [Google Scholar] [CrossRef]
- Desta, Z.; Ward, B.A.; Soukhova, N.V.; Flockhart, D.A. Comprehensive evaluation of tamoxifen sequential biotransformation by the human cytochrome P450 system in vitro: Prominent roles for CYP3A and CYP2D6. J. Pharmacol. Exp. Ther. 2004, 310, 1062–1075. [Google Scholar] [CrossRef] [PubMed]
- Cronin-Fenton, D.P.; Damkier, P. Tamoxifen and CYP2D6: A Controversy in Pharmacogenetics. Adv. Pharmacol. 2018, 83, 65–91. [Google Scholar]
- Kalliokoski, A.; Niemi, M. Impact of OATP transporters on pharmacokinetics. Br. J. Pharmacol. 2009, 158, 693–705. [Google Scholar] [CrossRef] [Green Version]
- Gao, C.-M.; Pu, Z.; He, C.; Liang, D.; Jia, Y.; Yuan, X.; Wang, G.; Xie, H. Effect of OATP1B1 genetic polymorphism on the uptake of tamoxifen and its metabolite, endoxifen. Oncol. Rep. 2017, 38, 1124–1132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fox, P.; Balleine, R.L.; Lee, C.; Gao, B.; Balakrishnar, B.; Menzies, A.M.; Yeap, S.H.; Ali, S.S.; Gebski, V.; Provan, P.; et al. Dose Escalation of Tamoxifen in Patients with Low Endoxifen Level: Evidence for Therapeutic Drug Monitoring-The TADE Study. Clin. Cancer Res. 2016, 22, 3164–3171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Puszkiel, A.; Arellano, C.; Vachoux, C.; Evrard, A.; Le Morvan, V.; Boyer, J.-C.; Robert, J.; Delmas, C.; Dalenc, F.; Debled, M.; et al. Model-Based Quantification of Impact of Genetic Polymorphisms and Co-Medications on Pharmacokinetics of Tamoxifen and Six Metabolites in Breast Cancer. Clin. Pharmacol. Ther. 2021, 109, 1244–1255. [Google Scholar] [CrossRef] [PubMed]
- Hertz, D.L.; Deal, A.; Ibrahim, J.G.; Walko, C.M.; Weck, K.E.; Anderson, S.; Magrinat, G.; Olajide, O.; Moore, S.; Raab, R.; et al. Tamoxifen Dose Escalation in Patients With Diminished CYP2D6 Activity Normalizes Endoxifen Concentrations without Increasing Toxicity. Oncologist 2016, 21, 795–803. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanchez-Spitman, A.B.; Dezentjé, V.O.; Swen, J.J.; Moes, D.J.a.R.; Gelderblom, H.; Guchelaar, H.-J. Genetic polymorphisms of 3’-untranslated region of SULT1A1 and their impact on tamoxifen metabolism and efficacy. Breast Cancer Res. Treat. 2018, 172, 401–411. [Google Scholar] [CrossRef] [Green Version]
- Blevins-Primeau, A.S.; Sun, D.; Chen, G.; Sharma, A.K.; Gallagher, C.J.; Amin, S.; Lazarus, P. Functional significance of UDP-glucuronosyltransferase variants in the metabolism of active tamoxifen metabolites. Cancer Res. 2009, 69, 1892–1900. [Google Scholar] [CrossRef] [Green Version]
- Lazarus, P.; Sun, D. Potential role of UGT pharmacogenetics in cancer treatment and prevention: Focus on tamoxifen and aromatase inhibitors. Drug Metab. Rev. 2010, 42, 182–194. [Google Scholar] [CrossRef] [Green Version]
- Sutiman, N.; Lim, J.S.L.; Muerdter, T.E.; Singh, O.; Cheung, Y.B.; Ng, R.C.H.; Yap, Y.S.; Wong, N.S.; Ang, P.C.S.; Dent, R.; et al. Pharmacogenetics of UGT1A4, UGT2B7 and UGT2B15 and Their Influence on Tamoxifen Disposition in Asian Breast Cancer Patients. Clin. Pharm. 2016, 55, 1239–1250. [Google Scholar] [CrossRef]
- Goetz, M.P.; Sangkuhl, K.; Guchelaar, H.-J.; Schwab, M.; Province, M.; Whirl-Carrillo, M.; Symmans, W.F.; McLeod, H.L.; Ratain, M.J.; Zembutsu, H.; et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) Guideline for CYP2D6 and Tamoxifen Therapy. Clin. Pharmacol. Ther. 2018, 103, 770–777. [Google Scholar] [CrossRef] [Green Version]
Clinical Variable | Level | Median (Range) or n (%) |
---|---|---|
Age | Years | 48.00 (24.0–84.0) |
Menopausal Status | Premenopausal | 162 (86.6%) |
Postmenopausal | 25 (13.4%) | |
Body mass index | kg/m2 | 24.6 (17.37–41.14) |
Race | Asian | 6 (3.2%) |
White | 112 (59.9%) | |
Other/Unknown | 69 (36.9%) | |
Chemotherapy | No | 19 (10.2%) |
Yes | 168 (89.8%) | |
Time on tamoxifen | Months | 12.0 (1.0—67.0) |
Tamoxifen Metabolites | Tamoxifen | 296.5 (56.17—898.66) |
NDtam | 584.2450 (166.83—1551.44) | |
Z-4OHtam | 5.0170 (0.70—22.22) | |
Z-endoxifen | 28.3080 (4.45—96.00) | |
Z-4′-endoxifen | 22.9850 (6.70—62.97) | |
Z-4′-Ohtam | 7.3110 (1.72—23.00) | |
TamNoX | 18.6530 (3.60—70.42) | |
NNDDtam | 88.6410 (14.90—239.35) |
Genes | Phenotypes (n, %) | |||||
---|---|---|---|---|---|---|
PM | IM | NM | RM | UM | Missing | |
CYP2D6 | 13 (7.0%) | 65 (34.8%) | 98 (52.4%) | 11 (5.9%) | ||
CYP3A4 | 22 (11.8%) | 165 (88.2%) | ||||
CYP3A5 | 155 (82.9%) | 28 (15.0%) | 1 (0.5%) | 3 (1.6%) | ||
CYP2C19 | 5 (2.7%) | 51 (27.3%) | 83 (44.4%) | 42 (22.5%) | 4 (2.1%) | 2 (1.1%) |
CYP1A2 | 4 (2.1%) | 21 (11.2%) | 162 (86.6%) | |||
CYP2C9 | 3 (1.6%) | 63 (33.7%) | 121 (64.7%) | |||
CYP2B6 | 11 (5.9%) | 61 (32.6%) | 115 (61.5%) | |||
ABCB1 | 30 (16.0%) | 82 (43.9%) | 75 (40.1%) | |||
SULT4A1 | 4 (2.1%) | 35 (18.7%) | 148 (79.1%) | |||
APOE | 7 (3.7%) | 7 (3.7%) | 167 (89.3%) | 6 (3.2%) | ||
COMT | 63 (33.7%) | 88 (47.1%) | 35 (18.7%) | 1 (0.5%) | ||
DRD2 | 10 (5.3%) | 56 (29.9%) | 120 (64.2%) | 1 (0.5%) | ||
F2 | 5 (2.7%) | 182 (97.3%) | ||||
F5 | 14 (7.5%) | 173 (92.5%) | ||||
GLP1R | 39 (20.9%) | 111 (59.4%) | 34 (18.2%) | 3 (1.6%) | ||
MTHFR | 14 (7.5%) | 72 (38.5%) | 101 (54.0%) | |||
OPRM1 | 5 (2.7%) | 31 (16.6%) | 151 (80.7%) | |||
PNPLA5 | 3 (1.6%) | 40 (21.4%) | 144 (77.0%) | |||
SLCO1B1 | 6 (3.2%) | 53 (28.3%) | 127 (67.9%) | 1 (0.5%) | ||
VKORC1 | 21 (11.2%) | 90 (48.1%) | 76 (40.6%) |
Tamoxifen | NDtam | Z4OH tam | Z-endoxifen | Z-4-prime-endoxifen | Z-4-prime-OH-tam | TamNoX | NNDD tam | ||
---|---|---|---|---|---|---|---|---|---|
Tamoxifen | Correlation | 0.735 | 0.648 | 0.442 | 0.504 | 0.758 | 0.75 | 0.601 | |
p-value | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | ||
NDtam | Correlation | 0.312 | 0.136 | 0.835 | 0.741 | 0.548 | 0.689 | ||
p-value | <0.001 | 0.063 | <0.001 | <0.001 | <0.001 | <0.001 | |||
Z4OHtam | Correlation | 0.839 | 0.203 | 0.606 | 0.511 | 0.351 | |||
p-value | <0.001 | 0.005 | <0.001 | <0.001 | <0.001 | ||||
Z-endoxifen | Correlation | −0.029 | 0.346 | 0.385 | 0.385 | ||||
p-value | 0.69 | <0.001 | <0.001 | <0.001 | |||||
Z-4-prime-endoxifen | Correlation | 0.798 | 0.326 | 0.547 | |||||
p-value | <0.001 | <0.001 | <0.001 | ||||||
Z-4-prime-OH-tam | Correlation | 0.501 | 0.549 | ||||||
p-value | <0.001 | <0.001 | |||||||
TamNoX | Correlation | 0.41 | |||||||
p-value | <0.001 | ||||||||
NNDDtam | Correlation | ||||||||
p-value |
Tamoxifen Metabolite | Variables | β Coefficient | Std. Error | p-Value | R2 | |
---|---|---|---|---|---|---|
Tamoxifen | CYP3A4 | −0.189 | 0.091 | 0.040 | 0.037 | 0.05 |
CYP1A2 | −0.155 | 0.072 | 0.033 | 0.016 | ||
NDtam | Tamoxifen | 0.716 | 0.039 | <0.001 | 0.540 | 0.67 |
CYP2D6 | −0.174 | 0.022 | <0.001 | 0.110 | ||
BMI | −0.333 | 0.101 | 0.001 | 0.020 | ||
Z-4OHtam | Tamoxifen | 0.710 | 0.052 | <0.001 | 0.412 | 0.59 |
CYP2D6 | 0.208 | 0.030 | <0.001 | 0.111 | ||
CYP2C9 | 0.171 | 0.041 | <0.001 | 0.015 | ||
VKORC1 | −0.068 | 0.032 | 0.035 | 0.015 | ||
SLCO1B1 | −0.085 | 0.039 | 0.032 | 0.001 | ||
BMI | −0.551 | 0.135 | <0.001 | 0.036 | ||
Z-Endoxifen | Tamoxifen | −0.349 | 0.110 | 0.002 | 0.003 | 0.79 |
NDtam | 0.310 | 0.101 | 0.002 | 0.017 | ||
4OHtam | 1.038 | 0.072 | <0.001 | 0.703 | ||
CYP2D6 | 0.361 | 0.037 | <0.001 | 0.070 | ||
Z-4’-Endoxifen | NDtam | 0.989 | 0.067 | <0.001 | 0.699 | 0.75 |
Tamoxifen | −0.299 | 0.060 | <0.001 | 0.029 | ||
CYP2D6 | −0.046 | 0.023 | 0.048 | 0.010 | ||
BMI | −0.279 | 0.096 | 0.004 | 0.012 | ||
Z-4’-OH-tam | Tamoxifen | 0.680 | 0.041 | <0.001 | 0.576 | 0.61 |
BMI | −0.383 | 0.107 | <0.001 | 0.034 | ||
TamNoX | Tamoxifen | 1.026 | 0.049 | <0.001 | 0.563 | 0.59 |
SLCO1B1 | −0.162 | 0.037 | <0.001 | 0.018 | ||
CYP3A4 | 0.191 | 0.061 | 0.002 | 0.012 | ||
NNDDtam | NDtam | 0.972 | 0.054 | <0.001 | 0.490 | 0.62 |
CYP2D6 | 0.183 | 0.029 | <0.001 | 0.083 | ||
CYP3A4 | 0.243 | 0.061 | <0.001 | 0.025 | ||
CYP2C19 | −0.075 | 0.024 | 0.002 | 0.025 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Marcath, L.A.; Eliassen, F.M.; Lende, T.H.; Soiland, H.; Mellgren, G.; Helland, T.; Hertz, D.L. Effect of Genetic Variability in 20 Pharmacogenes on Concentrations of Tamoxifen and Its Metabolites. J. Pers. Med. 2021, 11, 507. https://doi.org/10.3390/jpm11060507
Chen Y, Marcath LA, Eliassen FM, Lende TH, Soiland H, Mellgren G, Helland T, Hertz DL. Effect of Genetic Variability in 20 Pharmacogenes on Concentrations of Tamoxifen and Its Metabolites. Journal of Personalized Medicine. 2021; 11(6):507. https://doi.org/10.3390/jpm11060507
Chicago/Turabian StyleChen, Yuanhuang, Lauren A. Marcath, Finn Magnus Eliassen, Tone Hoel Lende, Havard Soiland, Gunnar Mellgren, Thomas Helland, and Daniel Louis Hertz. 2021. "Effect of Genetic Variability in 20 Pharmacogenes on Concentrations of Tamoxifen and Its Metabolites" Journal of Personalized Medicine 11, no. 6: 507. https://doi.org/10.3390/jpm11060507
APA StyleChen, Y., Marcath, L. A., Eliassen, F. M., Lende, T. H., Soiland, H., Mellgren, G., Helland, T., & Hertz, D. L. (2021). Effect of Genetic Variability in 20 Pharmacogenes on Concentrations of Tamoxifen and Its Metabolites. Journal of Personalized Medicine, 11(6), 507. https://doi.org/10.3390/jpm11060507