Gender-Specific Risk Factors for the Development of Retinal Changes in Children with Type 1 Diabetes
Abstract
:1. Introduction
2. Material and Methods
3. Statistical Analysis
4. Results
5. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Szalecki, M.; Wysocka-Mincewicz, M.; Ramotowska, A.; Mazur, A.; Lisowicz, L.; Beń-Skowronek, I.; Sieniawska, J.; Klonowska, B.; Charemska, D.; Nawrotek, J.; et al. Epidemiology of type 1 diabetes in Polish children: A multicentre cohort study. Diabetes Metab. Res. Rev. 2018, 34, e2962. [Google Scholar] [CrossRef] [PubMed]
- Huxley, R.R.; Peters, S.; Mishra, G.D.; Woodward, M. Risk of all-cause mortality and vascular events in women versus men with type 1 diabetes: A systematic review and meta-analysis. Lancet Diabetes Endocrinol. 2015, 3, 198–206. [Google Scholar] [CrossRef]
- Mansfield, M.W.; Heywood, D.M.; Grant, P.J. Sex differences in coagulation and fibrinolysis in white subjects with non–insulin-dependent diabetes mellitus. Arter. Thromb. Vasc. Biol. 1996, 16, 160–164. [Google Scholar] [CrossRef]
- Howard, B.V.; Cowan, L.D.; Go, O.; Welty, T.K.; Robbins, D.C.; Lee, E.T.; Strong Heart Study Investigators. Adverse effects of diabetes on multiple cardiovascular disease risk factors in women. The Strong Heart Study. Diabetes Care 1998, 21, 1258–1265. [Google Scholar] [CrossRef]
- Wannamethee, S.G.; Papacosta, O.; Lawlor, D.A.; Whincup, P.; Lowe, G.D.; Ebrahim, S.; Sattar, N. Do women exhibit greater differences in established and novel risk factors between diabetes and non-diabetes than men? The British Regional Heart Study and British Women’s Heart Health Study. Diabetologia 2011, 55, 80–87. [Google Scholar] [CrossRef] [Green Version]
- Kalyani, R.R.; Franco, M.; Dobs, A.S.; Ouyang, P.; Vaidya, D.; Bertoni, A.; Gapstur, S.M.; Golden, S.H. The association of endogenous sex hormones, adiposity, and insulin resistance with incident diabetes in postmenopausal women. J. Clin. Endocrinol. Metab. 2009, 94, 4127–4135. [Google Scholar] [CrossRef] [Green Version]
- de Ritter, R.; de Jong, M.; Vos, R.C.; van der Kallen, C.J.H.; Sep, S.J.S.; Woodward, M.; Stehouwer, C.D.A.; Bots, M.L.; Peters, S.A.E. Sex differences in the risk of vascular disease associated with diabetes. Biol. Sex Differ. 2020, 11, 1. [Google Scholar] [CrossRef] [Green Version]
- Karvonen, M.; Viik-Kajander, M.; Moltchanova, E.; Libman, I.; LaPorte, R.; Tuomilehto, J. Incidence of Childhood Type 1 Diabetes Worldwide. Diabetes Care 2000, 23, 1516–1526. [Google Scholar] [CrossRef] [Green Version]
- Sultan, M.B.; Starita, C.; Huang, K. Epidemiology, risk factors and management of paediatric diabetic retinopathy. Br. J. Ophthalmol. 2012, 96, 312–317. [Google Scholar] [CrossRef]
- Forlenza, G.P.; Steward, M.W. Diabetic retinopathy in children. Ped. Endocrinol. Rev. 2013, 10, 217–227. [Google Scholar]
- Geloneck, M.M.; Forbes, B.J.; Shaffer, J.; Ying, G.S.; Binenbaum, G. Ocular complications in children with diabetes mellitus. Ophthalmology 2015, 122, 2457–2464. [Google Scholar] [CrossRef] [Green Version]
- Jia, Y.; Tan, O.; Tokayer, J.; Potsaid, B.M.; Wang, Y.; Liu, J.J.; Kraus, M.F.G.; Subhash, H.; Fujimoto, J.G.; Hornegger, J.; et al. Split-spectrum amplitude-decorrelation angiography with optical coherence tomography. Opt. Express 2012, 20, 4710–4725. [Google Scholar] [CrossRef] [Green Version]
- Gołębiewska, J.; Olechowski, A.; Wysocka-Mincewicz, M.; Odrobina, D.; Baszyńska-Wilk, M.; Groszek, A.; Szalecki, M.; Hautz, W. Optical coherence tomography angiography vessel density in children with type 1 diabetes. PLoS ONE 2017, 12, e0186479. [Google Scholar] [CrossRef] [PubMed]
- Wysocka-Mincewicz, M.; Baszyńska-Wilk, M.; Gołębiewska, J.; Olechowski, A.; Byczyńska, A.; Hautz, W.; Szalecki, M. Influence of Metabolic Parameters and Treatment Method on OCT Angiography Results in Children with Type 1 Diabetes. J. Diabetes Res. 2020, 2020, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Cole, T.J. Growth references and standards. In W Cameron N (red) Human Growth and Development; Academic Press: Cambridge, MA, USA, 2006; p. 386. [Google Scholar]
- Cole, T.J.; Green, P.J. Smoothing reference centile curves: The lms method and penalized likelihood. Statist. Med. 1992, 11, 1305–1319. [Google Scholar] [CrossRef]
- Kułaga, Z.; Litwin, M.; Tkaczyk, M.; Palczewska, I.; Zajączkowska, M.; Zwolińska, D.; Krynicki, T.; Wasilewska, A.; Moczulska, A.; Morawiec-Knysak, A.; et al. Polish 2010 growth references for school-aged children and adolescents. Eur. J. Nucl. Med. Mol. Imaging 2010, 170, 599–609. [Google Scholar] [CrossRef] [Green Version]
- Kułaga, Z.; Grajda, A.; Gurzkowska, B.; Góźdź, M.; Wojtyło, M.; Swiader-Lesniak, A.; Różdżyńska-Świątkowska, A.; Litwin, M. Polish 2012 growth references for preschool children. Eur. J. Nucl. Med. Mol. Imaging 2013, 172, 753–761. [Google Scholar] [CrossRef] [Green Version]
- Romero, P.; Baget, M.; Mendez, I.; Fernandez, J.; Salvat, M.; Martinez, I. Diabetic macular edema and it relationship to renal microangipathy: A sample of Type 1 diabetes mellitus patients in a 15-year follow-up study. J. Diabetes Its Complicat. 2007, 21, 172–180. [Google Scholar] [CrossRef]
- Jeziorny, K.; Niwald, A.; Moll, A.; Piasecka, K.; Pyziak-Skupien, A.; Waszczykowska, A.; Baranska, D.; Malachowska, B.; Szadkowska, A.; Mlynarski, W.; et al. Measurement of corneal thickness, optic nerve sheath diameter and retinal nerve fiber layer as potential new non-invasive methods in assessing a risk of cerebral edema in type 1 diabetes in children. Acta Diabetol. 2018, 55, 1295–1301. [Google Scholar] [CrossRef] [Green Version]
- Salardi, S.; Porta, M.; Maltoni, G.; Cerutti, F.; Rovere, S.; Iafusco, D.; Tumini, S.; Cauvin, V.; Zucchini, S.; Cadario, F.; et al. Ketoacidosis at diagnosis in childhood-onset diabetes and the risk of retinopathy 20years later. J. Diabetes Its Complicat. 2016, 30, 55–60. [Google Scholar] [CrossRef]
- Gallego, P.H.; Craig, M.E.; Hing, S.; Donaghue, K.C. Role of blood pressure in development of early retinopathy in adolescents with type 1 diabetes: Prospective cohort study. BMJ 2008, 337, a918. [Google Scholar] [CrossRef] [Green Version]
- Harrison, W.; Chang, A.; Cardenas, M.; Bearse, M.; Schneck, M.; Barez, S.; Adams, A. Blood pressure, vessel Caliber and retinal thickness in Diabetes. Optom. Vis. Sci. Off. Publ. Am. Acad. Optom. 2012, 89, 1715. [Google Scholar] [CrossRef] [Green Version]
- Bek, T. Lack of correlation between short-term dynamics of diabetic retinopathy lesions and the arterial blood pressure. Graefes Arch. Clin. Exp. Opthalmol. 2011, 249, 267–271. [Google Scholar] [CrossRef] [PubMed]
- Głowińska-Olszewska, B.; Urban, M.; Urban, B.; Tołwińska, J.; Szadkowska, A. The association of early atherosclerosis and retinopathy in adolescents with type 1 diabetes: Preliminary report. Acta Diabetol. 2007, 44, 131–137. [Google Scholar] [CrossRef] [PubMed]
- Bresnick, G. Diabetic maculopathy: A critical review highlighting diffuse macular edema. Opthalmology 1983, 90, 1301–1317. [Google Scholar] [CrossRef]
- Do, D.V.; Wang, X.; Vedula, S.S.; Marrone, M.; Sleilati, G.; Hawkins, B.S.; Frank, R.N. Blood pressure control for diabetic retinopathy. Cochrane Database Syst. Rev. 2015, 1, CD006127. [Google Scholar] [CrossRef] [Green Version]
- The Euclid Study Group. Randomised placebo-controlled trial of lisinopril in normotensive patients with insulin-dependent diabetes and normoalbuminuria or microalbuminuria. Lancet 1997, 349, 1787–1792. [Google Scholar] [CrossRef]
- Chew, E.Y.; Klein, M.L.; Ferris, F.L.; Remaley, N.A.; Murphy, R.P.; Chantry, K.; Hoogwerf, B.J.; Miller, D. Association of Elevated Serum Lipid Levels with Retinal Hard Exudate in Diabetic Retinopathy. Arch. Ophthalmol. 1996, 114, 1079–1084. [Google Scholar] [CrossRef] [PubMed]
- Klein, B.E.; Klein, R.; Moss, S.E. Is serum cholesterol associated with progression of diabetic retinopathy or macular edema in persons with younger-onset diabetes of long duration? Am. J. Ophthalmol. 1999, 128, 652–654. [Google Scholar] [CrossRef]
- Kordonouri, O.; Danne, T.; Hopfenmüller, W.; Enders, I.; Hövener, G.; Weber, B.; Kordonouri, O.; Danne, T.; Hopfenmüller, W.; Enders, I.; et al. Lipid profiles and blood pressure: Are they risk factors for the development of early background retinopathy and incipient nephropathy in children with insulin-dependent diabetes mellitus? Acta Paediatr. 1996, 85, 43–48. [Google Scholar] [CrossRef]
- Galler, A.; Muller, G.; Schinzei, R.; Kratzsch, J.; Kiess, W.; Munch, G. Impact of metabolic control and serum lipids on the concentration of advanced glycation end products in the serum of children and adolescents with type 1 diabetes, as determined by fluorescence spectroscopy and NE-(carboxymethyl-lysine) Elisa. Diabetes Care 2003, 26, 2609–2615. [Google Scholar] [CrossRef] [Green Version]
- Krizova, L.; Kalousova, M.; Kubena, A.A.; Chrapek, O.; Chrapkova, B.; Sin, M.; Zima, T. Correlation of vitreous vascular endothelial growth factor and uric acid concentration using optical coherence tomography in diabetic macular edema. J. Ophthalmol. 2015, 2015, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Xia, J.; Wang, Z.; Zhang, F. Association between related purine metabolites and diabetic retinopathy in type 2 diabetic patients. Int. J. Endocrinol. 2014, 2014, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Kumari, N.; Low, S.; Ang, K.; Yeo, D.; Yeoh, L.Y.; Liu, A.; Kwan, P.Y.; Tang, W.E.; Tavintharan, S.; et al. The association of serum creatinine and estimated glomerular filtration rate variability with diabetic retinopathy in Asians with type 2 diabetes: A nested case-control study. Diabetes Vasc. Dis. Res. 2018, 15, 548–558. [Google Scholar] [CrossRef]
- Srivastav, K.; Savena, S.; Mahdi, A.; Kruzliak, P.; Khanna, V. Increased serum urea and creatinine levels correlate with decreased retinal nerve fibre layer thickness in diabetic retinopathy. Biomarkers 2015, 20, 470–473. [Google Scholar] [CrossRef]
- Lee, W.J.; Sobrin, L.; Kang, M.H.; Seong, M.; Kim, Y.J.; Yi, J.-H.; Miller, J.W.; Cho, H.Y. Ischemic diabetic retinopathy as a possible prognostic factor for chronic kidney disease progression. Eye 2014, 28, 119–1125. [Google Scholar] [CrossRef] [Green Version]
- Tirsi, A.; Bruehl, H.; Sweat, V.; Tsui, W.; Reddy, S.; Javier, E.; Lee, C.; Convit, A. Retinal Vessel Abnormalities Are Associated with Elevated Fasting Insulin Levels and Cerebral Atrophy in Nondiabetic Individuals. Ophthalmology 2009, 116, 1175–1181. [Google Scholar] [CrossRef] [Green Version]
- Muniyappa, R.; Montagnani, M.; Koh, K.K.; Quon, M.J. Cardiovascular Actions of Insulin. Endocr. Rev. 2007, 28, 463–491. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Xin, Z.; Yuan, M.-X.; Cao, X.; Feng, J.-P.; Shi, J.; Zhu, X.-R.; Yang, J.-K. High Prevalence of Diabetic Retinopathy in Diabetic Patients Concomitant with Metabolic Syndrome. PLoS ONE 2016, 11, e0145293. [Google Scholar] [CrossRef]
- Mavrakanas, T.; Frachebois, C.; Soualah, A.; Aloui, F.; Julier, I.; Bastide, D. C-peptide and chronic complications in patients with type-2 diabetes and the metabolic syndrome. La Presse Médicale 2009, 38, 1399–1403. [Google Scholar] [CrossRef]
- Ahamed, A.; Shantha, G.P.S.; Agarwal, G.; Senthil, N.; Paunikar, N.; Sudhakar, M.K. Prevalence of microvascular complications in metabolic syndrome in comparison to type 2 diabetes mellitus. J. Indian Med. Assoc. 2008, 106, 583–584. [Google Scholar] [PubMed]
Parameter | Girls (Mean and SD) | Boys (Mean and SD) | p Value |
---|---|---|---|
Diabetes duration (years) | 4.96 ± 3.8 | 4.24 ± 3.6 | p = 0.07 |
Age at the diabetes onset (years) | 8.09 ± 3.7 | 8.35 ± 3.8 | p = 0.5 |
Age (years) | 13.07 ± 3.6 | 12.6 ± 3.6 | p = 0.2 |
Weight (kg) | 45.9 ± 16.9 | 48.8 ± 19.3 | p = 0.1 |
Height (cm) | 153.3 ± 16.95 | 157.5 ± 21.5 | p = 0.06 |
BMI z-score (kg/m2) | −0.1045 ± 1.01 | −0.1645 ± 1.1 | p = 0.6 |
HbA1c current (%) | 8.4 ± 1.9 | 8.1 ± 1.6 | p = 0.2 |
HbA1c mean (%) | 8.2 ± 1.4 | 7.9 ± 1.6 | p = 0.1 |
TSH | 3.27 ± 6.6 | 2.34 ± 1.1 | p = 0.07 |
fT4 | 1.05 ± 0.3 | 1.1 ± 0.48 | p = 0.3 |
fT3 | 2.95 ± 0.64 | 2.97 ± 0.61 | p = 0.8 |
Cholesterol total (mg/dL) | 174.1 ± 32.6 | 160.9 ± 30.1 | p < 0.0002 |
LDL cholesterol (mg/dL) | 91.33 ± 25.4 | 81.35 ± 23.6 | p < 0.0003 |
HDL cholesterol (mg/dL) | 66.53 ± 14.4 | 63.6 ± 18.06 | p = 0.1 |
Triglycerides (mg/dL) | 81.35 ± 44.98 | 78.35 ± 45.6 | p = 0.6 |
Uric acid | 3.63 ± 0.6 | 4.18 ± 0.96 | p < 0.000001 |
Creatinine plasma | 0.57 ± 0.1 | 0.68 ± 0.2 | p < 0.000001 |
1.25(OH)D3 vitamin | 24.95 ± 7.95 | 24.1 ± 7.79 | p = 0.4 |
Microalbuminuria current | 16.1 ± 25.8 | 8.9 ± 7.37 | p < 0.003 |
Microalbuminuria mean | 12.8 ± 19.2 | 8.1 ± 8.8 | p < 0.02 |
Creatinine in daily urine collection | 1.94 ± 7.4 | 5.1 ± 17.26 | p = 0.08 |
Systolic pressure (mmHg) | 107.7 ± 9.1 | 110.92 ± 11.9 | p < 0.02 |
Diastolic pressure (mmHg) | 64.78 ± 8.7 | 65.95 ± 9.7 | p = 0.3 |
Duration of pump use (years) | 3.08 ± 1.9 | 3.45 ± 2.1 | p = 0.2 |
Total daily insulin dose (units) | 34.59 ± 16.1 | 36.5 ± 19.9 | p = 0.4 |
Daily dose per 1 kg of weight (μ/kg) | 0.766 ± 0.25 | 0.737 ± 0.26 | p = 0.3 |
Percent of TDI in basal/100 (%) | 0.35 ± 0.12 | 0.31 ± 0.11 | p < 0.01 |
pH at the diabetes onset | 7.3167 ± 0.1 | 7.3036 ± 0.1 | p = 0.4 |
Parameter | Girls | Boys |
---|---|---|
FT | Model R = 0.38, p < 0.00035 HbA1c current β = −2.7, p < 0.0005 Serum creatinine β = 25.1, p < 0.04 pH at the diabetes onset β = 35.7, p < 0.03 Duration of CSII use β = 0.99, p = 0.1 Diabetes duration β = −1.01, p < 0.02 TG β = 0.08, p < 0.05 | Model R = 0.36, p < 0.001 HbA1c current β = −2.4, p < 0.007 Serum creatinine β = −2.8, p = 0.7 pH at the diabetes onset β = 33.4, p < 0.05 Duration of CSII use β = 2.64, p < 0.005 Level of 25(OH)D3 β = 0.46, p < 0.02 FT4 β = −5.87, p < 0.05 |
PFT | Model R = 0.61, p < 0.00000 HbA1c current β = −2.99, p < 0.00003 Microalbuminuria current β = 0.46, p < 0.003 pH at the diabetes onset β = 29.85, p < 0.03 Level of 25(OH)D3 β = 0.47, p < 0.003 BMI z-score β = −13.0, p < 0.0000 Weight β = 1.56, p < 0.0000 Height β = −1.03, p < 0.0000 DID/kg β = −15.48, p < 0.003 Serum uric acid β = −4.06, p = 0.07 | Model R = 0.46, p < 0.00001 HbA1c current β = −3.44, p < 0.0000 Microalbuminuria current β = 0.37, p < 0.03 Systolic pressure β = 0.35, p < 0.008 fT4 β = −6.35, p < 0.005 pH at the diabetes onset β = 11.64, p = 0.3 Level of 25(OH)D3 β = 0.19, p = 0.1 Age β = −0.6, p = 0.08 BMI z-score β = −1.75, p = 0.09 |
wsVD | Model R = 0.32, p < 0.003 HbA1c mean β = −0.35, p < 0.01 Systolic pressure β = 0.06, p < 0.009 Duration of CSII use β = −0.3, p < 0.02 Serum uric acid β = −0.77, p < 0.03 pH at the diabetes onset β = 3.24, p = 0.1 | Model R = 0.35, p < 0.001 Serum creatinine β = −3.07, p < 0.006 Duration of CSII use β = 0.23, p < 0.02 Total cholesterol β = −0.01, p < 0.03 Systolic pressure β = −0.02, p = 0.1 Serum uric acid β = 0.24, p = 0.3 pH at the diabetes onset β = −3.02, p = 0.1 |
wdVD | Model R = 0.44, p < 0.00002 LDL cholesterol β = 0.03, p < 0.00003 pH at the diabetes onset β = 4.42, p < 0.009 TSH β = −0.49, p < 0.03 Duration of CSII use β = −0.28, p < 0.003 TDI β = 0.02, p < 0.04 Serum uric acid β = −0.49, p = 0.059 TG β = −0.06, p = 0.058 | Model R = 0.45, p < 0.00003 LDL cholesterol β = −0.02, p < 0.0005 Serum creatinine β = −2.67, p < 0.005 Height β = 0.02, p < 0.05 pH at the diabetes onset β = −1.99, p = 0.1 Duration of CSII use β = 0.08, p = 0.2 Percent of basal insulin β = 1.33, p = 0.2 Microalbuminuria current β = −0.02, p = 0.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wysocka-Mincewicz, M.; Gołębiewska, J.; Baszyńska-Wilk, M.; Olechowski, A. Gender-Specific Risk Factors for the Development of Retinal Changes in Children with Type 1 Diabetes. J. Pers. Med. 2021, 11, 588. https://doi.org/10.3390/jpm11060588
Wysocka-Mincewicz M, Gołębiewska J, Baszyńska-Wilk M, Olechowski A. Gender-Specific Risk Factors for the Development of Retinal Changes in Children with Type 1 Diabetes. Journal of Personalized Medicine. 2021; 11(6):588. https://doi.org/10.3390/jpm11060588
Chicago/Turabian StyleWysocka-Mincewicz, Marta, Joanna Gołębiewska, Marta Baszyńska-Wilk, and Andrzej Olechowski. 2021. "Gender-Specific Risk Factors for the Development of Retinal Changes in Children with Type 1 Diabetes" Journal of Personalized Medicine 11, no. 6: 588. https://doi.org/10.3390/jpm11060588
APA StyleWysocka-Mincewicz, M., Gołębiewska, J., Baszyńska-Wilk, M., & Olechowski, A. (2021). Gender-Specific Risk Factors for the Development of Retinal Changes in Children with Type 1 Diabetes. Journal of Personalized Medicine, 11(6), 588. https://doi.org/10.3390/jpm11060588