Reduction in and Preventive Effects for Oral-Cancer Risk with Antidepressant Treatment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Areca-Nut Extract (ANE) Preparation
2.2. Drug Preparation
2.3. Experimental Procedure
2.4. Immunohistochemistry Analysis
2.5. Statistical Analysis
3. Results
3.1. Safety of Antidepressants in Animal Study
3.2. Change in Consumption Ratio and Amount of Areca-Nut Water after Antidepressant Treatment
3.3. Difference in Fibrosis Levels and Risk between Treatment and Placebo Groups
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Boucher, B.J.; Mannan, N. Metabolic effects of the consumption of Areca catechu. Addict. Biol. 2002, 7, 103–110. [Google Scholar] [CrossRef]
- Gupta, P.C.; Ray, C.S. Epidemiology of betel quid usage. Ann. Acad. Med. 2004, 33, 31–36. [Google Scholar]
- IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Betel-quid and areca-nut chewing and some areca-nut derived nitrosamines. IARC Monogr. Eval. Carcinog. Risks Hum. 2004, 85, 1–334. [Google Scholar]
- Shiu, M.N.; Chen, T.H.H.; Chang, S.H.; Hahn, L.J. Risk factors for leukoplakia and malignant transformation to oral carcinoma: A leukoplakia cohort in Taiwan. Br. J. Cancer 2000, 82, 1871–1874. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Y.-H.; Lee, H.-Y.; Tung, S.; Shieh, T.-Y. Epidemiological survey of oral submucous fibrosis and leukoplakia in aborigines of Taiwan. J. Oral Pathol. Med. 2001, 30, 213–219. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.-H.; Ko, A.M.-S.; Yen, C.-F.; Chu, K.-S.; Gao, Y.-J.; Warnakulasuriya, S.; Sunarjo; Ibrahim, S.O.; Zain, R.B.; Patrick, W.K.; et al. Betel-quid dependence and oral potentially malignant disorders in six Asian countries. Br. J. Psychiatry 2012, 201, 383–391. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.-H.; Lee, K.-W.; Fang, F.-M.; Wu, D.-C.; Tsai, S.-M.; Chen, P.-H.; Shieh, T.-Y.; Chen, C.-H.; Wu, I.-C.; Huang, H.-L.; et al. The neoplastic impact of tobacco-free betel-quid on the histological type and the anatomical site of aerodigestive tract cancers. Int. J. Cancer 2012, 131, E733–E743. [Google Scholar] [CrossRef] [PubMed]
- Ko, Y.-C.; Huang, Y.-L.; Lee, C.-H.; Chen, M.-J.; Lin, L.-M.; Tsai, C.-C. Betel quid chewing, cigarette smoking and alcohol consumption related to oral cancer in Taiwan. J. Oral Pathol. Med. 1995, 24, 450–453. [Google Scholar] [CrossRef]
- Lee, C.-H.; Lee, J.-M.; Wu, D.-C.; Hsu, H.-K.; Kao, E.-L.; Huang, H.-L.; Wang, T.-N.; Huang, M.-C.; Wu, M.-T. Independent and combined effects of alcohol intake, tobacco smoking and betel quid chewing on the risk of esophageal cancer in Taiwan. Int. J. Cancer 2004, 113, 475–482. [Google Scholar] [CrossRef]
- Lee, K.-W.; Kuo, W.-R.; Tsai, S.-M.; Wu, D.-C.; Wang, W.-M.; Fang, F.-M.; Chiang, F.-Y.; Ho, K.-Y.; Wang, L.-F.; Tai, C.-F.; et al. Different impact from betel quid, alcohol and cigarette: Risk factors for pharyngeal and laryngeal cancer. Int. J. Cancer 2005, 117, 831–836. [Google Scholar] [CrossRef]
- Lee, C.-H.; Lee, K.-W.; Fang, F.-M.; Wu, D.-C.; Shieh, T.-Y.; Huang, H.-L.; Chen, C.-H.; Chen, P.-H.; Chen, M.-K.; Kuo, S.-J.; et al. The use of tobacco-free betel-quid in conjunction with alcohol/tobacco impacts early-onset age and carcinoma distribution for upper aerodigestive tract cancer. J. Oral Pathol. Med. 2011, 40, 684–692. [Google Scholar] [CrossRef]
- Chen, P.-H.; Mahmood, Q.; Mariottini, G.L.; Chiang, T.-A.; Lee, K.-W. Adverse Health Effects of Betel Quid and the Risk of Oral and Pharyngeal Cancers. BioMed Res. Int. 2017, 2017, 3904098. [Google Scholar] [CrossRef] [Green Version]
- Hsu, H.-F.; Tsou, T.-C.; Chao, H.-R.; Shy, C.-G.; Kuo, Y.-T.; Tsai, F.-Y.; Yeh, S.-C.; Ko, Y.-C. Effects of arecoline on adipogenesis, lipolysis, and glucose uptake of adipocytes—A possible role of betel-quid chewing in metabolic syndrome. Toxicol. Appl. Pharmacol. 2010, 245, 370–377. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.-H.; Liao, Y.-S.; Huang, S.-H.; Liao, W.-H. Relationship between betel quid chewing and risks of cardiovascular disease in older adults: A cross-sectional study in Taiwan. Drug Alcohol Depend. 2014, 141, 132–137. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.-S.; Lee, C.-H.; Chang, S.-J.; Chung, T.-C.; Tsai, E.-M.; Ko, A.M.-J.; Ko, Y.-C. The effect of maternal betel quid exposure during pregnancy on adverse birth outcomes among aborigines in Taiwan. Drug Alcohol Depend. 2008, 95, 134–139. [Google Scholar] [CrossRef]
- Winstock, A.R.; Trivedy, C.R.; Warnakulasuriya, K.A.A.S.; Peters, T.J. A dependency syndrome related to areca nut use: Some medical and psychological aspects among areca nut users in the Gujarat community in the UK. Addict. Biol. 2000, 5, 173–179. [Google Scholar] [CrossRef] [PubMed]
- Lord, G.A.; Lim, C.K.; Warnakulasuriya, S.; Peters, T.J. Chemical and analytical aspects of areca nut. Addict. Biol. 2002, 7, 99–102. [Google Scholar] [CrossRef]
- Chu, N.S. Effects of Betel chewing on the central and autonomic nervous systems. J. Biomed. Sci. 2001, 8, 229–236. [Google Scholar] [CrossRef]
- Winstock, A. Areca nut-abuse liability, dependence and public health. Addict. Biol. 2002, 7, 133–138. [Google Scholar] [CrossRef]
- Bhat, S.J.S.; Blank, M.D.; Balster, R.L.; Nichter, M.; Nichter, M. Areca nut dependence among chewers in a South Indian community who do not also use tobacco. Addiction 2010, 105, 1303–1310. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.-H.; Chiang, S.-L.; Ko, A.M.-S.; Hua, C.-H.; Tsai, M.-H.; Warnakulasuriya, S.; Ibrahim, S.O.; Sunarjo; Zain, R.B.; Ling, T.-Y.; et al. Betel-quid dependence domains and syndrome associated with betel-quid ingredients among chewers: An Asian multi-country evidence. Addiction 2014, 109, 1194–1204. [Google Scholar] [CrossRef]
- Lee, C.-H.; Ko, A.M.-S.; Yang, F.M.; Hung, C.-C.; Warnakulasuriya, S.; Ibrahim, S.O.; Zain, R.B.; Ko, Y.-C. Association of DSM-5 Betel-Quid Use Disorder with Oral Potentially Malignant Disorder in 6 Betel-Quid Endemic Asian Populations. JAMA Psychiatry 2018, 75, 261–269. [Google Scholar] [CrossRef] [Green Version]
- Ko, A.M.-S.; Lee, C.-H.; Ko, Y.-C. Betel quid–associated cancer: Prevention strategies and targeted treatment. Cancer Lett. 2020, 477, 60–69. [Google Scholar] [CrossRef]
- Tilakaratne, W.M.; Ekanayaka, R.P.; Warnakulasuriya, S. Oral submucous fibrosis: A historical perspective and a review on etiology and pathogenesis. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2016, 122, 178–191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, C.-H.; Ko, Y.-C.; Huang, H.-L.; Chao, Y.-Y.; Tsai, C.-C.; Shieh, T.-Y.; Lin, L.-M. The precancer risk of betel quid chewing, tobacco use and alcohol consumption in oral leukoplakia and oral submucous fibrosis in southern Taiwan. Br. J. Cancer 2003, 88, 366–372. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.Y.; Tail, Y.H.; Wang, W.C.; Chen, C.Y.; Kao, Y.H.; Chen, Y.K.; Chen, C.H. Malignant transformation in 5071 southern Taiwanese patients with potentially malignant oral mucosal disorders. BMC Oral Health 2014, 14, 99. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.-F.; Wang, J.-D.; Chen, P.-H.; Chang, S.-J.; Yang, Y.-H.; Ko, Y.-C. Predictors of betel quid chewing behavior and cessation patterns in Taiwan aborigines. BMC Public Health 2006, 6, 271. [Google Scholar] [CrossRef] [Green Version]
- Ghani, W.M.N.; Razak, I.; Yang, Y.-H.; Talib, N.; Ikeda, N.; Axell, T.; Gupta, P.C.; Handa, Y.; Abdullah, N.; Zain, R.B. Factors affecting commencement and cessation of betel quid chewing behaviour in Malaysian adults. BMC Public Health 2011, 11, 82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chung, C.-M.; Kuo, T.-M.; Chiang, S.-L.; Wang, Z.-H.; Lane, H.-Y.; Liu, C.-S.; Ko, Y.-C.; Hung, C.-C. Antidepressants in association with reducing risk of oral cancer occurrence: A nationwide population-based cohort and nested case-control studies. Oncotarget 2016, 7, 11687–11695. [Google Scholar] [CrossRef]
- Osborne, P.G.; Ko, Y.-C.; Wu, M.-T.; Lee, C.-H. Intoxication and substance use disorder to Areca catechu nut containing betel quid: A review of epidemiological evidence, pharmacological basis and social factors influencing quitting strategies. Drug Alcohol Depend. 2017, 179, 187–197. [Google Scholar] [CrossRef]
- Ko, A.M.; Lee, C.H.; Ko, A.M.; Ko, Y.C. Betel quid dependence mechanism and potential cessation therapy. Prog. Neuro Psychopharmacol. Biol. Psychiatry 2020, 103, 109982. [Google Scholar] [CrossRef]
- Qiu, F.; Zhong, X.; Mao, Q.; Huang, Z. The antidepressant-like effects of paeoniflorin in mouse models. Exp. Ther. Med. 2013, 5, 1113–1116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reimets, R.; Raud, S.; Loomets, M.; Visnapuu, T.; Volke, V.; Reimets, A.; Plaas, M.; Vasar, E. Variability in the effect of antide-pressants upon Wfs1-deficient mice is dependent on the drugs’ mechanism of actions. Behav. Brain Res. 2016, 308, 53–63. [Google Scholar] [CrossRef]
- Wróbel, A.; Serefko, A.; Wlaź, P.; Poleszak, E. The depressogenic-like effect of acute and chronic treatment with dexamethasone and its influence on the activity of antidepressant drugs in the forced swim test in adult mice. Prog. Neuro Psychopharmacol. Biol. Psychiatry 2014, 54, 243–248. [Google Scholar] [CrossRef] [PubMed]
- Biradar, S.; Munde, A.; Biradar, B.; Shaik, S.; Mishra, S. Oral submucous fibrosis: A clinico-histopathological correlational study. J. Cancer Res. Ther. 2018, 14, 597. [Google Scholar] [CrossRef]
- Pandya, S.; Chaudhary, A.K.; Singh, M.; Singh, M.; Mehrotra, R. Correlation of histopathological diagnosis with habits and clinical findings in oral submucous fibrosis. Head Neck Oncol. 2009, 1, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, P.-H.; Tu, H.-P.; Wang, S.-J.; Ko, A.M.-S.; Lee, C.-P.; Chiang, T.-A.; Tsai, Y.-S.; Lee, C.-H.; Shieh, T.-Y.; Ko, C.-H.; et al. Monoamine oxidase A variants are associated with heavy betel quid use. Addict. Biol. 2011, 17, 786–797. [Google Scholar] [CrossRef]
- Dar, A.; Khatoon, S. Behavioral and biochemical studies of dichloromethane fraction from the Areca catechu nut. Pharmacol. Biochem. Behav. 2000, 65, 1–6. [Google Scholar] [CrossRef]
- Fowler, J.S.; Volkow, N.D.; Wang, G.-J.; Pappas, N.; Logan, J.; Shea, C.; Alexoff, D.; MacGregor, R.R.; Schlyer, D.J.; Zezulkova, I.; et al. Brain monoamine oxidase A inhibition in cigarette smokers. Proc. Natl. Acad. Sci. USA 1996, 93, 14065–14069. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Osman, M.Y.; Osman, H.M. Inhibitory effect of acetylcholine on monoamine oxidase A and B activity in different parts of rat brain. Arzneim. Forsch. 2008, 58, 493–496. [Google Scholar] [CrossRef] [PubMed]
- Spring, B.; Doran, N.; Pagoto, S.; McChargue, D.; Cook, J.W.; Bailey, K.; Crayton, J.; Hedeker, D. Fluoxetine, smoking, and history of major depression: A randomized controlled trial. J. Consult. Clin. Psychol. 2007, 75, 85–94. [Google Scholar] [CrossRef] [Green Version]
- Seth, P.; Cheeta, S.; Tucci, S.; File, S.E. Nicotinic–serotonergic interactions in brain and behaviour. Pharmacol. Biochem. Behav. 2002, 71, 795–805. [Google Scholar] [CrossRef]
- da Costa, C.L.; Younes, R.N.; Lourenco, M.T. Stopping smoking: A prospective, randomized, double-blind study comparing nortriptyline to placebo. Chest 2002, 122, 403–408. [Google Scholar] [CrossRef] [Green Version]
- Hughes, J.R.; Stead, L.F.; Hartmann-Boyce, J.; Cahill, K.; Lancaster, T. Antidepressants for smoking cessation. Cochrane Database Syst. Rev. 2014, CD000031. [Google Scholar] [CrossRef] [Green Version]
- Arakeri, G.; Rai, K.K.; Hunasgi, S.; Merkx, M.; Gao, S.; Brennan, P.A. Oral submucous fibrosis: An update on current theories of pathogenesis. J. Oral Pathol. Med. 2017, 46, 406–412. [Google Scholar] [CrossRef] [PubMed]
- Napier, S.S.; Speight, P.M. Natural history of potentially malignant oral lesions and conditions: An overview of the literature. J. Oral Pathol. Med. 2008, 37, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Hung, C.C.; Lee, C.H.; Chung, C.M.; Nithiyanantham, S.; Lane, H.Y.; Ko, Y.C. Antidepressant-induced reduction in betel-quid use in patients with depression: A pioneer clinical study. Medicine 2020, 99, e18672. [Google Scholar] [CrossRef] [PubMed]
- Hung, C.-C.; Lee, C.-H.; Ko, A.M.-S.; Lane, H.-Y.; Lee, C.-P.; Ko, Y.-C. Effect of antidepressants for cessation therapy in betel-quid use disorder: A randomised, double-blind, placebo-controlled trial. Epidemiol. Psychiatr. Sci. 2020, 29, e125. [Google Scholar] [CrossRef] [PubMed]
- Oates, J.A.; Melmon, K.; Sjoerdsma, A.; Gillespie, L.; Mason, D.T. Release of a Kinin Peptide in the Carcinoid Syndrome. Lancet 1964, 1, 514–517. [Google Scholar] [CrossRef]
- Dees, C.; Akhmetshina, A.; Zerr, P.; Reich, N.; Palumbo, K.; Horn, A.; Jungel, A.; Beyer, C.; Kronke, G.; Zwerina, J.; et al. Platelet-derived serotonin links vascular disease and tissue fibrosis. J. Exp. Med. 2011, 208, 961–972. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rothman, R.B.; Baumann, M.; Savage, J.E.; Rauser, L.; McBride, A.; Hufeisen, S.J.; Roth, B.L. Evidence for Possible Involvement of 5-HT 2B Receptors in the Cardiac Valvulopathy Associated with Fenfluramine and Other Serotonergic Medications. Circulation 2000, 102, 2836–2841. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fowles, R.E.; Cloward, T.V.; Yowell, R.L. Endocardial Fibrosis Associated with Fenfluramine–Phentermine. N. Engl. J. Med. 1998, 338, 1316–1317. [Google Scholar] [CrossRef] [PubMed]
- Antonini, A.; Poewe, W. Fibrotic heart-valve reactions to dopamine-agonist treatment in Parkinson’s disease. Lancet Neurol. 2007, 6, 826–829. [Google Scholar] [CrossRef]
- Alsamman, S.; Christenson, S.A.; Yu, A.; Ayad, N.M.E.; Mooring, M.S.; Segal, J.M.; Hu, J.K.; Schaub, J.R.; Ho, S.S.; Rao, V.; et al. Targeting acid ceramidase inhibits YAP/TAZ signaling to reduce fibrosis in mice. Sci. Transl. Med. 2020, 12. [Google Scholar] [CrossRef] [PubMed]
Changes in | Changes in | |||||||
---|---|---|---|---|---|---|---|---|
Groups | N | Baseline | 4-Week Follow-Up | 36-Week Follow-Up | 4-Week Follow-Up (%) | p Value | 36-Week Follow-Up (%) | p Value |
Placebo A | 15 | 1.63 (0.38) | 1.43 (0.47) | 1.34 (0.49) | 12.2 | 0.16 | 17.8 | 0.12 |
MOAI | 15 | 1.43 (0.39) | 0.70 (0.55) | 1.18 (0.15) | 51.0 | <0.01 | 17.5 | 0.04 |
SSRI | 10 | 1.58 (0.94) | 1.07 (0.34) | 0.90 (0.33) | 32.3 | 0.03 | 42.8 | 0.02 |
Placebo B | 10 | 1.34 (0.36) | 1.22 (0.32) | - | 8.96 | 0.26 | - | - |
TCA | 5 | 1.19 (0.44) | 1.08 (0.30) | - | 9.24 | 0.24 | - | - |
MAOI | SSRI | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Scale | Placebo, Mean ± SD (n) | MOAI ± SD (n) | SSRI, Mean ± SD (n) | F | p | F a | p a | F | p | F a | p a |
Baseline | 21.7 ± 4.92 (15) | 19.6 ± 4.19 (15) | 18 ± 11.6 (10) | 0.34 | 0.5656 | 0.39 | 0.537 | 0.46 | 0.5023 | 1.02 | 0.3265 |
Weeks 1–2 | 26.2 ± 4.19 (15) | 6.7 ± 8.96 (15) | 26.05 ± 11.4 (10) | 16.94 | 0.0003 | 14.3 | 0.001 | 0.1 | 0.9763 | 0.79 | 0.3879 |
Weeks 3–4 | 21.0 ± 6.30 (15) | 7.4 ± 5.08 (15) | 8.2 ± 4.3 (10) | 11.14 | 0.0024 | 6.6 | 0.0175 | 8.06 | 0.0093 | 8.66 | 0.0091 |
Weeks 36 | 25.1 ± 5.84 (15) | 19.2 ± 4.15 (15) | 15.7 ± 5.46 (10) | 1.96 | 0.1749 | 0.5 | 0.4867 | 4.81 | 0.0418 | 4.66 | 0.0454 |
Drug | |||||||||||
Week 1–2 × drug | 16.83 | 0.0003 | 18.28 | 0.0002 | 0.69 | 0.4137 | 0.3 | 0.8714 | |||
Week 3–4 × drug | 12.53 | <0.0001 | 13.33 | <0.0001 | 3.46 | 0.0398 | 3.62 | 0.0351 | |||
Week 36 × drug | 12.2 | <0.0001 | 8.16 | 0.0001 | 1.53 | 0.2175 | 0.98 | 0.4118 |
Fibrosis Index (≧5) | ||||
---|---|---|---|---|
N (Expired) | No | Yes | HR (95%CI) | |
Number of mice | 45 (5) | |||
Groups | ||||
Placebo | 23 (2) | 9 (39.1) | 14 (60.9) | 1 |
MAOI | 13 (2) | 9 (69.2) | 4 (30.8) | 0.29 (0.06–1.21) |
SSRI | 9 (1) | 8 (88.9) | 1 (11.1) | 0.08 (0.01–0.76) |
MAOI + SSRI | 22 (3) | 17 (77.3) | 5 (22.7) | 0.19 (0.05–0.70) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chung, C.-M.; Kuo, T.-M.; Yeh, K.-T.; Lee, C.-H.; Ko, Y.-C. Reduction in and Preventive Effects for Oral-Cancer Risk with Antidepressant Treatment. J. Pers. Med. 2021, 11, 591. https://doi.org/10.3390/jpm11070591
Chung C-M, Kuo T-M, Yeh K-T, Lee C-H, Ko Y-C. Reduction in and Preventive Effects for Oral-Cancer Risk with Antidepressant Treatment. Journal of Personalized Medicine. 2021; 11(7):591. https://doi.org/10.3390/jpm11070591
Chicago/Turabian StyleChung, Chia-Min, Tzer-Min Kuo, Kun-Tu Yeh, Chien-Hung Lee, and Ying-Chin Ko. 2021. "Reduction in and Preventive Effects for Oral-Cancer Risk with Antidepressant Treatment" Journal of Personalized Medicine 11, no. 7: 591. https://doi.org/10.3390/jpm11070591
APA StyleChung, C.-M., Kuo, T.-M., Yeh, K.-T., Lee, C.-H., & Ko, Y.-C. (2021). Reduction in and Preventive Effects for Oral-Cancer Risk with Antidepressant Treatment. Journal of Personalized Medicine, 11(7), 591. https://doi.org/10.3390/jpm11070591