Influence of CYP2C9 Genetic Polymorphisms on the Pharmacokinetics of Losartan and Its Active Metabolite E-3174: A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Methods
2.1. Search Strategy
2.2. Selection Criteria and Data Extraction
2.3. Statistical Analysis
3. Results
Sensitivity Analysis
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Al-Majed, A.-R.A.; Assiri, E.; Khalil, N.Y.; Abdel-Aziz, H.A. Losartan: Comprehensive Profile. Profiles Drug Subst. Excip. Relat. Methodol. 2015, 40, 159–194. [Google Scholar]
- Product Information: COZAAR(R) Oral Tablets, Losartan Potassium Oral Tablets. Merck Sharp & Dohme Corp. (per FDA), Whitehouse Station, NJ, 2018. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/020386s062lbl.pdf (accessed on 5 April 2021).
- Zhou, S.-F.; Liu, J.-P. Chowbay, B: Polymorphism of human cytochrome P450 enzymes and its clinical impact. Drug Metab. Rev. 2009, 41, 89–295. [Google Scholar] [CrossRef]
- Van Booven, D.; Marsh, S.; McLeod, H.; Whirl Carrillo, M.; Sangkuhl, K.; Klein, T.E.; Altman, R.B. Cytochrome P450 2C9-CYP2C9. Pharm. Genom. 2010, 20, 277–281. [Google Scholar] [CrossRef] [PubMed]
- Burnier, M.; Wuerzner, G. Pharmacokinetic evaluation of losartan. Expert Opin. Drug Metab. Toxicol. 2011, 7, 643–649. [Google Scholar] [CrossRef]
- van den Anker, J.; Reed, M.D.; Allegaert, K.; Kearns, G.L. Developmental Changes in Pharmacokinetics and Pharmacodynamics. J. Clin. Pharmacol. 2018, 58 (Suppl. S10), 10–25. [Google Scholar] [CrossRef] [Green Version]
- Baggot, J.D. Pharmacokinetic-pharmacodynamic relationship. Ann. Rech. Vet. 1990, 21 (Suppl. S1), 29–40. [Google Scholar]
- Lee, C.R.; Pieper, J.A.; Hinderliter, A.L.; Blaisdell, J.A.; Goldstein, J.A. Losartan and E3174 pharmacokinetics in cytochrome P450 2C9*1/*1, *1/*2, and *1/*3 individuals. Pharmacotherapy 2003, 23, 720–725. [Google Scholar] [CrossRef] [PubMed]
- Falvella, F.S.; Marelli, S.; Cheli, S.; Montanelli, S.; Viecca, F.; Salvi, L.; Ferrara, A.; Clementi, E.; Trifirò, G.; Pini, A. Pharmacogenetic approach to losartan in Marfan patients: A starting point to improve dosing regimen? Drug Metab. Pers. Ther. 2016, 31, 157–163. [Google Scholar] [CrossRef]
- Bae, J.-W.; Choi, C.-I.; Kim, M.-J.; Oh, D.-H.; Keum, S.-K.; Park, J.-I.; Kim, B.-H.; Bang, H.-K.; Oh, S.-G.; Kang, B.-S.; et al. Frequency of CYP2C9 alleles in Koreans and their effects on losartan pharmacokinetics. Acta Pharmacol. Sin. 2011, 32, 1303–1308. [Google Scholar] [CrossRef]
- Yasar, U.; Dahl, M.-L.; Christensen, M.; Eliasson, E. Intra-individual variability in urinary losartan oxidation ratio, an in vivo marker of CYP2C9activity. Br. J. Clin. Pharmacol. 2002, 54, 183–185. [Google Scholar] [CrossRef] [Green Version]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. Prisma Group Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef] [Green Version]
- Wells, G.A.; Shea, B.; O’Connell, D.; Peterson, J.; Welch, V.; Losos, M.; Tugwell, P. The Newcastle-Ottawa Scale (NOS) for Assessing the Quality of Nonrandomized Studies in Meta-Analyses. Available online: http://www.ohri.ca/programs/clinical_epidemiology/oxford.htm (accessed on 25 May 2021).
- Higgins, J.P.; Thompson, S.G. Quantifying heterogeneity in a meta-analysis. Stat. Med. 2002, 21, 1539–1558. [Google Scholar] [CrossRef]
- Bae, J.-W.; Choi, C.-I.; Lee, H.-I.; Lee, Y.-J.; Jang, C.-G.; Lee, S.-Y. Effects of CYP2C9*1/*3 and *1/*13 on the pharmacokinetics of losartan and its active metabolite E-3174. Int. J. Clin. Pharmacol. Ther. 2012, 50, 683–689. [Google Scholar] [CrossRef]
- Cabaleiro, T.; Román, M.; Ochoa, D.; Talegón, M.; Prieto-Pérez, R.; Wojnicz, A.; López-Rodríguez, R.; Novalbos, J.; Abad-Santos, F. Evaluation of the Relationship between Sex, Polymorphisms in CYP2C8 and CYP2C9, and Pharmacokinetics of Angiotensin Receptor Blockers. Drug Metab. Dispos. 2012, 41, 224–229. [Google Scholar] [CrossRef]
- Han, Y.; Guo, D.; Chen, Y.; Chen, Y.; Tan, Z.-R.; Zhou, H.-H. Effect of silymarin on the pharmacokinetics of losartan and its active metabolite E-3174 in healthy Chinese volunteers. Eur. J. Clin. Pharmacol. 2009, 65, 585–591. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.-X.; Wu, H.; Zhao, Y.; Zhou, T.; Ai, X.; Dong, Y.; Zhang, Y.; Lai, Y. Effect of CYP2C9 genetic polymorphism and breviscapine on losartan pharmacokinetics in healthy subjects. Xenobiotica 2021, 51, 616–623. [Google Scholar] [CrossRef]
- Li, Z.; Wang, G.; Wang, L.-S.; Zhang, W.; Tan, Z.-R.; Fan, L.; Chen, B.-L.; Li, Q.; Liu, J.; Tu, J.-H.; et al. Effects of the CYP2C9*13allele on the pharmacokinetics of losartan in healthy male subjects. Xenobiotica 2009, 39, 788–793. [Google Scholar] [CrossRef]
- Yang, L.; Guo, T.; Zhuang, X.; Gu, H. Influence of CYP2C9*2 genetic polymorphism on pharmacokinetics of losartan and its active metabolite E-3174 on the background of CYP3A4 wild genotype in healthy Chinese Hui subjects. J. Chin. Pharm. Sci. 2018, 27, 14–21. [Google Scholar]
- Yasar, U.; Forslund-Bergengren, C.; Tybring, G.; Dorado, P.; Llerena, A.; Sjöqvist, F.; Eliasson, E.; Dahl, M. Pharmacokinetics of losartan and its metabolite E-3174 in relation to the CYP2C9 genotype. Clin. Pharmacol. Ther. 2002, 71, 89–98. [Google Scholar] [CrossRef] [Green Version]
- Kaukonen, K.-M.; Olkkola, K.T.; Neuvonen, P.J. Fluconazole but not itraconazole decreases the metabolism of losartan to E-3174. Eur. J. Clin. Pharmacol. 1998, 53, 445–449. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, M.; Fukumoto, K.; Kato, R.; Tanaka, K.; Ueno, K.; Takagi, M. The Effect of Bucolome, a CYP2C9 Inhibitor, on the Pharmacokinetics of Losartan. Drug Metab. Pharmacokinet. 2008, 23, 115–119. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.-H.; Cho, Y.-A.; Choi, J.-S. Effects of ticlopidine on pharmacokinetics of losartan and its main metabolite EXP-3174 in rats. Acta Pharmacol. Sin. 2011, 32, 967–972. [Google Scholar] [CrossRef]
- Sekino, K.; Kubota, T.; Okada, Y.; Yamada, Y.; Yamamoto, K.; Horiuchi, R.; Kimura, K.; Iga, T. Effect of the single CYP2C9*3 allele on pharmacokinetics and pharmacodynamics of losartan in healthy Japanese subjects. Eur. J. Clin. Pharmacol. 2003, 59, 589–592. [Google Scholar] [CrossRef] [PubMed]
- Choi, C.-I.; Kim, M.-J.; Chung, E.-K.; Lee, H.-I.; Jang, C.-G.; Bae, J.-W.; Lee, S.-Y. CYP2C9 3 and 13 alleles significantly affect the pharmacokinetics of irbesartan in healthy Korean subjects. Eur. J. Clin. Pharmacol. 2012, 68, 149–154. [Google Scholar] [CrossRef]
- Chen, G.; Jiang, S.; Mao, G.; Zhang, S.; Hong, X.; Tang, G.; Li, Z.; Liu, X.; Zhang, Y.; Xing, H.; et al. CYP2C9 Ile359Leu polymorphism, plasma irbesartan concentration, and acute blood pressure reductions in response to irbesartan treatment in Chinese hypertensive patients. Methods Find. Exp. Clin. Pharmacol. 2006, 28, 19–24. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Ingelman-Sundberg, M.; Lauschke, V.M. Worldwide Distribution of Cytochrome P450 Alleles: A Meta-analysis of Population-scale Sequencing Projects. Clin. Pharmacol. Ther. 2017, 102, 688–700. [Google Scholar] [CrossRef] [Green Version]
- Dorji, P.W.; Tshering, G.; Na-Bangchang, K. CYP2C9, CYP2C19, CYP2D6 and CYP3A5 polymorphisms in South-East and East Asian populations: A systematic review. J. Clin. Pharm. Ther. 2019, 44, 508–524. [Google Scholar] [CrossRef] [Green Version]
- Schaffenburg, W.; Lockshin, B.; DeKlotz, C. Comprehensive Dermatologic Drug Therapy, 4th ed.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 21–33. [Google Scholar]
- Siest, G.; Jeannesson, E.; Visvikis-Siest, S. Enzymes and pharmacogenetics of cardiovascular drugs. Clin. Chim. Acta 2007, 381, 26–31. [Google Scholar] [CrossRef] [PubMed]
- Pan, P.-P.; Weng, Q.-H.; Zhou, C.-J.; Wei, Y.-L.; Wang, L.; Dai, D.-P.; Cai, J.-P.; Hu, G.-X. The role of CYP2C9 genetic polymorphism in carvedilol O-desmethylation in vitro. Eur. J. Drug Metab. Pharmacokinet. 2014, 41, 79–86. [Google Scholar] [CrossRef]
- Vormfelde, S.V.; Engelhardt, S.; Zirk, A.; Meineke, I.; Tuchen, F.; Kirchheiner, J.; Brockmoller, J. CYP2C9 polymorphisms and the interindividual variability in pharmacokinetics and pharmacodynamics of the loop diuretic drug torsemide. Clin. Pharmacol. Ther. 2004, 76, 557–566. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.-H.; Hsiong, C.-H.; Ho, H.-T.; Shih, T.-Y.; Yen, S.-J.; Wang, H.-H.; Wu, J.-Y.; Kuo, B.P.-C.; Chen, Y.-T.; Ho, S.-T.; et al. Genetic Polymorphisms of Metabolic Enzymes and the Pharmacokinetics of Indapamide in Taiwanese Subjects. AAPS J. 2013, 16, 206–213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herbison, P.; Hay-Smith, J.; Gillespie, W.J. Meta-analyses of small numbers of trials often agree with longer-term results. J. Clin. Epidemiol. 2011, 64, 145–153. [Google Scholar] [CrossRef]
First Author, Year | Nation | Studied Polymorphisms | Age | n (Male Percent, %) | BMI (kg/m2) (SD) | Genotyping Methods | Quantitative Methods | Total NOS |
---|---|---|---|---|---|---|---|---|
Bae et al. 2012 [15] | Korea | CYP2C9*3 | 22.6 (1.5 b) | 13 (N/A) | 22.6 (2.3 b) | PCR-RFLP | HPLC-FLU | 7 |
Cabaleiro et al. 2013 [16] | Spain | CYP2C9*2 CYP2C9*3 | 22.6 (1.6 b) | 36 (50.0) | 72.1 c (6.2 b,c) | RT-PCR | HPLC-MS/MS | 6 |
Han 2009 et al. [17] | China | CYP2C9*3 | 21.9 (2.6 b) | 12 (100.0) | 24.6 (4.9 b) | PCR-RFLP | HPLC-MS | 7 |
Huang 2021 et al. [18] | China | CYP2C9*3 | 23.0 (N/A b) | 11 (N/A) | 19.6 (N/A b) | PCR-RFLP | HPLC-MS | 7 |
Lee 2003 et al. [8] | United States | CYP2C9*2 CYP2C9*3 | 24.0 (5.0 b) | 15 (47.0) | 79.0 c (18.0 b,c) | N/A | HPLC-FLU | 7 |
Li 2009 et al. [19] | China | CYP2C9*3 | 20.1 (1.9 b) | 16 (100.0) | 17.0–19.0 a | PCR-RFLP | HPLC-MS/MS | 6 |
Yang 2018 et al. [20] | China | CYP2C9*2 | 21–25 a | 14 (50.0) | 17.4–24.8 a | PCR-RFLP | HPLC-FLU | 7 |
Yasar 2002 et al. [21] | Sweden | CYP2C9*2 CYP2C9*3 | 25–54 a | 22 (50.0) | 52–91 a,c | PCR-RFLP | HPLC-FLU | 7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, Y.-A.; Song, Y.-b.; Yee, J.; Yoon, H.-Y.; Gwak, H.-S. Influence of CYP2C9 Genetic Polymorphisms on the Pharmacokinetics of Losartan and Its Active Metabolite E-3174: A Systematic Review and Meta-Analysis. J. Pers. Med. 2021, 11, 617. https://doi.org/10.3390/jpm11070617
Park Y-A, Song Y-b, Yee J, Yoon H-Y, Gwak H-S. Influence of CYP2C9 Genetic Polymorphisms on the Pharmacokinetics of Losartan and Its Active Metabolite E-3174: A Systematic Review and Meta-Analysis. Journal of Personalized Medicine. 2021; 11(7):617. https://doi.org/10.3390/jpm11070617
Chicago/Turabian StylePark, Yoon-A, Yu-bin Song, Jeong Yee, Ha-Young Yoon, and Hye-Sun Gwak. 2021. "Influence of CYP2C9 Genetic Polymorphisms on the Pharmacokinetics of Losartan and Its Active Metabolite E-3174: A Systematic Review and Meta-Analysis" Journal of Personalized Medicine 11, no. 7: 617. https://doi.org/10.3390/jpm11070617
APA StylePark, Y. -A., Song, Y. -b., Yee, J., Yoon, H. -Y., & Gwak, H. -S. (2021). Influence of CYP2C9 Genetic Polymorphisms on the Pharmacokinetics of Losartan and Its Active Metabolite E-3174: A Systematic Review and Meta-Analysis. Journal of Personalized Medicine, 11(7), 617. https://doi.org/10.3390/jpm11070617