Outpatient Management of COVID-19 Disease: A Holistic Patient-Centered Proposal Based on the Greek Experience
Abstract
:1. Introduction
2. Preventive Measures
3. Patients’ Isolation and Quarantine Criteria of Close Contacts
4. Risk Stratification of COVID-19 Disease in Outpatients
4.1. Clinical Spectrum
4.2. Clinic Evaluation
- Infection control: for all patients, we reinforce the importance of infection control and self-isolation and provide instructions on the anticipated duration of isolation.
- Remote (telehealth) management is preferred for the majority of patients for the following reasons: (a) Remote management can prevent unnecessary in-person medical visits, including visits to urgent care facilities and Eds. (b) In-person healthcare provider visits require the patient to leave their home, traveling via public, private, or emergency transport and potentially exposing others to SARS-CoV-2. (c) Upon arrival at a health care facility, patients may expose other patients and health care workers to the virus [26,27,28].
- The use of home pulse oximetry monitoring is recommended in patients seen in the ambulatory or ED setting and discharged home, but it is not always a flawless solution [26]. However, and as dyspnea may not correlate with the presence or degree of hypoxia in all patients, along with risk factors for developing severe disease (Table 1), pulse oximetry can be used to guide clinicians in determining whether a patient requires in-person evaluation [29].
4.3. Risk Stratification
- severe shortness of breath at rest or difficulty breathing
- reduced oxygen saturation levels measured by pulse oximetry
- coughing up blood
- collapse or fainting (syncope)
- new confusion
5. Management of Patients with COVID-19 at Home
5.1. Specific COVID-19 Therapies under Investigation
5.1.1. Chloroquine, Hydroxychloroquine, Azithromycin
5.1.2. Colchicine
5.1.3. Ivermectin
5.1.4. Inhaled Budesonide
5.1.5. Fluvoxamine
5.1.6. Monoclonal Antibodies
5.1.7. Other Agents
5.2. The role of Antibiotics
5.3. The Role of Anticoagulation
6. Management of Patients with COVID-19 after Hospital Discharge
6.1. Isolation Management and Health Monitoring
6.2. Venous Thromboembolism (VTE) Prophylaxis
6.3. Deep Venous Thromboembolism (DVT) or Pulmonary Embolism (PE)
6.4. Post-COVID-19 Syndrome
6.5. Physical Therapy (PT)
6.6. Rehabilitation
6.7. Reassessment of the Respiratory System
7. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Available online: https://www.who.int/emergencies/diseases/novel-coronavirus-2019 (accessed on 1 June 2021).
- Cohen, P.A.; Hall, L.E.; John, J.N.; Rapoport, A.B. The Early Natural History of SARS-CoV-2 Infection: Clinical Observations From an Urban, Ambulatory COVID-19 Clinic. Mayo Clin. Proc. 2020, 95, 1124. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Hu, B.; Hu, C.; Zhu, F.; Liu, X.; Zhang, J.; Wang, B.; Xiang, H.; Cheng, Z.; Xiong, Y.; et al. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. JAMA 2020, 323, 1061–1069. [Google Scholar] [CrossRef] [PubMed]
- Ramírez, P.; Gordón, M.; Martín-Cerezuela, M.; Villarreal, E.; Sancho, E.; Padrós, M.; Frasquet, J.; Leyva, G.; Molina, I.; Barrios, M.; et al. Acute respiratory distress syndrome due to COVID-19. Clinical and prognostic features from a medical Critical Care Unit in Valencia, Spain. Med. Intensiva. 2021, 45, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Du, R.H.; Liu, L.M.; Yin, W.; Wang, W.; Guan, L.L.; Yuan, M.L.; Li, Y.L.; Hu, Y.; Li, X.Y.; Sun, B.; et al. Hospitalization and Critical Care of 109 Decedents with COVID-19 Pneumonia in Wuhan, China. Ann. Am. Thorac. Soc. 2020, 17, 839–846. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Available online: https://eody.gov.gr/wp-content/uploads/2021/06/covid-gr-daily-report-20210624.pdf (accessed on 24 June 2021).
- Available online: https://hts.org.gr/assets/files/news/COVID_home_care_updated_plusafterhospitalcare.pdf (accessed on 8 March 2021).
- Available online: https://www.ema.europa.eu/en/human-regulatory/overview/public-health-threats/coronavirus-disease-COVID-19/treatments-vaccines/treatments-COVID-19/COVID-19-treatments-under-evaluation (accessed on 16 July 2021).
- Bhimraj, A.; Morgan, R.; Shumaker, A.H.; Lavergne, V.; Baden, L.; Cheng, V.C.-C.; Edwards, K.M.; Gandhi, R.; Muller, W.J.; O’Horo, J.C.; et al. Infectious Diseases Society of America Guidelines on the Treatment and Management of Patients with COVID-19. Clin. Infect. Dis. 2020, ciaa478. [Google Scholar] [CrossRef]
- Kostikas, K. Letter from Greece. Respirology 2021, 26, 715–717. [Google Scholar] [CrossRef] [PubMed]
- Tomos, I.; Kostikas, K.; Hillas, G.; Bakakos, P.; Loukides, S. Primary care and COVID-19: Cutting the Gordian knot—The Greek experience and algorithm. ERJ Open Res. 2020, 6, 00468–02020. [Google Scholar] [CrossRef]
- WHO. Coronavirus Disease (COVID-19) Advice for the Public: When and How to Use Masks; WHO Last Report Updated; WHO: Geneva, Switzerland, 2020. [Google Scholar]
- Centers for Disease Control and Prevention. Your Guide to Masks; CDC Report Updated; Centers for Disease Control and Prevention: Atlanta, GA, USA, 19 April 2021.
- Wiersinga, W.J.; Rhodes, A.; Cheng, A.C.; Peacock, S.J.; Prescott, H.C. Pathophysiology, Transmission, Diagnosis, and Treatment of Coronavirus Disease 2019 (COVID-19): A Review. JAMA 2020, 324, 782–793. [Google Scholar] [CrossRef]
- Esposito, S.; Principi, N.; Leung, C.C.; Migliori, G.B. Universal use of face masks for success against COVID-19: Evidence and implications for prevention policies. Eur. Respir. J. 2020, 55, 2001260. [Google Scholar] [CrossRef]
- Bahl, P.; Bhattacharjee, S.; de Silva, C.; Chughtai, A.A.; Doolan, C.; MacIntyre, C.R. Face coverings and mask to minimise droplet dispersion and aerosolization: A video case study. Thorax 2020, 75, 1024–1025. [Google Scholar] [CrossRef]
- Chu, D.K.; Akl, E.A.; Duda, S.; Solo, K.; Yaacoub, S.; Schünemann, H.J.; El-harakeh, A.; Bognanni, A.; Lotfi, T.; Loeb, M.; et al. Physical distancing, face masks, and eye protection to prevent person-to-person transmission of SARS-CoV-2 and COVID-19: A systematic review and meta-analysis. Lancet 2020, 395, 1973–1987. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. When You’ve Been Fully Vaccinated. How to Protect Yourself and Others; CDC Report Updated; Centers for Disease Control and Prevention: Atlanta, GA, USA, 2021.
- Center for Disease Control and Prevention (CDC). Handwashing in Community Settings, When and How to Wash Your Hands; CDC Report Updated; Centers for Disease Control and Prevention: Atlanta, GA, USA, 2020.
- Center for Disease Control and Prevention (CDC). Cleaning, Disinfecting, and Ventilation; Centers for Disease Control and Prevention: Atlanta, GA, USA, 2021.
- National Public Health Organization of Greece (EODY). Quarantine and Isolation Ending Strategy in Close Contacts and Patients of COVID-19; Technical Report, 22/4/21; National Public Health Organization of Greece (EODY): Athens, Greece, 2021.
- European Centre for Disease Prevention and Control. Guidance for Discharge and Ending of Isolation of People with COVID-19; Technical Report, 16/10/20; European Centre for Disease Prevention and Control: Solna, Sweden, 2020. [Google Scholar]
- Hellenic Thoracic Society. Suggested at Home Management of a Suspected or Confirmed Patient with COVID-19; Technical Report, 2/12/20; Hellenic Thoracic Society: Athens, Greece, 2020. [Google Scholar]
- Mayr, V.; Nußbaumer-Streit, B.; Gartlehner, G. Quarantine alone or in combination with other public health measures to control COVID-19: A rapid review. Cochrane Database Syst. Rev. 2020, 4, CD013574. [Google Scholar]
- Richardson, S.; Hirsch, J.S.; Narasimhan, M.; Crawford, J.M.; McGinn, T.; Davidson, K.W.; Barnaby, D.P.; Becker, L.B.; Chelico, J.D.; Cohen, S.L.; et al. Presenting Characteristics Comorbidities, and Outcomes Among 5700 Patients Hospitalized With COVID-19 in the New York City Area. JAMA 2020, 10022, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Davin-Casalena, B.; Jardin, M.; Guerrera, H.; Mabille, J.; Tréhard, H.; Lapalus, D.; Ménager, C.; Nauleau, S.; Cassaro, V.; Verger, P.; et al. The impact of the COVID-19 pandemic on first-line primary care in southeastern France: Feedback on the implementation of a real-time monitoring system based on regional health insurance data. Rev. Epidemiol. Sante Publique 2021. [Google Scholar] [CrossRef]
- Shah, S.; Majmudar, K.; Stein, A.; Gupta, N.; Suppes, S.; Karamanis, M.; Capannari, J.; Sethi, S.; Patte, C. Novel Use of Home Pulse Oximetry Monitoring in COVID-19 Patients Discharged From the Emergency Department Identifies Need for Hospitalization. Acad. Emerg. Med. 2020, 27, 681. [Google Scholar] [CrossRef]
- Available online: https://www.uptodate.com/contents/COVID-19-outpatient-evaluation-and-management-of-acute-illness-inadults?search=undefined&source=COVID19_landing&usage_type=main_section (accessed on 29 June 2021).
- Berezin, L.; Zhaborkritsky, A.; Andany, N.; Chan, A.K. Diagnostic accuracy of subjective dyspnoea in detecting hypoxaemia among outpatients with COVID-19: A retrospective cohort study. BMJ Open 2021, 11, e046282. [Google Scholar] [CrossRef]
- Fisman, D.N.; Bogoch, I.; Lapointe-Shaw, L.; McCready, J.; Tuite, A.R. Risk Factors Associated With Mortality Among Residents With Coronavirus Disease 2019 (COVID-19) in Long-term Care Facilities in Ontario, Canada. JAMA Netw. Open 2020, 3, e2015957. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. Underlying Medical Conditions Associated with High Risk for Severe COVID-19: Information for Healthcare Providers. Available online: https://www.cdc.gov/coronavirus/2019-ncov/hcp/clinical-care/underlyingconditions.html (accessed on 5 April 2021).
- Rosenthal, N.; Cao, Z.; Gundrum, J.; Sianis, J.; Safo, S. Risk Factors Associated With In-Hospital Mortality in a US National Sample of Patients With COVID-19. JAMA Netw. Open 2020, 3, e2029058. [Google Scholar] [CrossRef]
- Williamson, E.J.; Walker, A.J.; Bhaskaran, K.; Bacon, S.; Bates, C.; Morton, C.E.; Curtis, H.J.; Mehrkar, A.; Evans, D.; Inglesby, P.; et al. Factors associated with COVID-19-related death using OpenSAFELY. Nature 2020, 584, 430. [Google Scholar] [CrossRef] [PubMed]
- Mitjà, O.; Corbacho-Monné, M.; Ubals, M.; Alemany, A.; Suñer, C.; Tebé, C.; BCN-PEP-CoV2 Research Group. A Cluster-Randomized Trial of Hydroxychloroquine for Prevention of COVID-19. N. Engl. J. Med. 2021, 384, 417–427. [Google Scholar] [PubMed]
- Axfors, C.; Schmitt, A.M.; Janiaud, P.; van’t Hooft, J.; Abd-Elsalam, S.; Abdo, E.F.; Abella, B.S.; Akram, J.; Amaravadi, R.K.; Angus, D.C.; et al. Mortality outcomes with hydroxychloroquine and chloroquine in COVID-19 from an international collaborative meta-analysis of randomized trials. Nat. Commun. 2021, 12, 2349. [Google Scholar] [CrossRef] [PubMed]
- Deftereos, S.G.; Giannopoulos, G.; Vrachatis, D.A.; Siasos, G.D.; Giotaki, S.G.; Gargalianos, P.; Metallidis, S.; Sianos, G.; Baltagiannis, S.; Panagopoulos, P.; et al. Effect of Colchicine vs Standard Care on Cardiac and Inflammatory Biomarkers and Clinical Outcomes in Patients Hospitalized with Coronavirus Disease 2019: The GRECCO-19 Randomized Clinical Trial. JAMA Netw. Open 2020, 3, e2013136. [Google Scholar] [CrossRef] [PubMed]
- Yao, X.; Ye, F.; Zhang, M.; Cui, C.; Huang, B.; Niu, P.; Liu, X.; Zhao, L.; Dong, E.; Song, C.; et al. In Vitro Antiviral Activity and Projection of Optimized Dosing Design of Hydroxychloroquine for the Treatment of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Clin. Infect. Dis. 2020, 71, 732–739. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cavalcanti, A.B.; Zampieri, F.G.; Rosa, R.G.; Azevedo, L.C.; Veiga, V.C.; Avezum, A.; Damiani, L.P.; Marcadenti, A.; Kawano-Dourado, L.; Lisboa, T.; et al. Coalition COVID-19 Brazil I Investigators. Hydroxychloroquine with or without Azithromycin in Mild-to-Moderate COVID-19. N. Engl. J. Med. 2020, 383, 2041–2052. [Google Scholar] [CrossRef] [PubMed]
- RECOVERY Collaborative Group. Effect of Hydroxychloroquine in Hospitalized Patients with COVID-19. N. Engl. J. Med. 2020, 383, 2030–2040. [Google Scholar] [CrossRef]
- Boulware, D.R.; Pullen, M.F.; Bangdiwala, A.S.; Pastick, K.A.; Lofgren, S.M.; Okafor, E.C.; Skipper, C.P.; Nascene, A.A.; Nicol, M.R.; Abassi, M.; et al. A Randomized Trial of Hydroxychloroquine as Postexposure Prophylaxis for COVID-19. N. Engl. J. Med. 2020, 383, 517–525. [Google Scholar] [CrossRef] [PubMed]
- López-Medina, E.; López, P.; Hurtado, I.C.; Dávalos, D.M.; Ramirez, O.; Martínez, E.; Díazgranados, J.A.; Oñate, J.M.; Chavarriaga, H.; Herrera, S.; et al. Effect of Ivermectin on Time to Resolution of Symptoms Among Adults with Mild COVID-19: A Randomized Clinical Trial. JAMA 2021, 325, 1426–1435. [Google Scholar] [CrossRef]
- Chaccour, C.; Casellas, A.; Blanco-Di Matteo, A.; Pineda, I.; Fernandez-Montero, A.; Ruiz-Castillo, P.; Richardson, M.A.; Rodríguez-Mateos, M.; Jordán-Iborra, C.; Brew, J.; et al. The effect of early treatment with ivermectin on viral load, symptoms and humoral response in patients with non-severe COVID-19: A pilot, double-blind, placebo-controlled, randomized clinical trial. EClinicalMedicine 2021, 32, 100720. [Google Scholar] [CrossRef]
- Thomas, S.; Patel, D.; Bittel, B.; Wolski, K.; Wang, Q.; Kumar, A.; Il’Giovine, Z.J.; Mehra, R.; McWilliams, C.; Nissen, S.E.; et al. Effect of High-Dose Zinc and Ascorbic Acid Supplementation vs. Usual Care on Symptom Length and Reduction Among Ambulatory Patients With SARS-CoV-2 Infection: The COVID A to Z Randomized Clinical Trial. JAMA Netw. Open. 2021, 4, e210369. [Google Scholar] [CrossRef] [PubMed]
- Lenze, E.J.; Mattar, C.; Zorumski, C.F.; Stevens, A.; Schweiger, J.; Nicol, G.E.; Miller, J.P.; Yang, L.; Yingling, M.; Avidan, M.S.; et al. Fluvoxamine vs Placebo and Clinical Deterioration in Outpatients with Symptomatic COVID-19: A Randomized Clinical Trial. JAMA 2020, 324, 2292–2300. [Google Scholar] [CrossRef]
- Tada, T.; Dcosta, B.M.; Zhou, H.; Vaill, A.; Kazmierski, W.; Landau, N.R. Decreased neutralization of SARS-CoV-2 global variants by therapeutic anti-spike protein monoclonal antibodies. bioRxiv 2021. [Google Scholar] [CrossRef]
- PRINCIPLE Trial Collaborative Group. Azithromycin for community treatment of suspected COVID-19 in people at increased risk of an adverse clinical course in the UK (PRINCIPLE): A randomised, controlled, open-label, adaptive platform trial. Lancet 2021, 397, 1063–1074. [Google Scholar] [CrossRef]
- Gerotziafas, G.T.; Catalano, M.; Colgan, M.P.; Pecsvarady, Z.; Wautrecht, J.C.; Fazeli, B.; Olinic, D.M.; Farkas, K.; Elalamy, I.; Falanga, A.; et al. Guidance for the Management of Patients with Vascular Disease or Cardiovascular Risk Factors and COVID-19: Position Paper from VAS-European Independent Foundation in Angiology/Vascular Medicine. Thromb. Haemost. 2020, 120, 1597–1628. [Google Scholar] [CrossRef]
- Chen, P.; Nirula, A.; Heller, B.; Gottlieb, R.L.; Boscia, J.; Morris, J.; Huhn, G.; Cardona, J.; Mocherla, B.; Stosor, V.; et al. SARS-CoV-2 Neutralizing Antibody LY-CoV555 in Outpatients with COVID-19. N. Engl. J. Med. 2021, 384, 229–237. [Google Scholar] [CrossRef]
- Liu, H.; Wei, P.; Zhang, Q.; Chen, Z.; Aviszus, K.; Downing, W.; Peterson, S.; Reynoso, L.; Downey, G.P.; Frankel, S.K.; et al. 501Y.V2 and 501Y.V3 variants of SARS-CoV-2 lose binding to Bamlanivimab in vitro. bioRxiv 2021, 13, 1919285. [Google Scholar] [CrossRef]
- Reis, G.; Silva, E.A.D.S.M.; Silva, D.C.M.; Thabane, L.; Singh, G.; Park, J.J.; Forrest, J.I.; Harari, O.; Dos Santos, C.V.Q.; De Almeida, A.P.F.G.; et al. Effect of Early Treatment with Hydroxychloroquine or Lopinavir and Ritonavir on Risk of Hospitalization Among Patients With COVID-19: The TOGETHER Randomized Clinical Trial. JAMA Netw. Open 2021, 4, e216468. [Google Scholar] [CrossRef] [PubMed]
- Feld, J.J.; Kandel, C.; Biondi, M.J.; Kozak, R.A.; Zahoor, M.A.; Lemieux, C.; Borgia, S.M.; Boggild, A.K.; Powis, J.; McCready, J.; et al. Peginterferon lambda for the treatment of outpatients with COVID-19: A phase 2, placebo-controlled randomised trial. Lancet Respir. Med. 2021, 9, 498–510. [Google Scholar] [CrossRef]
- Tardif, J.C.; Bouabdallaoui, N.; L’Allier, P.L.; Gaudet, D.; Shah, B.; Pillinger, M.H.; Lopez-Sendon, J.; da Luz, P.; Verret, L.; Audet, S.; et al. Colchicine for community-treated patients with COVID-19 (COLCORONA): A phase 3, randomised, double-blinded, adaptive, placebo-controlled, multicentre trial. Lancet Respir. Med. 2021, 27, 2021. [Google Scholar] [CrossRef]
- Manenti, L.; Maggiore, U.; Fiaccadori, E.; Meschi, T.; Antoni, A.D.; Nouvenne, A.; Ticinesi, A.; Cerundolo, N.; Prati, B.; Delsante, M.; et al. Reduced mortality in COVID-19 patients treated with colchicine: Results from a retrospective, observational study. PLoS ONE 2021, 16, e0248276. [Google Scholar] [CrossRef]
- Ramakrishnan, S.; Nicolau, D.V., Jr.; Langford, B.; Mahdi, M.; Jeffers, H.; Mwasuku, C.; Krassowska, K.; Fox, R.; Binnian, I.; Glover, V.; et al. Inhaled budesonide in the treatment of early COVID-19 (STOIC): A phase 2, open-label, randomized controlled trial. Lancet Respir. Med. 2021, 9, 763–772. [Google Scholar] [CrossRef]
- Gottlieb, R.L.; Nirula, A.; Chen, P.; Boscia, J.; Heller, B.; Morris, J.; Huhn, G.; Cardona, J.; Mocherla, B.; Stosor, V.; et al. Effect of Bamlanivimab as Monotherapy or in Combination with Etesevimab on Viral Load in Patients with Mild to Moderate COVID-19: A Randomized Clinical Trial. JAMA 2021, 325, 632–644. [Google Scholar] [CrossRef] [PubMed]
- Weinreich, D.M.; Sivapalasingam, S.; Norton, T.; Ali, S.; Gao, H.; Bhore, R.; Musser, B.J.; Soo, Y.; Rofail, D.; Im, J. Trial Investigators. REGN-COV2, a Neutralizing Antibody Cocktail, in Outpatients with COVID-19. N. Engl. J. Med. 2021, 384, 238–251. [Google Scholar] [CrossRef] [PubMed]
- Fact Sheet for Health Care Providers Emergency Use Authorization (eua) of Bamlamivimab and Etesevimab. Available online: https://ww.fda.gov/media/145802/download (accessed on 25 February 2021).
- RECOVERY Collaborative Group. Dexamethasone in Hospitalized Patients with COVID-19. N. Engl. J. Med. 2021, 384, 693–704. [Google Scholar] [CrossRef]
- Capell, W.H.; Barnathan, E.S.; Piazza, G.; Spyropoulos, A.C.; Hsia, J.; Bull, S.; Lipardi, C.; Sugarmann, C.; Suh, E.; Rao, J.P.; et al. Rationale and design for the study of rivaroxaban to reduce thrombotic events, hospitalization and death in outpatients with COVID-19: The PREVENT-HD study. Am. Heart J. 2021, 235, 12–23. [Google Scholar] [CrossRef] [PubMed]
- Barco, S.; Bingisser, R.; Colucci, G.; Frenk, A.; Gerber, B.; Held, U.; Mach, F.; Mazzolai, L.; Righini, M.; Rosemann, T.; et al. Enoxaparin for primary thromboprophylaxis in ambulatory patients with coronavirus disease-2019 (the OVID study): A structured summary of a study protocol for a randomized controlled trial. Trials 2020, 21, 1–3. [Google Scholar] [CrossRef] [PubMed]
- Piazza, G.; Campia, U.; Hurwitz, S.; Snyder, J.E.; Rizzo, S.M.; Pfeferman, M.B.; Morrison, R.B.; Leiva, O.; Fanikos, J.; Nauffal, V.; et al. Registry of Arterial and Venous Thromboembolic Complications in Patients With COVID-19. J. Am. Coll. Cardiol. 2020, 76, 2060–2072. [Google Scholar] [CrossRef]
- Moores, L.K.; Tritschler, T.; Brosnahan, S.; Carrier, M.; Collen, J.F.; Doerschug, K.; Holley, A.B.; Jimenez, D.; Le Gal, G.; Rali, P.; et al. Prevention, Diagnosis, and Treatment of VTE in Patients with Coronavirus Disease 2019: CHEST Guideline and Expert Panel Report. Chest 2020, 158, 1143–1163. [Google Scholar] [CrossRef]
- George, P.M.; Barratt, S.L.; Condliffe, R.; Desai, S.R.; Devaraj, A.; Forrest, I.; Gibbons, M.A.; Hart, N.; Jenkins, R.G.; McAuley, D.F.; et al. Respiratory follow-up of patients with COVID-19 pneumonia. Thorax 2020, 75, 1009–1016. [Google Scholar] [CrossRef]
- Ecdc Tehnical Report. Novel Coronavirus (SARS-CoV-2) Discharge Criteria for Confirmed COVID-19 cases—When Is It Safe to Discharge COVID-19 Cases from the Hospital or End Home Isolation? Available online: https://www.ecdc.europa.eu/sites/default/files/documents/COVID-19 Discharge-criteria.pdf (accessed on 16 October 2020).
- Obi, A.T.; Barnes, G.D.; Napolitano, L.M.; Henke, P.K.; Wakefield, T.W. Venous thrombosis epidemiology, pathophysiology, and anticoagulant therapies and trials in severe acute respiratory syndrome coronavirus 2 infection. J. Vasc. Surg. Venous Lymphat. Disord. 2021, 9, 23–35. [Google Scholar] [CrossRef]
- Marietta, M.; Ageno, W.; Artoni, A.; De Candia, E.; Gresele, P.; Marchetti, M.; Marcucci, R.; Tripodi, A. COVID-19 and haemostasis: A position paper from Italian Society on Thrombosis and Haemostasis (SISET). Blood Transfus. 2020, 18, 167–169. [Google Scholar]
- COVID-19 and VTE/Anticoagulation: Frequently Asked Questions. Available online: https://www.hematology.org/COVID-19/COVID-19-and-vteanticoagulation (accessed on 6 May 2020).
- National Institutes of Health. COVID-19 Treatment Guidelines. Antithrombotic Therapy in Patients With COVID-19; National Institutes of Health: Bethesda, MA, USA, 2021.
- Spyropoulos, A.C.; Lipardi, C.; Xu, J.; Peluso, C.; Spiro, T.E.; De Sanctis, Y.; Barnathan, E.S.; Raskob, G.E. Modified IMPROVE VTE risk score and elevated D-dimer identify a high venous thromboembolism risk in acutely ill medical population for extended thromboprophylaxis. TH Open 2020, 4, e59–e65. Available online: https://www.ncbi.nlm.nih.gov/pubmed/32190813 (accessed on 29 June 2021). [CrossRef] [PubMed] [Green Version]
- Cohen, A.T.; Harrington, R.A.; Goldhaber, S.Z.; Hull, R.D.; Wiens, B.L.; Gold, A.; Hernandez, A.F.; Gibson, C.M. Extended thromboprophylaxis with betrixaban in acutely ill medical patients. N. Engl. J. Med. 2016, 375, 534–544. Available online: https://www.ncbi.nlm.nih.gov/pubmed/27232649 (accessed on 29 June 2021). [CrossRef]
- National Institute for Health and Care Excellence. COVID-19 Rapid Guideline: Managing the Long-Term Effects of COVID-19; National Institute for Health and Care Excellence: London, UK, 2020. [Google Scholar]
- Centers for Disease Control and Prevention. Post-COVID Conditions: Information for Healthcare Providers; Centers for Disease Control and Prevention: Atlanta, GA, USA, 2021.
- Wildwing, T.; Holt, N. The neurological symptoms of COVID-19: A systematic overview of systematicreviews, comparison with other neurological conditions and implications for healthcare services. Ther. Adv. Chronic. Dis. 2021, 12, 2040622320976979. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Wang, Z.; Zhou, Y.; Onoda, K.; Maruyama, H.; Hu, C.; Liu, Z. Summary of respiratory rehabilitation and physical therapy guidelines for patients with COVID-19 based on recommendations of World Confederation for Physical Therapy and National Association of Physical Therapy. J. Phys. Ther. Sci. 2020, 32, 545–549. [Google Scholar] [CrossRef]
- Available online: https://www.paho.org/en/documents/rehabilitation-considerations-during-covid-19-outbreak (accessed on 28 April 2020).
- Lerum, T.V.; Aaløkken, T.M.; Brønstad, E.; Aarli, B.; Ikdahl, E.; Lund, K.M.A.; Durheim, M.T.; Rodriguez, J.R.; Meltzer, C.; Tonby, K.; et al. Dyspnoea, lung function and CT findings 3 months after hospital admission for COVID-19. Eur. Respir. J. 2021, 57, 2003448. [Google Scholar] [CrossRef] [PubMed]
- The Writing Committee for the COMEBAC Study Group. Four-Month Clinical Status of a Cohort of Patients After Hospitalization for COVID-19. JAMA 2021, 325, 1525–1534. [Google Scholar] [CrossRef] [PubMed]
- Myall, K.J.; Mukherjee, B.; Castanheira, A.M.; Lam, J.L.; Benedetti, G.; Mak, S.M.; Preston, R.; Thillai, M.; Dewar, A.; Molyneaux, P.L.; et al. Persistent Post-COVID-19 Interstitial Lung Disease. An Observational Study of Corticosteroid Treatment. Ann. Am. Thorac. Soc. 2021, 18, 799–806. [Google Scholar] [CrossRef]
- Available online: https://ourworldindata.org/mortality-risk-covid#what-do-we-know-about-the-risk-of-dying-from-covid-19 (accessed on 20 July 2021).
Established Risk Factors | Possible Risk Factors |
---|---|
Cancer | Cystic fibrosis |
Chronic kidney disease | Thalassemia |
Chronic obstructive pulmonary disease | |
Down syndrome | |
Immunocompromised state from solid organ transplant | |
Obesity (body mass index [BMI] ≥ 30 kg/m2) | |
Serious cardiovascular disease (e.g., heart failure, coronary artery disease, cardiomyopathy) | |
Smoking | |
Sickle cell disease | |
Type 2 diabetes mellitus | |
Pregnancy |
Risk Stratification | Characteristics | Proposed Management |
---|---|---|
Mild | Asymptomatic or mild symptoms | Home care 1 If no improvement or deterioration → hospital admission |
Moderate | Fever < 38.5 °C, cough, pharyngalgia + Comorbidities 2 orAge > 65 years old or CXR or CT (+) Respiratory rate ≤16/min or SaO2 > 94% | Clinical and laboratory evaluation at home (complete blood count, CRP) Azithromycin + chloroquine phosphate or hydroxychloroquine 3 ± antibiotics for community acquired pneumonia If no improvement or deterioration → hospital admission |
Severe | Fever ≥ 38.5 °C, cough, fatigue, dyspnea + Comorbidities or Age > 65 years old + CXR ή CT (+) | Hospital admission Consult: Management algorithm for patients with confirmed COVID-19 in hospital setting |
Positive Results | Negative Results | Pending/Inconclusive Results |
---|---|---|
Colchicine [34,35,36] | Chloroquine, hydroxychloroquine ± azithromycin [33,37,38,39,40] | Fluvoxamine [41] |
Inhaled budesonide [42] | Ivermectin [41,42] | Peginterferon lambda [43] |
Bamlanivimab and etesevimab [44] | Zinc plus ascorbic acid [45] | Thromboembolic prophylaxis [46,47] |
Casirivimab and imdevimab [48] | Lopinavir plus ritonavir [49] | |
Systemic corticosteroids [50] | ||
Azithromycin [51] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liapikou, A.; Tzortzaki, E.; Hillas, G.; Markatos, M.; Papanikolaou, I.C.; Kostikas, K. Outpatient Management of COVID-19 Disease: A Holistic Patient-Centered Proposal Based on the Greek Experience. J. Pers. Med. 2021, 11, 709. https://doi.org/10.3390/jpm11080709
Liapikou A, Tzortzaki E, Hillas G, Markatos M, Papanikolaou IC, Kostikas K. Outpatient Management of COVID-19 Disease: A Holistic Patient-Centered Proposal Based on the Greek Experience. Journal of Personalized Medicine. 2021; 11(8):709. https://doi.org/10.3390/jpm11080709
Chicago/Turabian StyleLiapikou, Adamantia, Eleni Tzortzaki, Georgios Hillas, Miltiadis Markatos, Ilias C. Papanikolaou, and Konstantinos Kostikas. 2021. "Outpatient Management of COVID-19 Disease: A Holistic Patient-Centered Proposal Based on the Greek Experience" Journal of Personalized Medicine 11, no. 8: 709. https://doi.org/10.3390/jpm11080709
APA StyleLiapikou, A., Tzortzaki, E., Hillas, G., Markatos, M., Papanikolaou, I. C., & Kostikas, K. (2021). Outpatient Management of COVID-19 Disease: A Holistic Patient-Centered Proposal Based on the Greek Experience. Journal of Personalized Medicine, 11(8), 709. https://doi.org/10.3390/jpm11080709