Prevalence of Chronic Kidney Disease and Variation of Its Risk Factors by the Regions in Okayama Prefecture
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Participants and Their Characteristics
3.2. Population Distribution on a CKD Heatmap
3.3. Differences in Risk Factors for CKD among Five Regions and Their CKD Prevention Strategies
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hsu, C.Y.; Vittinghoff, E.; Lin, F.; Shlipak, M.G. The incidence of end-stage renal disease is increasing faster than the prevalence of chronic renal insufficiency. Ann. Intern. Med. 2004, 141, 95–101. [Google Scholar] [CrossRef] [PubMed]
- Japan Nephrology’s. Special issue: Clinical practice guidebook for diagnosis and treatment of chronic kidney disease 2012. Nihon Jinzo Gakkai Shi 2012, 54, 1034–1191. [Google Scholar]
- Nitta, K.; Masakane, I.; Hanafusa, N.; Taniguchi, M.; Hasegawa, T.; Nakai, S.; Goto, S.; Wada, A.; Hamano, T.; Hosino, J.; et al. Annual dialysis data report 2017, JSDT Renal Data Registry. Ren. Replace. Ther. 2019, 5, 53. [Google Scholar] [CrossRef] [Green Version]
- Levey, A.S.; de Jong, P.E.; Coresh, J.; El Nahas, M.; Astor, B.C.; Matsushita, K.; Gansevoort, R.T.; Kasiske, B.L.; Eckardt, K.-U. The definition, classification, and prognosis of chronic kidney disease: A KDIGO Controversies Conference report. Kidney Int. 2011, 80, 17–28. [Google Scholar] [CrossRef] [Green Version]
- Kakio, Y.; Uchida, H.A.; Takeuchi, H.; Okuyama, Y.; Umebayashi, R.; Watatani, H.; Maeshima, Y.; Sugiyama, H.; Wada, J. Report of health checkup system for chronic kidney disease in general population in Okayama city: Effect of health guidance intervention on chronic kidney disease outcome. Int. J. Nephrol. Renovasc. Dis. 2019, 12, 143–152. [Google Scholar] [CrossRef] [Green Version]
- Yamanouchi, M.; Hoshino, J.; Ubara, Y.; Takaichi, K.; Kinowaki, K.; Fujii, T.; Ohashi, K.; Mise, K.; Toyama, T.; Hara, A.; et al. Clinicopathological predictors for progression of chronic kidney disease in nephrosclerosis: A biopsy-based cohort study. Nephrol. Dial. Transpl. 2019, 34, 1182–1188. [Google Scholar] [CrossRef] [PubMed]
- De Boer, I.H.; Caramori, M.L.; Chan, J.C.N.; Heerspink, H.J.L.; Hurst, C.; Khunti, K.; Liew, A.; Michos, E.D.; Navaneethan, K.R.; Olowu, W.A.; et al. Executive summary of the 2020 KDIGO Diabetes Management in CKD Guideline: Evidence-based advances in monitoring and treatment. Kidney Int. 2020, 98, 839–848. [Google Scholar] [CrossRef]
- Jha, V.; Garcia-Garcia, G.; Iseki, K.; Li, Z.; Naicker, S.; Plattner, B.; Saran, R.; Wang, A.Y.-M.; Yang, C.-W. Chronic kidney disease: Global dimension and perspectives. Lancet 2013, 382, 260–272. [Google Scholar] [CrossRef]
- Yamada, Y.; Ikenoue, T.; Saito, Y.; Fukuma, S. Undiagnosed and untreated chronic kidney disease and its impact on renal outcomes in the Japanese middle-aged general population. J. Epidemiol. Community Health 2019, 73, 1122–1127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gasparini, A.; Evans, M.; Coresh, J.; Grams, M.E.; Norin, O.; Qureshi, A.R.; Runesson, B.; Barany, P.; Arnlov, J.; Jernberg, T.; et al. Prevalence and recognition of chronic kidney disease in Stockholm healthcare. Nephrol. Dial. Transpl. 2016, 31, 2086–2094. [Google Scholar] [CrossRef] [PubMed] [Green Version]
South-East | South-West | Takahashi-Niimi | Maniwa | Tsuyama-Aida | p Value | |
---|---|---|---|---|---|---|
Number of National Health Insurance users (n) | 180,276 | 141,657 | 12,242 | 9850 | 35,935 | |
Number of health checkups (n) | 42,824 | 29,296 | 3433 | 2914 | 9953 | |
Male/Female ratio | 17,534/25,290 | 12,310/16,986 | 1532/1901 | 1339/1575 | 4518/5435 | <0.001 |
Health checkup rate (%) | 23.8 | 20.8 | 28.0 | 29.6 | 27.8 | n.s. |
Age (years) | 66 ± 8 * | 67 ± 7 | 67 ± 7 | 67 ± 7 | 67 ± 8 | |
eGFR (mL/min/1.73 m2) | 70.8 ± 14.0 | 71.0 ± 14.0 | 70.4 ± 13.9 | 72.9 ± 14.0 | 72.2 ± 14.4 | |
<60 mL/min/1.73 m2 (n, %) | 8430 (20.4%) | 5816 (20.1%) | 727 (21.4%) | 474 (16.9%) | 1702 (17.9%) | <0.001 |
Urinary Protein (+ and over) (n, %) | 1988 (4.6%) | 1069 (3.6%) | 125 (3.6%) | 125 (4.3%) | 402 (4.0%) | n.s. |
Green or Yellow on a CKD heatmap (n, %) | 37,886 (91.8%) | 26,889 (93.0%) | 3178 (93.4%) | 2593 (92.5%) | 8871 (93.3%) | n.s. |
Orange or Red on a CKD heatmap (n, %) | 3396 (8.2%) | 2035 (7.0%) | 224 (6.6%) | 209 (7.5%) | 634 (6.7%) | n.s. |
South-East | South-West | Takahashi-Niimi | Maniwa | Tsuyama-Aida | p Value | |
---|---|---|---|---|---|---|
HbA1c (%) | 5.7 ± 0.6 | 5.7 ± 0.6 | 5.9 ± 0.6 | 5.8 ± 0.6 | 5.7 ± 0.7 | |
≥6.0% (n, %) | 8717 (21.5%) | 6467 (22.6%) | 951 (30.1%) | 781 (26.9%) | 2051 (20.8%) | <0.001 |
≥7.0% (n, %) | 1530 (3.8%) | 1194 (4.2%) | 139 (4.4%) | 92 (3.2%) | 417 (4.2%) | 0.003 |
Systolic blood pressure (mmHg) | 129.4 ± 18.0 | 130.0 ± 17.8 | 131.7 ± 18.1 | 127.3 ± 16.8 | 129.0 ± 18.0 | |
≥140 mmHg (n, %) | 11,312 (26.4%) | 8119 (27.7%) | 1000 (29.1%) | 619 (21.2%) | 2476 (24.9%) | <0.001 |
BMI (kg/m2) | 23.0 ± 3.6 | 23.0 ± 3.4 | 23.1 ± 3.3 | 23.2 ± 3.5 | 23.0 ± 3.6 | |
≥25 (%) | 25.7 | 25.4 | 25.5 | 27.1 | 26.0 | n.s. |
LDL-cholesterol (mg/dL) | 125.4 ± 30.9 | 123.8 ± 30.4 | 124.7 ± 31.0 | 122.1 ± 30.7 | 122.7 ± 33.1 | |
≥140 mg/dL (n, %) | 13,146 (30.7%) | 8420 (28.7%) | 1041 (30.3%) | 759 (26.0%) | 2795 (28.1%) | <0.001 |
Smoking (n, %) | 4849 (11.3%) | 2788 (9.5%) | 3433 (10.7%) | 2914 (12.6%) | 9953 (13.2%) | n.s. |
Lack of daily exercise (n, %) | 25,018 (59.2%) | 15,932 (56.5%) | 2100 (62.3%) | 1951 (67.0%) | 4570 (61.9%) | n.s. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Umebayashi, R.; Uchida, H.A.; Matsuoka-Uchiyama, N.; Sugiyama, H.; Wada, J. Prevalence of Chronic Kidney Disease and Variation of Its Risk Factors by the Regions in Okayama Prefecture. J. Pers. Med. 2022, 12, 97. https://doi.org/10.3390/jpm12010097
Umebayashi R, Uchida HA, Matsuoka-Uchiyama N, Sugiyama H, Wada J. Prevalence of Chronic Kidney Disease and Variation of Its Risk Factors by the Regions in Okayama Prefecture. Journal of Personalized Medicine. 2022; 12(1):97. https://doi.org/10.3390/jpm12010097
Chicago/Turabian StyleUmebayashi, Ryoko, Haruhito Adam Uchida, Natsumi Matsuoka-Uchiyama, Hitoshi Sugiyama, and Jun Wada. 2022. "Prevalence of Chronic Kidney Disease and Variation of Its Risk Factors by the Regions in Okayama Prefecture" Journal of Personalized Medicine 12, no. 1: 97. https://doi.org/10.3390/jpm12010097
APA StyleUmebayashi, R., Uchida, H. A., Matsuoka-Uchiyama, N., Sugiyama, H., & Wada, J. (2022). Prevalence of Chronic Kidney Disease and Variation of Its Risk Factors by the Regions in Okayama Prefecture. Journal of Personalized Medicine, 12(1), 97. https://doi.org/10.3390/jpm12010097