Impact of Genetic Polymorphisms and Biomarkers on the Effectiveness and Toxicity of Treatment of Chronic Myeloid Leukemia and Acute Myeloid Leukemia
Abstract
:1. Introduction
2. Materials and Methods
3. Treatment of Chronic Myeloid Leukemia (CML) and Acute Myeloid Leukemia (AML)
3.1. Chronic Myeloid Leukemia (CML)
3.2. Acute Myeloid Leukemia (AML)
4. General Pharmacogenetics of Chronic Myeloid Leukemia (CML)
4.1. Human Genetic Variability and Its Influence on Chronic Myeloid Leukemia (CML)
4.2. Single Nucleotide Polymorphisms (SNPs) in Chronic Myeloid Leukemia (CML)
4.2.1. Single Nucleotide Polymorphisms (SNPs) and Susceptibility to Chronic Myeloid Leukemia (CML)
4.2.2. Single Nucleotide Polymorphisms (SNPs) and Pharmacogenomics in Chronic Myeloid Leukemia (CML)
5. General Acute Myeloid Leukemia (AML) Pharmacogenetics
6. Clinical Application of TKIs in CML
6.1. Mutations in BCR::ABL1
6.2. Plasma and Intracellular Levels
6.2.1. Plasma Levels
6.2.2. Intracellular Level and Pharmacogenetics
7. Clinical Application in AML
Gene | Snp (rs) | Drug | Level of Evidence | Clinical Application | Clinical Impact (Toxicity/Effectiveness) | Reference |
---|---|---|---|---|---|---|
CBR1 | rs20572 | Doxorubicin | 3 | No | Toxicity | [110] |
CBR1 | rs9024 | Anthracyclines | 3 | No | Toxicity | [110] |
CBR1 | rs1056892 | Anthracyclines | 3 | No | Toxicity | [110] |
DCK | rs80143932 | cytarabine | 3 | No | Effectiveness | [104] |
DCK | rs2306744 | cytarabine | 3 | No | Effectiveness | [104] |
CD33 | rs35112940 | Gemtuzumab ozogamicin | 3 | No | Effectiveness | [107] |
SLC22A12 | rs11231825 | Gemtuzumab ozogamicin | 3 | No | Toxicity | [104] |
SULT2B1 | rs2302948 | Gemtuzumab ozogamicin | 3 | No | Toxicity | [104] |
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sawyers, C.L. Chronic myeloid leukemia. N. Engl. J. Med. 1999, 340, 1330–1340. [Google Scholar] [CrossRef] [PubMed]
- Faderl, S.; Talpaz, M.; Estrov, Z.; O’Brien, S.; Kurzrock, R.; Kantarjian, H. The biology of chronic myeloid leukemia. N. Engl. J. Med. 1999, 341, 164–172. [Google Scholar] [CrossRef]
- Nowell, P.C.; Hungerford, D.A. A minute chromosome in human chronic granulocitic leukaemia. Science 1960, 32, 1497–1501. [Google Scholar]
- American Cancer Society. Cancer Facts and Figures 2022; American Cancer Society: Atlanta, GA, USA, 2022; Available online: https://www.cancer.org/research/cancer-facts-statistics/all-cancer-facts-figures/cancer-facts-figures-2022.html (accessed on 10 August 2022).
- Höglund, M.; Sandin, F.; Simonsson, B. Epidemiology of chronic myeloid leukaemia: An update. Ann. Hematol. 2015, 94, 241–247. [Google Scholar] [CrossRef] [PubMed]
- Cervantes, F.; Rozman, M.; Rosell, J.; Urbano-Ispizua, A.; Montserrat, E.; Rozman, C. A study of prognostic factors in blast crisis of Philadelphia chromosome-positive chronic myelogenous leukaemia. Br. J. Haematol. 1990, 76, 27–32. [Google Scholar] [CrossRef]
- Shtalrid, M.; Talpaz, M.; Kurzrock, R.; Kantarjian, H.; Trujillo, J.; Gutterman, J.; Yoffe, G.; Blick, M. Analysis of breakpoints within the bcr gene and their correlation with the clinical course of Philadelphia-positive chronic myelogenous leukemia. Blood 1988, 72, 485–490. [Google Scholar] [CrossRef]
- Figuera Álvarez, Á.; Sierra Gil, J. Leucemias. Concepto y clasificación. Leucemias agudas. In Pregrado de hematología, 4th ed.; Moraleda Jiménez, J.M., Ed.; Sociedad Española de Hematología y Hematoterapia: Madrid, Spain, 2017; pp. 227–264. [Google Scholar]
- Sant, M.; Allemani, C.; Tereanu, C.; De Angelis, R.; Capocaccia, R.; Visser, O.; Marcos-Gragera, R.; Maynadié, M.; Simonetti, A.; Lutz, J.; et al. Incidence of hematologic malignancies in Europe by morphologic subtype: Results of the HAEMACARE project. Blood 2010, 116, 3724–3734. [Google Scholar] [CrossRef]
- Meyers, C.A.; Albitar, M.; Estey, E. Cognitive impairment, fatigue, and cytokine levels in patients with acute myelogenous leukemia or myelodysplastic syndrome. Cancer 2005, 15, 788–793. [Google Scholar] [CrossRef]
- Berman, E. How I treat chronic-phase chronic myelogenous leukemia. Blood 2022, 139, 3138–3147. [Google Scholar] [CrossRef]
- Cucchi, D.G.J.; Polak, T.B.; Ossenkoppele, G.J.; Uyl-De Groot, C.A.; Cloos, J.; Zweegman, S.; Janssen, J.J.W.M. Two decades of targeted therapies in acute myeloid leukemia. Leukemia 2021, 35, 651–660. [Google Scholar] [CrossRef]
- Krishnan, V.; Kim, D.D.H.; Hughes, T.P.; Branford, S.; Ong, S.T. Integrating genetic and epigenetic factors in chronic myeloid leukemia risk assessment: Toward gene expression-based biomarkers. Haematologica 2022, 107, 358–370. [Google Scholar] [CrossRef] [PubMed]
- Maillard, M.; Louveau, B.; Vilquin, P.; Goldwirt, L.; Thomas, F.; Mourah, S. Pharmacogenomics in solid cancers and hematologic malignancies: Improving personalized drug prescription. Therapie 2022, 77, 171–183. [Google Scholar] [CrossRef] [PubMed]
- Breccia, M.; Colafigli, G.; Scalzulli, E.; Martelli, M. Asciminib. An investigational agent for the treatment of chronic myeloid leukemia. Expert Opin. Investig. Drugs. 2021, 30, 803–811. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, N. Imatinib: A Breakthrough of Targeted Therapy in Cancer. Chemother. Rese Pract. 2014, 2014, 357027. [Google Scholar] [CrossRef]
- Lindauer, M.; Hochhaus, A. Dasatinib. Recent Results Cancer Res. 2018, 212, 29–68. [Google Scholar]
- Blay, J.Y.; von Mehren, M. Nilotinib: A novel, selective tyrosine kinase inhibitor. Semin. Oncol. 2011, 1, S3–S59. [Google Scholar] [CrossRef]
- Rusconi, F.; Piazza, R.; Vagge, E.; Gambacorti-Passerini, C. Bosutinib: A review of preclinical and clinical studies in chronic myelogenous leukemia. Expert. Opin. Pharmacother. 2014, 15, 701–710. [Google Scholar] [CrossRef]
- Price, K.E.; Saleem, N.; Lee, G.; Steinberg, M. Potential of ponatinib to treat chronic myeloid leukemia and acute lymphoblastic leukemia. Onco Targets Ther. 2013, 20, 1111–1118. [Google Scholar]
- Döhner, H.; Estey, E.; Grimwade, D.; Amadori, S.; Appelbaum, F. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood 2017, 129, 424–447. [Google Scholar] [CrossRef]
- Dombret, H.; Gardin, C. An update of current treatments for adult acute myeloid leukemia. Blood 2016, 127, 53–61. [Google Scholar] [CrossRef]
- Ravandi, F.; Kantarjian, H.; Faderl, S.; Garcia-Manero, G.; O´Brien, S.; Koller, C.; Pierce, S.; Brandt, M. Outcome of patients with FLT3-mutated acute myeloid leukemia in first relapse. Leuk. Res. 2010, 34, 752–756. [Google Scholar] [CrossRef]
- Falk, I.J.; Willander, K.; Chaireti, R.; Lund, J.; Nahi, H.; Hermanson, M.; Gréen, H.; Lotfi, K. TP53mutations andMDM2(SNP309) identify subgroups of AML patients with impaired outcome. Eur. J. Haematol. 2015, 94, 355–362. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.; Corte, J.; Kadia, K.; Brandt, M.; Pierce, S.; Pate, K.P.; Borthakur, G. Clinical outcomes and co-occurring mutations in patients with RUNX1-mutated acute myeloid leukemia. Int. J. Mol. Sci. 2017, 18, 1618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daver, N.; Venugopal, S.; Ravandi, F. FLT3 mutated acute myeloid leukemia: 2021 treatment algorithm. Blood Cancer J. 2021, 11, 104. [Google Scholar] [CrossRef] [PubMed]
- Bose, P.; Vachhani, P.; Cortes, J. Treatment of Relapsed/Refractory Acute Myeloid Leukemia. Curr. Treat. Options Oncol. 2017, 18, 17. [Google Scholar] [CrossRef]
- Larrosa-Garcia, M.; Baer, M.R. FLT3 Inhibitors in acute myeloid leukemia: Current status and future directions. Mol. Cancer Ther. 2017, 16, 991–1001. [Google Scholar] [CrossRef]
- Wu, M.; Li, C.; Zhu, X. FLT3 inhibitors in acute myeloid leukemia. J. Hematol. Oncol. 2018, 4, 133. [Google Scholar] [CrossRef]
- Kim, M.Y.; Yu, K.R.; Kenderian, S.S.; Ruella, M.; Chen, S.; Shin, T.H.; Aljanahi, A.A.; Schreeder, D. Genetic Inactivation of CD33 in Hematopoietic Stem Cells to Enable CAR T Cell Immunotherapy for Acute Myeloid Leukemia. Cell 2018, 173, 1439–1453. [Google Scholar] [CrossRef]
- Yilmaz, M.; Kantarjian, H.; Short, N.J.; Reville, P.; Konopleva, M.; Kadia, T.; DiNardo, C.; Borthakur, G.P. Hypomethylating agent and venetoclax with FLT3 inhibitor “triplet” therapy in older/unfit patients with FLT3 mutated AML. Blood Cancer J. 2022, 12, 77. [Google Scholar] [CrossRef]
- Bristol Myers Squibb. U.S. Food and Drug Administration Approves Onureg® (azacitidine tablets), a New Oral Therapy, as Continued Treatment for Adults in First Remission with Acute Myeloid Leukemia; Bristol Myers Squibb: New York, NY, USA, 2020; Available online: https://news.bms.com/news/details/2020/U.S.-Food-and-Drug-Administration-Approves-Onureg-azacitidine-tablets-a-New-Oral-Therapy-as-Continued-Treatment-for-Adults-in-First-Remission-with-Acute-Myeloid-Leukemia/default.aspx (accessed on 10 August 2022).
- Bogenberger, J.; Whatcott, C.; Hansen, N.; Delman, D.; Shi, C.X.; Kim, W.; Haws, H.; Soh, K. Combined venetoclax and alvocidib in acute myeloid leukemia. Oncotarget 2017, 8, 107206–107222. [Google Scholar] [CrossRef]
- DiNardo, C.D.; Jonas, B.A.; Pullarkat, V.; Thirman, M.J.; Garcia, J.S.; Wei, A.H.; Konopleva, M.; Döhner, H.; Letai, A.; Fenaux, P.; et al. Azacitidine and Venetoclax in Previously Untreated Acute Myeloid Leukemia. N. Engl. J. Med. 2020, 383, 617–629. [Google Scholar] [CrossRef] [PubMed]
- Fathi, A.T.; Wander, S.A.; Faramand, R.; Emadi, A. Biochemical, epigenetic, and metabolic approaches to target IDH mutations in acute myeloid leukemia. Semin. Hematol. 2015, 52, 165–171. [Google Scholar] [CrossRef]
- Stein, E.M.; Dinardo, C.D.; Fathi, A.T.; Pollyea, D.A.; Stone, R.M.; Altman, J.K.; Roboz, G.J.; Patel, M.R. Molecular remission and response patterns in patients with mutant-IDH2 acute myeloid leukemia treated with enasidenib. Blood 2019, 133, 676–687. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Montalban-Bravo, G.; DiNardo, C.D. The role of IDH mutations in acute myeloid leukemia. Future Oncol. 2018, 14, 979–993. [Google Scholar] [CrossRef] [PubMed]
- DiNardo, C.D.; Stein, E.M.; de Botton, S.; Roboz, G.J.; Altman, J.K.; Mims, A.S.; Swords, R.; Collins, R.H. Durable remissions with ivosidenib inIDH1-mutated relapsed or refractory AML. N. Engl. J. Med. 2018, 378, 2386–2398. [Google Scholar] [CrossRef] [PubMed]
- Roboz, G.; Dinardo, C.; Stein, E.; De Botton, S.; Mims, A.S.; Prince, G.T.; Altman, J.K.; Arellano, M.L. Ivosidenib (IVO.; AG-120) in IDH1-mutant newly-diagnosed acute myeloid leukemia (ND AML): Updated results from a phase 1 study. J. Clin. Oncol. 2019, 37, 7028. [Google Scholar] [CrossRef]
- Fathi, A.; Dinardo, C.; Kline, I.; kENVIN, L.; Gupta, I.; Attar, E.C.; Stein, E.M.; De Botton, S. Differentiation syndrome associated with enasidenib, a selective inhibitor of mutant isocitrate dehydrogenase 2. JAMA Oncol. 2018, 4, 1106. [Google Scholar] [CrossRef]
- Baron, J.; Wang, E.S. Gemtuzumab ozogamicin for the treatment of acute myeloid leukemia. Expert Rev. Clin. Pharmacol. 2018, 11, 549–559. [Google Scholar] [CrossRef]
- Daver, N.; Wei, A.H.; Pollyea, D.A.; Fathi, A.T.; Vyas, P.; DiNardo, C.D. New directions for emerging therapies in acute myeloid leukemia: The next chapter. Blood Cancer J. 2020, 10, 107. [Google Scholar] [CrossRef]
- Hartsink-Segers, S.A.; Exalto, C.; Allen, M. Inhibiting Polo-like kinase 1 causes growth reduction and apoptosis in pediatric acute lymphoblastic leukemia cells. Haematologica 2013, 98, 1539–1546. [Google Scholar] [CrossRef]
- Ocio, E.M.; Herrera, P.; Olave, M.T.; Castro, N.; Pérez-Simón, J.A.; Brunet, S.; Oriol, A.; Mateo, M. Panobinostat as part of induction and maintenance for elderly patients with newly diagnosed acute myeloid leukemia: Phase Ib/II panobidara study. Haematologica 2015, 100, 1294–1300. [Google Scholar] [CrossRef] [PubMed]
- Barr, F.A.; Sillje, H.H.; Nigg, E.A. Polo-like kinases and the orchestration of cell division. Nat. Rev. Mol. Cell. Biol. 2004, 5, 429–440. [Google Scholar] [CrossRef] [PubMed]
- Gopalakrishnan, B.; Cheney, C.; Mani, R.; Mo, X.; Bucci, D.; Walker, A.; Klisovic, R.; Bhatnagar, B. Polo-like kinase inhibitor volasertib marginally enhances the efficacy of the novel Fc-engineered anti-CD33 antibody BI 836858 in acute myeloid leukemia. Oncotarget 2018, 9, 9706–9713. [Google Scholar] [CrossRef] [Green Version]
- Hao, Z.; Kota, V. Volasertib for AML: Clinical use and patient consideration. Onco Targets Ther. 2015, 8, 1761–1771. [Google Scholar] [CrossRef]
- Adachi, Y.; Ishikawa, Y.; Kiyoi, H. Identification of volasertib-resistant mechanism and evaluation of combination effects with volasertib and other agents on acute myeloid leukemia. Oncotarget 2017, 8, 78452–78465. [Google Scholar] [CrossRef] [PubMed]
- Grunstein, M. Histone acetylation in chromatin structure and transcription. Nature 1997, 389, 349–352. [Google Scholar] [CrossRef] [PubMed]
- Zucchetti, B.; Shimada, A.K.; Katz, A.; Curigliano, G. The role of histone deacetylase inhibitors in metastatic breast cancer. Breast 2019, 43, 130–134. [Google Scholar] [CrossRef]
- Sachidanandam, R.; Weissman, D.; Schmidt, S.C.; Kakol, J.M.; Stein, L.D.; Marth, G.; Sherry, S.; Mullikin, J.C. A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature 2001, 409, 928–933. [Google Scholar]
- Weber, J.L.; David, D.; Heil, J.; Fan, Y.; Zhao, G.; Marth, G. Human diallelic insertion/deletion polymorphisms. Am. J. Hum. Genet. 2002, 71, 854–862. [Google Scholar] [CrossRef]
- Kim, D.H.; Xu, W.; Ma, C.; Liu, X.; Siminovitch, K.; Messner, H.A.; Lipton, J.H. Genetic variants in the candidate genes of the apoptosis pathway and susceptibility to chronic myeloid leukemia. Blood 2009, 113, 2517–2525. [Google Scholar] [CrossRef]
- Kim, D.H.; Lee, S.T.; Won, H.H.; Kim, S.; Kim, M.J.; Kim, H.J.; Kim, S.H.; Kim, H.H. A genome-wide association study identifies novel loci associated with susceptibility to chronic myeloid leukemia. Blood 2011, 117, 6906–6911. [Google Scholar] [CrossRef] [PubMed]
- Thomas, J.; Wang, L.; Clark, R.E.; Pirmohamed, M. Active transport of Imatinib into and out of cells: Implications for drug resistance. Blood 2004, 104, 3739–3745. [Google Scholar] [CrossRef] [PubMed]
- Widmer, N.; Decosterd, L.A.; Leyvraz, S.; Duchosal, M.A.; Rosselet, A.; Debiec-Rychter, M.; Csajka, C.; Biollaz, J. Relationship of imatinib-free plasma levels and target genotype with efficacy and tolerability. Br. J. Cancer 2008, 98, 1633–1640. [Google Scholar] [CrossRef] [PubMed]
- Watkins, D.B.; Hughes, T.P.; White, D.L. OCT1 and imatinib transport in CML: Is it clinically relevant? Leukemia 2015, 29, 1960–1969. [Google Scholar] [CrossRef]
- Hu, S.; Franke, R.M.; Filipski, K.K.; Hu, C.; Orwick, S.J.; de Bruijn, E.A.; Burger, H.; Baker, S.D. Interaction of imatinib with human organic ion carriers. Clin. Cancer Res. 2008, 14, 3141–3148. [Google Scholar] [CrossRef]
- Takahashi, N.; Miura, M.; Scott, S.A.; Kagaya, H.; Kameoka, Y.; Tagawa, H.; Saitoh, H.; Fujishima, N. Influence of CYP3A5 and drug transporter polymorphisms on imatinib trough concentration and clinical response among patients with chronic phase chronic myeloid leukemia. J. Hum. Genet. 2010, 55, 731–737. [Google Scholar] [CrossRef]
- Seong, S.J.; Lim, M.; Sohn, S.K.; Moon, J.H.; Oh, S.J.; Kim, B.S.; Ryoo, H.M.; Chung, J.S. Influence of enzyme and transporter polymorphisms on trough imatinib concentration and clinical response in chronic myeloid leukemia patients. Ann. Oncol. 2013, 24, 756–760. [Google Scholar] [CrossRef]
- Vine, J.; Cohen, S.B.; Ruchlemer, R.; Goldschmidt, N.; Levin, M.; Libster, D.; Gural, A.; Moshe, G. Polymorphisms in the human organic cation transporter and the multidrug resistance gene: Correlation with imatinib levels and clinical course in patients with chronic myeloid leukemia. Leuk Lymphoma 2014, 55, 2525–2531. [Google Scholar] [CrossRef]
- Nies, A.T.; Schaeffeler, E.; van der Kuip, H.; Cascorbi, I.; Bruhn, O.; Kneba, M.; Pott, C.; Hofmann, U. Cellular uptake of imatinib into leukemic cells is independent of human organic cation transporter 1 (OCT1). Clin. Cancer Res. 2014, 20, 985–994. [Google Scholar] [CrossRef]
- Nambu, T.; Hamada, A.; Nakashima, R.; Yuki, M.; Kawaguchi, T.; Mitsuya, H.; Saito, H. Association of SLCO1B3 polymorphism with intracellular accumulation of imatinib in leukocytes in patients with chronic myeloid leukemia. Biol. Pharm. Bull. 2011, 34, 114–119. [Google Scholar] [CrossRef]
- Dulucq, S.; Bouchet, S.; Turcq, B.; Lippert, E.; Etienne, G.; Reiffers, J.; Molimard, M.; Krajinovic, M. Multidrug resistance gene (MDR1) polymorphisms are associated with major molecular responses to standard-dose Imatinib in chronic myeloid leukemia. Blood 2008, 112, 2024–2027. [Google Scholar] [CrossRef]
- Eadie, L.; Dang, P.; Saunders, V.; Yeung, D.T.; Osborn, M.P.; Grigg, A.P.; Hughes, T.P.; White, D.L. The clinical significance of ABCB1 overexpression in predicting outcome of CML patients undergoing first-line imatinib treatment. Leukemia 2017, 31, 75–82. [Google Scholar] [CrossRef]
- Giles, F.J.; Kantarjian, H.M.; Cortes, J.; Thomas, D.A.; Talpaz, M.; Manshouri, T.; Albitar, M. Multidrug resistance protein expression in chronic myeloid leukemia: Associations and significance. Cancer Interdiscip. Int. J. Am. Cancer Soc. 1999, 86, 805–813. [Google Scholar] [CrossRef]
- da Cunha Vasconcelos, F.; Scheiner, M.A.M.; Moellman-Coelho, A.; Mencalha, A.L.; Renault, I.Z.; Rumjanek, V.M.; Maia, R.C. Low ABCB1 and high OCT1 levels play a favorable role in the molecular response to imatinib in CML patients in the community clinical practice. Leuk. Res. 2016, 51, 3–10. [Google Scholar] [CrossRef]
- Taylor, N.M.I.; Manolaridis, I.; Jackson, S.M.; Kowal, J.; Stahlberg, H.; Locher, K.P. Structure of the human multidrug transporter ABCG2. Nature 2017, 546, 504–509. [Google Scholar] [CrossRef]
- Orlando, B.J.; Liao, M. ABCG2 transports anticancer drugs via a closed-to-open switch. Nat. Commun. 2020, 11, 2264. [Google Scholar] [CrossRef]
- Kowal, J.; Ni, D.; Jackson, S.M.; Manolaridis, I.; Stahlberg, H.; Locher, K.P. Structural Basis of Drug Recognition by the Multidrug Transporter ABCG2. J. Mol. Biol. 2021, 433, 166980. [Google Scholar] [CrossRef]
- Deenik, W.; van der Holt, B.; Janssen, J.J.; Chu, I.W.; Valk, P.J.; Ossenkoppele, G.J.; van der Heiden, I.P.; Sonneveld, P.; van Schaik, R.H.; Cornelissen, J.J. Polymorphisms in the multidrug resistance gene MDR1 (ABCB1) predict for molecular resistance in patients with newly diagnosed chronic myeloid leukemia receiving high-dose imatinib. Blood J. Am. Soc. Hematol. 2010, 116, 6144–6145. [Google Scholar] [CrossRef]
- Au, A.; Baba, A.A.; Goh, A.S.; Fadilah, S.A.W.; Teh, A.; Rosline, H.; Ankathil, R. Association of genotypes and haplotypes of multi-drug transporter genes ABCB1 and ABCG2 with clinical response to imatinib mesylate in chronic myeloid leukemia patients. Biomed. Pharmacother. 2014, 68, 343–349. [Google Scholar] [CrossRef]
- Delord, M.; Rousselot, P.; Cayuela, J.; Sigaux, F.; Guilhot, J.; Preudhomme, C.; Guilhot, F.; Loiseau, P.; Raffoux, E.; Geromin, D.; et al. High imatinib dose overcomes insufficient response associated with ABCG2 haplotype in chronic myelogenous leukemia patients. Oncotarget 2013, 4, 1582–1591. [Google Scholar] [CrossRef]
- Jiang, Z.P.; Zhao, X.L.; Takahashi, N.; Angelini, S.; Dubashi, B.; Sun, L.; Xu, P. Trough concentration and ABCG2 polymorphism are better to predict imatinib response in chronic myeloid leukemia: A meta-analysis. Pharmacogenomics 2017, 18, 35–56. [Google Scholar] [CrossRef]
- Mahon, F.X.; Réa, D.; Guilhot, J.; Guilhot, F.; Huguet, F.; Nicolini, F.; Legros, L.; Charbonnier, A. Discontinuation of Imatinib in patients with chronic myeloid leukaemia who have maintained complete molecular remission for at least 2 years: The prospective, multicentre Stop Imatinib (STIM) trial. Lancet Oncol. 2010, 11, 1029–1035. [Google Scholar] [CrossRef]
- Katagiri, S.; Umezu, T.; Ohyashiki, J.H.; Ohyashiki, K. The BCL2L11 (BIM) deletion polymorphism is a possible criterion for discontinuation of Imatinib in chronic myeloid leukaemia patients. Br. J. Haematol. 2013, 160, 269–271. [Google Scholar] [CrossRef]
- Marum, J.E.; Yeung, D.T.; Purins, L.; Reynolds, J.; Parker, W.T.; Stangl, D.; Wang, P.P.S.; Price, D.J. ASXL1 and BIM germ line variants predict response and identify CML patients with the greatest risk of imatinib failure. Blood Adv. 2017, 1, 1369–1381. [Google Scholar] [CrossRef] [Green Version]
- Kong, J.H.; Mun, Y.C.; Kim, S.; Choi, H.S.; Kim, Y.K.; Kim, H.J.; Moon, J.H.; Shon, S.K. Polymorphisms of ERCC1 genotype associated with response to imatinib therapy in chronic phase chronic myeloid leukemia. Int. J. Hematol. 2012, 96, 327–333. [Google Scholar] [CrossRef]
- Abumiya, M.; Takahashi, N.; Niioka, T.; Kameoka, Y.; Fujishima, N.; Tagawa, H.; Sawada, K.; Miura, M. Influence of UGT1A1 6, 27, and 28 polymorphisms on nilotinib-induced hyperbilirubinemia in Japanese patients with chronic myeloid leukemia. Drug. Metab. Pharmacokinet. 2014, 29, 449–454. [Google Scholar] [CrossRef]
- Shibata, T.; Minami, Y.; Mitsuma, A.; Morita, S.; Inada-Inoue, M.; Oguri, T.; Shimokata, T.; Sugishita, M.; Naoe, T.; Ando, Y. Association between severe toxicity of nilotinib and UGT1A1 polymorphisms in Japanese patients with chronic myelogenous leukemia. Int. J. Clin. Oncol. 2014, 19, 391–396. [Google Scholar] [CrossRef]
- Estey, E.H. Acute myeloid leukemia: 2019 update on risk-stratification and management. Am. J. Hematol. 2018, 93, 267–1291. [Google Scholar] [CrossRef]
- Grimwade, D.; Ivey, A.; Huntly, B.J.P. Molecular landscape of acute myeloid leukemia in younger adults and its clinical relevance. Blood 2016, 127, 29–41. [Google Scholar] [CrossRef]
- Soverini, S.; Hochhau, A.; Nicolini, F.E.; Gruber, F.; Lange, T.; Saglio, G.; Pane, F.; Muller, M.C. BCR-ABL kinase domain mutation analysis in chronic myeloid leukemia patients treated with tyrosine kinase inhibitors: Recommendations from an expert panel on behalf of European Leukemia Net. Blood 2011, 118, 1208–1215. [Google Scholar]
- Soverini, S.; Martinelli, G.; Rosti, G.; Iacobucci, I.; Baccarani, M. Advances in treatment of chronic myeloid leukemia with tyrosine kinase inhibitors: The evolving role of Bcr–Abl mutations and mutational analysis. Pharmacogenomics 2012, 13, 1271–1284. [Google Scholar] [CrossRef]
- Hughes, T.; Saglio, G.; Branford, S.; Soverini, S.; Kim, D.W.; Muller, M.C.; Martinelli, G.; Cortes, J. Impact of baseline BCR ABL mutations on response to nilotinib in patients with chronic myeloid leukemia in chronic phase. J. Clin. Oncol. 2009, 27, 4204–4211. [Google Scholar] [CrossRef]
- Peng, B.; Dutreix, C.; Mehring, G.; Hayes, M.J.; Ben-Am, M.; Seiberling, M.; Pokorny, R.; Capdeville, R. Absolute bioavailability of imatinib (Glivec) orally versus intravenous infusion. J. Clin. Pharmacol. 2004, 44, 158–162. [Google Scholar] [CrossRef]
- Tian, X.; Zhang, H.; Heimbach, T.; He, H.; Buchbinder, A.; Aghoghovbia, M.; Hourcade-Potelleret, F. Clinical Pharmacokinetic and Pharmacodynamic Overview of Nilotinib, a Selective Tyrosine Kinase Inhibitor. J. Clin. Pharmacol. 2018, 58, 1533–1540. [Google Scholar] [CrossRef]
- Levêque, D.; Becker, G.; Bilger, K.; Natarajan-Amé, S. Clinical Pharmacokinetics and Pharmacodynamics of Dasatinib. Clin. Pharmacokinet. 2020, 59, 849–856. [Google Scholar] [CrossRef]
- Abbas, R.; Hsyu, P.H. Clinical Pharmacokinetics and Pharmacodynamics of Bosutinib. Clin. Pharmacokinet. 2016, 55, 1191–1204. [Google Scholar] [CrossRef]
- FDA. SCEMBLIX® (asciminib) Safely and Effectively; FDA: Silver Spring, MD, USA, 2021.
- Ni, L.N.; Li, J.Y.; Miao, K.R.; Qiao, C.; Zhang, S.J.; Qui, H.R.; Qian, S.X. Multidrug resistance gene (MDR1) polymorphisms correlate with imatinib response in chronic myeloid leukemia. Med Oncol. 2011, 28, 265–269. [Google Scholar] [CrossRef]
- Picard, S.; Titier, K.; Etienne, G.; Teilhet, E.; Ducint, D.; Bernard, M.A.; Lassalle, R.; Marit, G. Trough imatinib plasma levels are associated with both cytogenetic and molecular responses to standard-dose Imatinib in chronic myeloid leukemia. Blood 2007, 109, 3496–3499. [Google Scholar] [CrossRef]
- Guilhot, F.; Hughes, T.P.; Cortes, J.; Druker, B.J.; Baccarani, M.; Gathmann, I.; Hayes, M.; Granvil, C. Plasma exposure of Imatinib and its correlation with clinical response in the Tyrosine Kinase Inhibitor Optimization and Selectivity Trial. Haematologica 2012, 97, 731–738. [Google Scholar] [CrossRef]
- White, D.L.; Radich, J.; Soverini, S.; Saunders, V.A.; Frede, A.K.; Dang, P.; Cilloni, D.; Lin, P. Chronic phase chronic myeloid leukemia patients with low OCT-1 activity randomized to high-dose Imatinib achieve better responses and have lower failure rates than those randomized to standard-dose Imatinib. Haematologica 2012, 97, 907–914. [Google Scholar] [CrossRef]
- Larson, R.A.; Druker, B.J.; Guilhot, F.; O’Brien, S.G.; Riviere, G.J.; Krahnke, T.; Gathmann, I.; Wang, Y. Imatinib pharmacokinetics and its correlation with response and safety in chronic-phase chronic myeloid leukemia: A subanalysis of the IRIS study. Blood 2008, 111, 4022–4028. [Google Scholar] [CrossRef] [PubMed]
- Larson, R.A.; Yin, O.Q.; Hochhaus, A.; Saglio, G.; Clark, R.E.; Nakamae, H.; Gallagher, N.J.; Demirhan, E. Population pharmacokinetic and exposure-response analysis of nilotinib in patients with newly diagnosed Ph+ chronic myeloid leukemia in chronic phase. Eur. J. Clin. Pharmacol. 2012, 68, 723–733. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Roy, A.; Hochhaus, A.; Kantarjian, H.M.; Chen, T.T.; Shah, N.P. Differential effects of dosing regimen on the safety and efficacy of dasatinib: Retrospective exposure-response analysis of a Phase III study. Clin. Pharmacol. 2013, 5, 85–97. [Google Scholar] [PubMed]
- Hsyu, P.H.; Mould, D.R.; Upton, R.N.; Amantea, M. Pharmacokinetic-pharmacodynamic relationship of bosutinib in patients with chronic phase chronic myeloid leukemia. Cancer Chemother. Pharmacol. 2013, 71, 209–218. [Google Scholar] [CrossRef]
- Kim, D.H.; Byeun, J.Y.; Jung, C.W.; Xu, W.; Liu, X.; Kamel-Reid, S.; Kim, Y.K.; Kim, H.J. The IFNG (IFN-gamma) genotype predicts cytogenetic and molecular response to imatinib therapy in chronic myeloid leukemia. Clin. Cancer Res. 2010, 16, 5339–5350. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.H.; Park, J.Y.; Sohn, S.K.; Lee, N.Y.; Baek, J.H. Multidrug resistance-1 gene polymorphisms associated with treatment outcomes in de novo acute myeloid leukemia. Int. J. Cancer 2006, 118, 2195–2201. [Google Scholar] [CrossRef]
- Megías-Vericat, J.E.; Montesinos, P.; Herrero, M.J.; Bosó, V.; Martínez-Cuadrón, D. Pharmacogenomics and the treatment of acute myeloid leukemia. Pharmacogenomics 2016, 17, 1245–1272. [Google Scholar] [CrossRef]
- Hampras, S.S.; Sucheston, L.; Weiss, J.; Baer, M.R.; Zirpoli, G. Genetic polymorphisms of ATP-binding cassette (ABC) proteins, overall survival and drug toxicity in patients with Acute Myeloid Leukemia. Int. J. Mol. Epidemiol. Genet. 2010, 3, 201–207. [Google Scholar]
- Galmarini, C.M.; Thomas, X.; Calvo, F.; Rousselot, P.; El Jafaari, A.; Cros, E.; Dumontet, C. Potential mechanisms of resistance to cytarabine in AML patients. Leuk. Res. 2002, 26, 621–629. [Google Scholar] [CrossRef]
- Shi, J.Y.; Shi, Z.Z.; Zhang, S.J.; Zhu, Y.M.; Gu, B.W. Association between single nucleotide polymorphisms in deoxycytidine kinase and treatment response among acute myeloid leukaemia patients. Pharmacogenetics 2004, 14, 759–768. [Google Scholar] [CrossRef]
- Kim, H.R.; Park, H.S.; Kwon, W.S.; Lee, J.H.; Tanigawara, Y. Pharmacogenetic determinants associated with sunitinib-induced toxicity and ethnic difference in Korean metastatic renal cell carcinoma patients. Cancer Chemother. Pharmacol. 2013, 72, 825–835. [Google Scholar] [CrossRef] [PubMed]
- Stone, R.M.; Mandrekar, S.J.; Sanford, B.L.; Laumann, K.; Geyer, S. Midostaurin plus Chemotherapy for Acute Myeloid Leukemia with a FLT3 Mutation. N. Engl. J. Med. 2017, 377, 454–464. [Google Scholar] [CrossRef]
- Mortland, L.; Alonzo, T.A.; Walter, R.B.; Gerbing, R.B.; Mitra, A.K. Clinical significance of CD33 nonsynonymous single-nucleotide polymorphisms in pediatric patients with acute myeloid leukemia treated with gemtuzumab-ozogamicin-containing chemotherapy. Clin. Cancer Res. 2013, 19, 1620–1627. [Google Scholar] [CrossRef]
- Iacobucci, I.; Lonetti, A.; Candoni, A.; Sazzini, M.; Papayannidis, C. Profiling of drug-metabolizing enzymes/transporters in CD33+ acute myeloid leukemia patients treated with Gemtuzumab-Ozogamicin and Fludarabine, Cytarabine and Idarubicin. Pharmacogenomics J. 2013, 13, 335–341. [Google Scholar] [CrossRef] [PubMed]
- Castaigne, S.; Pautas, C.; Terré, C.; Raffoux, E.; Bordessoule, D. Acute Leukemia French Association. Effect of gemtuzumab ozogamicin on survival of adult patients with de-novo acute myeloid leukaemia (ALFA-0701): A randomized, open-label, phase 3 study. Lancet 2012, 379, 1508–1516. [Google Scholar] [CrossRef]
- Blanco, J.G.; Sun, C.L.; Landier, W.; Chen, L.; Esparza-Duran, D. Anthracycline-related cardiomyopathy after childhood cancer: Role of polymorphisms in carbonyl reductase genes-- report from the Children’s Oncology Group. J. Clin. Oncol. 2012, 30, 1415–1421. [Google Scholar] [CrossRef] [Green Version]
TKI | Primary Targets | Secondary Targets | Therapeutic Indications | Reference |
---|---|---|---|---|
Imatinib Glivec® | BCR::ABL1 c-ABL | c-KIT, PDGFR (alpha and beta), DDR 1, DDR 2, NQO2, Arg, CSF-1R | CML Ph (+) (BCR::ABL1) newly diagnosed when bone marrow transplantation is not considered as 1st line treatment. CML Ph (+) in chronic phase after interferon-α treatment failure, accelerated phase, or blast crisis. | [16] |
Dasatinib Sprycel® | BCR::ABL1 c-ABL | SRC, c-KIT, PDGFR-b, EPHA2, FMS, DDR 1, DDR2 | CML Ph (+) (BCR::ABL1) in chronic phase of recent diagnosis. CML Ph (+) (BCR::ABL1) in chronic, accelerated, or blast phase with resistance or intolerance to previous treatment, including imatinib. | [17] |
Nilotinib Tasigna® | BCR::ABL1 c-ABL | c-KIT, PDGFR (alpha and beta), DDR 1, NQO2, VEGF, r ephrin, ZAK | CML Ph (+) (BCR::ABL1) of recent diagnosis in chronic phase. CML Ph (+) (BCR::ABL1) in chronic, accelerated, or blastic phase with resistance or intolerance to previous treatment, including imatinib. No effectiveness data are available in patients with blast phase CML. | [18] |
Bosutinib Bosulif® | BCR::ABL1 c-ABL | SRC, c-Fms, EphA, t ephrin B, Trk, Axl, Tec, Ste20, serine/threonine, others | CML Ph (+) (BCR::ABL1) of recent diagnosis in chronic phase. CML Ph (+) (BCR::ABL1) in accelerated or blastic phase previously treated with one or more tyrosine kinase inhibitors and for whom imatinib, nilotinib, and dasatinib are not considered to be suitable options. | [19] |
Ponatinib Iclusig® | BCR::ABL1 c-ABL | SRC, c-KIT, PDGFR, VEGFR, FGFR, RET, FLT3 | CML in a chronic, accelerated, or blastic phase that is resistant or intolerant to dasatinib or nilotinib; in whom subsequent treatment with imatinib is not clinically indicated and those with the T315I mutation. | [20] |
Asciminib Scemblix® | BCR::ABL1 c-ABL | - | CML Ph (+) (BCR::ABL1) in chronic phase, previously treated with two or more TKIs. It is also indicated in the treatment of CML Ph (+) in adult patients with the T315I mutation. | [15] |
Phases | Objective | Treatment Scheme |
---|---|---|
Induction phase | To achieve CR | 1 or 2 cycles of anthracyclines (3 days) + cytarabine (ARA-C) (7 days). |
Post-remission phase | To eradicate the residual leukemic clone | Consolidation stage: One cycle equal to induction phase +2 or 3 cycles of intensification (intermediate or high dose of cytarabine). When first CR is achieved: Autologous or allogeneic hematopoietic stem cell transplantations (SCT) of patients with high risk or relapse. Exception: Patients who are not candidates for intensive therapies should be approached on an individual bases. |
Treatment alternatives | Low dose of ARA-C. Use of hypomethylating agents: 5-azacitidine or decitabine. Inclusion of the patient in clinical trials: new cytotoxic agents or supportive therapy with chemotherapy and general care. |
Treatment | Targets | Therapeutic Indications | Limitations | ||||
---|---|---|---|---|---|---|---|
FMS-like tyrosine kinase 3 (FLT3) inhibitors | First generation | Type II: sorafenib | FMS-like tyrosine kinase 3 (FLT3) | Other kinases (KIT, PDGFR, RAS/RAF/MEK, JAK) | Effective only in ITD | 25–35% of de novo AMLs have mutations in FLT3, both internal tandem duplications (ITD) and point duplications (TKD). The preferred approach is a combination of FLT3i with intensive chemotherapy in fit/young patients or with an HMA ± venetoclax in older or unfit patients with overall responses reaching 40–50%. They also show great promise as post-transplant maintenance to reduce the risk of relapse [26,27]. | Many studies have shown that FLT3 inhibitors have favorable clinical activities for AML patients with FLT3/ITD, but response duration remains short because of the rapid development of resistance. Resistance to FLT3 inhibitors was attributed to the emergence of new mutations. The secondary FLT3 tyrosine kinase domain (TKD) mutation was one of the new mutations in the patients who showed resistance to FLT3 inhibitors [28,29]. |
Type I: lestaurtinib, sunitinib, midostaurin | Effective in ITD and TKD | ||||||
Second generation | Type I: crenolanib, gilteritinib | -More potent and specific. -Less off-target effects. | Effective only in ITD | ||||
Type II: quizartinib | |||||||
CAR-T cells [30] | CD33 (CART 33) and (CART 123). | In many patients with AML, the disease will relapse with a poor prognosis and few options for targeted therapy. Chimeric antigen receptor (CAR) T cells targeting myeloid-lineage antigens such as CD33, and CD123 β have produced promising results in preclinical models of AML. | Circulating CAR-T cells are unable to differentiate between normal and malignant cells. This often induces on-target off-tumor side effects such as B-cell aplasia that can be treated by monthly intravenous immunoglobulin infusions. This represents a major obstacle to the development of CAR T-cell therapy in AML. | ||||
Venetoclax [31,32,33,34] | B-cell lymphoma 2 (BCL-2): Overexpression of BCL-2 has been shown to exist in AML, where it mediates tumor cell survival and has been associated with antineoplastic drug resistance. Venetoclax binds directly to the BH3 domain binding site of BCL-2, displacing proapoptotic proteins with BH3 domains, such as BIM, to initiate mitochondrial outer membrane permeabilization (MOMP), caspase activation, and programmed cell death. | In combination with a hypomethylating agent (5-azacitidine or decitabine). Some studies showed that the addition of venetoclax to the HMA and FLT3 inhibitor combination (triplet therapy) was associated with improved outcome parameters and may be an effective frontline regimen not only in older/unfit FLT3 mutated AML but potentially also in younger patients with adverse biologic features, although further data from ongoing and planned randomized trials in such populations are needed to support such a paradigm shift. | Despite its promising efficacy, clonal evolution and drug resistance limit the prolonged durability of the responses in AML patients. | ||||
Isocitrate dehydrogenase (IDH) inhibitors: Ivosidenib and enasidenib [35,36,37,38,39,40] | IDH: IDH1 and IDH2 mutations result in the aberrant production of 2-hydroxyglutarate, which leads to DNA and histone hypermethylation and impaired myeloid differentiation, promoting oncogenesis in AML. IDH1/2 mutations are found in around 20% of patients with AML. | ivosidenib: For IDH1-mutated AML patients ≥75 y or unsuitable for intensive chemotherapy due to comorbidities. enasidenib: For IDH2-mutated AML patients ≥75 y or unsuitable for intensive chemotherapy due to comorbidities. | Both IDH inhibitors have been associated with a rare but fatal complication termed IDH inhibitor differentiation syndrome (IDH-DS). Signs and symptoms of IDH-DS include dyspnea, unexplained fever for two days, pulmonary infiltrates, hypoxemia, CTCAE ≥ grade 2 acute kidney injury, pleural effusion, arthralgias, lymphadenopathy, skin rash, disseminated intravascular coagulopathy, edema or weight gain of >5 kg, and pericardial effusion. Management consists of the timely initiation of dexamethasone 10 mg IV twice daily and tapered once symptoms improve. IDH inhibitors should be held for severe pulmonary symptoms and renal dysfunction persisting for over 48 h after initiation of dexamethasone or equivalent corticosteroids. Because enasidenib and ivosidenib have long half-lives of elimination, corticosteroids should be initiated as soon as feasible as treatment interruption alone might not result in immediate resolution of symptoms. | ||||
Gemtuzumab ozogamicin (GO) [41] | CD33: Anti-CD33 monoclonal antibody linked to a cytotoxic derivative of calicheamicin. The transmembrane surface receptor, CD33, is an attractive target for AML as it is nearly ubiquitously expressed on hematopoietic cells of myeloid lineage and myeloblasts in >80% of AML patients. | Is the only new agent approved for the treatment of the vast majority of AML patients, including ND-AML and RR-AML disease in adults and RR-AML in pediatric patients. Of note, these indications for GO expand upon the previous US approval of GO, which was limited only to adult patients with RR-AML in 2000. A recent study, using fractionated doses of GO combined with ARA-C, demonstrated a CR rate of 75%, and a 2-year OS of 51% with low mortality (8.3%). | Despite the known clinical efficacy in relapsed/refractory acute myeloid leukemia (AML), GO was withdrawn from the market in 2010 due to increased early deaths seen in newly diagnosed AML patients receiving GO + intensive chemotherapy. In 2017, new data on the clinical efficacy and safety of GO administered on a fractionated dosing schedule led to re-approval for newly diagnosed and relapsed/refractory AML. | ||||
Glasdegib [42] | Oral small-molecule inhibitor of the Smoothened protein and the Hedgehog signaling pathway. | In combination with low-dose cytarabine (LDAC) was FDA approved in 2018, for patients with AML or high-risk myelodysplastic syndrome (MDS) unsuitable for intensive chemotherapy. | Despite the positive readout, the efficacy of glasdegib plus LDAC appears modest when compared with the data of hypomethylating agent-venetoclax combinations in similar, unsuitable for intensive chemotherapy patient populations, albeit with the caveat and hazards of comparisons across distinct clinical trials. For this reason, azacitidine plus venetoclax appears to have become the favored approach for the frontline treatment of AML in patients unsuitable for intensive therapy. | ||||
Volasertib [43,44,45,46,47,48] | Inhibitor of polo-like kinases (PLKs): potently inhibits PLK1 as well as the two closely related kinases, PLK2 and PLK3, with 50% inhibitory concentration values of 0.87, 5, and 56 nmol/L, respectively [43,44]. | In patients older than 60 years, AML is associated with a particularly worse prognosis compared to younger patients, both due to intolerance and treatment resistance to chemotherapy. Volasertib offers a newer approach to the treatment of AML. Volasertib, currently in Phase III clinical trials in combination with cytarabine, is reviewed as a promising agent for this patient population with AML, from the viewpoints of potential compliance and efficacy [45,46]. | Volasertib inhibits the proliferation of most leukemia cell lines and primary AML cells in vitro. Although PLK1 is over-expressed in a variety of cancer cells, PLK1 is vital for cell proliferation regardless of normal or malignant cells. The combination with more cancer-specific, molecular targeting agents is suitable for the clinical development of PLK1 inhibitors. Further study is required to identify a subset of AML patients with optimal response to volasertib, and the molecules or pathways that associate with the response to volasertib in AML cells [47]. | ||||
HDAc inhibitors (HDACi): Panobinostat [44,49,50] | HDA: These enzymes are involved in the removal of acetyl groups from histones, so their inhibition causes transcriptional repression and slows hematopoietic differentiation. | HDACi has emerged as a promising therapeutic strategy for cancer therapy. Furthermore, these inhibitors have shown the ability to induce differentiation, cell cycle arrest, and apoptosis in AML, leading to a good alternative for treatment, especially for those AML patients not suitable for intensive chemotherapy. | Despite the promising preclinical results of HDACi, these HDACi do not seem to be clinically effective as monotherapies in AML. However, combination strategies with a variety of anticancer drugs are being tested in clinical trials, showing significant anti-leukemic activity in hematological diseases as they enhance the action of some standard-of-care anti-AML treatments. |
AML with genetic abnormalities with a favorable prognosis |
t(8;21)(q22;q22.1);RUNX1-RUNX1T1 inv(16)(p13.1q22) o t(16;16) (p13.1;q22);CBFB-MYH11 Acute promyelocytic leukemia t(15;17) (q22;q11-12);PML-RARA Mutated NPM1 without FLT3-ITD (or FLT3-ITD with a low allelic ratio) Biallelic mutated CEBPA |
AML with genetic abnormalities of intermediate prognosis |
Mutated NPM1 and FLT3-ITD high Wild-type NPM1 without FLT3-ITD or with FLT3-ITD low t(9;11)(p21.3;q23.3);MLLT3-KMT2A |
AML with genetic abnormalities of unfavorable prognosis |
t(6;9)(p23;q34.1);DEK-NUP214 t(v;11q23.3); KMT2A rearranged inv(3)(q21.3q26.2) or t(3;3)(q21.3;q26.2);GATA2,MECOM Wild-type NPM1 and FLT3-ITD high Mutated RUNX1 Mutated ASXL1 Mutated TP53 |
Pharmacokinetics Properties | Imatinib | Nilotinib | Dasatinib | Bosutinib | Ponatinib | Asciminib |
---|---|---|---|---|---|---|
Bioavailability | 98% | 31% | 34% | 50% | unknown | ≈40% |
Cmax (median) | 2.5 h | 3 h | 1 h | 5 h | 4 h | 2.5 h |
Food | No interaction | High interaction | Minimum interaction | High interaction | No interaction | High interaction |
Plasma protein binding | 95% | 98% | 96% | 96% | >99% | 93% |
Metabolism | Hepatic CYP | Hepatic CYP | Hepatic CYP | Hepatic CYP | Hepatic CYP | Hepatic CYP |
Half-life | 18 h (40) | 17 h | 5–6 h | 32–39 h | 22 h | 8 h |
Excretion | Fecal Urinary 13% | Fecal Urinary 4% | Fecal Urinary 4% | Fecal Urinary 3% | Fecal Urinary 5% | Fecal Urinary 11% |
Reference | [86] | [87] | [88] | [89] | [16] | [90] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alarcón-Payer, C.; Sánchez Suárez, M.D.M.; Martín Roldán, A.; Puerta Puerta, J.M.; Jiménez Morales, A. Impact of Genetic Polymorphisms and Biomarkers on the Effectiveness and Toxicity of Treatment of Chronic Myeloid Leukemia and Acute Myeloid Leukemia. J. Pers. Med. 2022, 12, 1607. https://doi.org/10.3390/jpm12101607
Alarcón-Payer C, Sánchez Suárez MDM, Martín Roldán A, Puerta Puerta JM, Jiménez Morales A. Impact of Genetic Polymorphisms and Biomarkers on the Effectiveness and Toxicity of Treatment of Chronic Myeloid Leukemia and Acute Myeloid Leukemia. Journal of Personalized Medicine. 2022; 12(10):1607. https://doi.org/10.3390/jpm12101607
Chicago/Turabian StyleAlarcón-Payer, Carolina, María Del Mar Sánchez Suárez, Alicia Martín Roldán, José Manuel Puerta Puerta, and Alberto Jiménez Morales. 2022. "Impact of Genetic Polymorphisms and Biomarkers on the Effectiveness and Toxicity of Treatment of Chronic Myeloid Leukemia and Acute Myeloid Leukemia" Journal of Personalized Medicine 12, no. 10: 1607. https://doi.org/10.3390/jpm12101607
APA StyleAlarcón-Payer, C., Sánchez Suárez, M. D. M., Martín Roldán, A., Puerta Puerta, J. M., & Jiménez Morales, A. (2022). Impact of Genetic Polymorphisms and Biomarkers on the Effectiveness and Toxicity of Treatment of Chronic Myeloid Leukemia and Acute Myeloid Leukemia. Journal of Personalized Medicine, 12(10), 1607. https://doi.org/10.3390/jpm12101607