Sex Differences in Response to Treatment with Glucagon-like Peptide 1 Receptor Agonists: Opportunities for a Tailored Approach to Diabetes and Obesity Care
Abstract
:1. Introduction
2. GLP-1 RAs: An Overview of the Class
3. Sex-Specific Efficacy of GLP-1 RAs
3.1. Hypoglycemic Efficacy
3.2. Weight Loss
3.3. Cardiovascular Risk and Major Adverse Cardiovascular Events (MACE)
4. Sex as a Determinant of Different Adverse Outcomes of GLP-1 RA Treatment
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Castellana, M.; Cignarelli, A.; Brescia, F.; Perrini, S.; Natalicchio, A.; Laviola, L.; Giorgino, F. Efficacy and safety of GLP-1 receptor agonists as add-on to SGLT2 inhibitors in type 2 diabetes mellitus: A meta-analysis. Sci. Rep. 2019, 9, 1–8. [Google Scholar] [CrossRef]
- American Diabetes Association 6. Glycemic Targets: Standards of Medical Care in Diabetes—2021. Diabetes Care 2020, 44, S73–S84. [Google Scholar] [CrossRef]
- Koufakis, T.; Papanas, N.; Zebekakis, P.; Kotsa, K. Treatment options following metformin in primary prevention populations with type 2 diabetes: Which is the right road to take? Expert Rev. Clin. Pharmacol. 2021, 14, 1189–1192. [Google Scholar] [CrossRef] [PubMed]
- American Diabetes Association. Pharmacologic Approaches to Glycemic Treatment: Standards of Medical Care in Diabetes—2021. Diabetes Care 2021, 44, S111–S124. [Google Scholar] [CrossRef] [PubMed]
- Chiefari, E.; Capula, C.; Vero, A.; Oliverio, R.; Puccio, L.; Liguori, R.; Pullano, V.; Greco, M.; Foti, D.; Tirinato, D.; et al. Add-On Treatment with Liraglutide Improves Glycemic Control in Patients with Type 2 Diabetes on Metformin Therapy. Diabetes Technol. Ther. 2015, 17, 468–474. [Google Scholar] [CrossRef] [PubMed]
- Quan, H.; Zhang, H.; Wei, W.; Fang, T. Gender-related different effects of a combined therapy of Exenatide and Metformin on overweight or obesity patients with type 2 diabetes mellitus. J. Diabetes Its Complicat. 2016, 30, 686–692. [Google Scholar] [CrossRef] [PubMed]
- Ryan, P.M.; Seltzer, S.; Hayward, N.E.; Rodriguez, D.A.; Sless, R.T.; Hawkes, C.P. Safety and Efficacy of Glucagon-Like Peptide-1 Receptor Agonists in Children and Adolescents with Obesity: A Meta-Analysis. J. Pediatr. 2021, 236, 137–147. [Google Scholar] [CrossRef]
- Chadda, K.R.; Cheng, T.S.; Ong, K.K. GLP-1 agonists for obesity and type 2 diabetes in children: Systematic review and meta-analysis. Obes. Rev. 2021, 22, e13177. [Google Scholar] [CrossRef]
- Mayes, J.S.; Watson, G.H. Direct effects of sex steroid hormones on adipose tissues and obesity. Obes. Rev. 2004, 5, 197–216. [Google Scholar] [CrossRef]
- Kalish, G.M.; Barrett-Connor, E.; Laughlin, G.A.; Gulanski, B.I. Association of Endogenous Sex Hormones and Insulin Resistance among Postmenopausal Women: Results from the Postmenopausal Estrogen/Progestin Intervention Trial. J. Clin. Endocrinol. Metab. 2003, 88, 1646–1652. [Google Scholar] [CrossRef] [Green Version]
- Kautzky-Willer, A.; Harreiter, J.; Pacini, G. Sex and Gender Differences in Risk, Pathophysiology and Complications of Type 2 Diabetes Mellitus. Endocr. Rev. 2016, 37, 278–316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pasquali, R.; Vicennati, V.; Gambineri, A.; Pagotto, U. Sex-dependent role of glucocorticoids and androgens in the pathophysiology of human obesity. Int. J. Obes. 2008, 32, 1764–1779. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arnetz, L.; Ekberg, N.R.; Alvarsson, M. Sex differences in type 2 diabetes: Focus on disease course and outcomes. Diabetes Metab. Syndr. Obes. Targets Ther. 2014, 7, 409–420. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mauvais-Jarvis, F. Gender differences in glucose homeostasis and diabetes. Physiol. Behav. 2018, 187, 20–23. [Google Scholar] [CrossRef]
- Chiu, C.-J.; Wray, L.A. Gender Differences in Functional Limitations in Adults Living with Type 2 Diabetes: Biobehavioral and Psychosocial Mediators. Ann. Behav. Med. 2010, 41, 71–82. [Google Scholar] [CrossRef]
- Roche, M.M.; Wang, P.P. Sex Differences in All-Cause and Cardiovascular Mortality, Hospitalization for Individuals with and Without Diabetes, and Patients with Diabetes Diagnosed Early and Late. Diabetes Care 2013, 36, 2582–2590. [Google Scholar] [CrossRef] [Green Version]
- Mauvais-Jarvis, F.; Clegg, D.J.; Hevener, A.L. The Role of Estrogens in Control of Energy Balance and Glucose Homeostasis. Endocr. Rev. 2013, 34, 309–338. [Google Scholar] [CrossRef] [Green Version]
- Root-Bernstein, R.; Podufaly, A.; Dillon, P.F. Estradiol Binds to Insulin and Insulin Receptor Decreasing Insulin Binding in vitro. Front. Endocrinol. 2014, 5, 5. [Google Scholar] [CrossRef] [Green Version]
- Plows, J.F.; Stanley, J.L.; Baker, P.N.; Reynolds, C.M.; Vickers, M.H. The Pathophysiology of Gestational Diabetes Mellitus. Int. J. Mol. Sci. 2018, 19, 3342. [Google Scholar] [CrossRef] [Green Version]
- Koning, S.H.; Lutgers, H.L.; Hoogenberg, K.; Trompert, C.A.; Berg, P.P.V.D.; Wolffenbuttel, B.H.R. Postpartum glucose follow-up and lifestyle management after gestational diabetes mellitus: General practitioner and patient perspectives. J. Diabetes Metab. Disord. 2016, 15, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Pencek, R.; Blickensderfer, A.; Li, Y.; Brunell, S.C.; Anderson, P.W. Exenatide Twice Daily: Analysis of Effectiveness and Safety Data Stratified by Age, Sex, Race, Duration of Diabetes, and Body Mass Index. Postgrad. Med. 2012, 124, 21–32. [Google Scholar] [CrossRef] [PubMed]
- Anichini, R.; Cosimi, S.; Di Carlo, A.; Orsini, P.; De Bellis, A.; Seghieri, G.; Franconi, F.; Baccetti, F. Gender difference in response predictors after 1-year exenatide therapy twice daily in type 2 diabetic patients: A real world experience. Diabetes Metab. Syndr. Obes. 2013, 6, 123–129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shah, M.; Vella, A. Effects of GLP-1 on appetite and weight. Rev. Endocr. Metab. Disord. 2014, 15, 181–187. [Google Scholar] [CrossRef]
- Garber, A.J. Long-Acting Glucagon-Like Peptide 1 Receptor Agonists. Diabetes Care 2011, 34, S279–S284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trujillo, J.M.; Nuffer, W.; Smith, B.A. GLP-1 receptor agonists: An updated review of head-to-head clinical studies. Ther. Adv. Endocrinol. Metab. 2021, 12, 204201882199732. [Google Scholar] [CrossRef] [PubMed]
- PubChem Exenatide. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/45588096 (accessed on 28 February 2022).
- PubChem Liraglutide. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/16134956 (accessed on 28 February 2022).
- PubChem Albiglutide. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/145994868 (accessed on 28 February 2022).
- PubChem Lixisenatide. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/90472060 (accessed on 28 February 2022).
- Dulaglutide. In Drugs and Lactation Database (LactMed); National Library of Medicine (US): Bethesda, MD, USA, 2006.
- PubChem Semaglutide. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/56843331 (accessed on 28 February 2022).
- Dulaglutide. Available online: https://go.drugbank.com/drugs/DB09045 (accessed on 28 February 2022).
- Nauck, M.A.; Meier, J.J. Management of endocrine disease: Are all GLP-1 agonists equal in the treatment of type 2 diabetes? Eur. J. Endocrinol. 2019, 181, R211–R234. [Google Scholar] [CrossRef] [PubMed]
- Kolterman, O.G.; Kim, D.D.; Shen, L.; Ruggles, J.A.; Nielsen, L.L.; Fineman, M.S.; Baron, A.D. Pharmacokinetics, pharmacodynamics, and safety of exenatide in patients with type 2 diabetes mellitus. Am. J. Health Pharm. 2005, 62, 173–181. [Google Scholar] [CrossRef]
- Damholt, B.; Golor, G.; Wierich, W.; Pedersen, P.; Ekblom, M.; Zdravkovic, M. An Open-Label, Parallel Group Study Investigating the Effects of Age and Gender on the Pharmacokinetics of the Once-Daily Glucagon-Like Peptide-1 Analogue Liraglutide. J. Clin. Pharmacol. 2006, 46, 635–641. [Google Scholar] [CrossRef]
- Matthews, J.E.; Stewart, M.W.; De Boever, E.H.; Dobbins, R.L.; Hodge, R.J.; Walker, S.E.; Holland, M.C.; Bush, M.A. Albiglutide Study Group: Pharmacodynamics, Pharmacokinetics, Safety, and Tolerability of Albiglutide, a Long-Acting Glucagon-Like Peptide-1 Mimetic, in Patients with Type 2 Diabetes. J. Clin. Endocrinol. Metab. 2008, 93, 4810–4817. [Google Scholar] [CrossRef] [Green Version]
- Becker, R.H.A.; Stechl, J.; Steinstraesser, A.; Golor, G.; Pellissier, F. Lixisenatide reduces postprandial hyperglycaemia via gastrostatic and insulinotropic effects. Diabetes/Metab. Res. Rev. 2015, 31, 610–618. [Google Scholar] [CrossRef]
- Smith, L.L.; Mosley, J.F.; Parke, C.; Brown, J.; Barris, L.S.; Phan, L.D. Dulaglutide (Trulicity): The Third Once-Weekly GLP-1 Agonist. Pharm. Ther. 2016, 41, 357–360. [Google Scholar]
- Marbury, T.C.; Flint, A.; Jacobsen, J.B.; Karsbøl, J.D.; Lasseter, K. Pharmacokinetics and Tolerability of a Single Dose of Semaglutide, a Human Glucagon-Like Peptide-1 Analog, in Subjects with and Without Renal Impairment. Clin. Pharmacokinet. 2017, 56, 1381–1390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geiser, J.S.; Heathman, M.A.; Cui, X.; A Martin, J.; Loghin, C.; Chien, J.Y.; De La Peña, A. Clinical Pharmacokinetics of Dulaglutide in Patients with Type 2 Diabetes: Analyses of Data from Clinical Trials. Clin. Pharmacokinet. 2015, 55, 625–634. [Google Scholar] [CrossRef] [PubMed]
- Bray, G.M. Exenatide. Am. J. Health Pharm. 2006, 63, 411–418. [Google Scholar] [CrossRef]
- Scott, L.J. Liraglutide: A Review of Its Use in Adult Patients with Type 2 Diabetes Mellitus. Drugs 2014, 74, 2161–2174. [Google Scholar] [CrossRef]
- Albiglutide (Subcutaneous Route) Side Effects-Mayo Clinic. Available online: https://www.mayoclinic.org/drugs-supple-ments/albiglutide-subcutaneous-route/side-effects/drg-20095263?p=1 (accessed on 28 February 2022).
- Leon, N.; LaCoursiere, R.; Yarosh, D.; Patel, R.S. Lixisenatide (Adlyxin): A Once-Daily Incretin Mimetic Injection for Type-2 Diabetes. Pharm. Ther. 2017, 42, 676–711. [Google Scholar]
- Hausner, H.; Karsbøl, J.D.; Holst, A.G.; Jacobsen, J.B.; Wagner, F.-D.; Golor, G.; Anderson, T.W. Effect of Semaglutide on the Pharmacokinetics of Metformin, Warfarin, Atorvastatin and Digoxin in Healthy Subjects. Clin. Pharmacokinet. 2017, 56, 1391–1401. [Google Scholar] [CrossRef] [Green Version]
- Leiter, L.A.; Mallory, J.M.; Wilson, T.H.; Reinhardt, R.R. Gastrointestinal safety across the albiglutide development programme. Diabetes Obes. Metab. 2016, 18, 930–935. [Google Scholar] [CrossRef]
- Fala, L. Trulicity (Dulaglutide): A New GLP-1 Receptor Agonist Once-Weekly Subcutaneous Injection Approved for the Treatment of Patients with Type 2 Diabetes. Am. Health Drug Benefits 2015, 8, 131–134. [Google Scholar]
- Smits, M.M.; Van Raalte, D.H. Safety of Semaglutide. Front. Endocrinol. 2021, 12, 645563. [Google Scholar] [CrossRef]
- Kaiafa, G.; Veneti, S.; Polychronopoulos, G.; Pilalas, D.; Daios, S.; Kanellos, I.; Didangelos, T.; Pagoni, S.; Savopoulos, C. Is HbA1c an ideal biomarker of well-controlled diabetes? Postgrad. Med. J. 2021, 97, 380–383. [Google Scholar] [CrossRef] [PubMed]
- Gallwitz, B.; Dagogo-Jack, S.; Thieu, V.; Garcia-Perez, L.E.; Pavo, I.; Yu, M.; Robertson, K.E.; Zhang, N.; Giorgino, F. Effect of once-weekly dulaglutide on glycated haemoglobin (HbA1c) and fasting blood glucose in patient subpopulations by gender, duration of diabetes and baseline HbA1c. Diabetes Obes. Metab. 2018, 20, 409–418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Onishi, Y.; Oura, T.; Nishiyama, H.; Ohyama, S.; Takeuchi, M.; Iwamoto, N. Subgroup analysis of phase 3 studies of dulaglutide in Japanese patients with type 2 diabetes. Endocr. J. 2016, 63, 263–273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aleidi, S.; Issa, A.; Bustanji, H.; Khalil, M.; Bustanji, Y. Adiponectin serum levels correlate with insulin resistance in type 2 diabetic patients. Saudi Pharm. J. 2015, 23, 250–256. [Google Scholar] [CrossRef] [Green Version]
- Hemmer, A.; Maiter, D.; Buysschaert, M.; Preumont, V. Long-term effects of GLP-1 receptor agonists in type 2 diabetic patients: A retrospective real-life study in 131 patients. Diabetes Metab. Syndr. Clin. Res. Rev. 2019, 13, 332–336. [Google Scholar] [CrossRef]
- Durden, E.; Lenhart, G.; Lopez-Gonzalez, L.; Hammer, M.; Langer, J. Predictors of glycemic control and diabetes-related costs among type 2 diabetes patients initiating therapy with liraglutide in the United States. J. Med. Econ. 2016, 19, 403–413. [Google Scholar] [CrossRef]
- Takahashi, T.A.; Johnson, K.M. Menopause. Med. Clin. N. Am. 2015, 99, 521–534. [Google Scholar] [CrossRef]
- Buysschaert, M.; Preumont, V.; Oriot, P.; Paris, I.; Ponchon, M.; Scarnière, D.; Selvais, P. One-year metabolic outcomes in patients with type 2 diabetes treated with exenatide in routine practice. Diabetes Metab. 2010, 36, 381–388. [Google Scholar] [CrossRef]
- Onishi, Y.; Oura, T.; Matsui, A.; Matsuura, J.; Iwamoto, N. Analysis of efficacy and safety of dulaglutide 0.75 mg stratified by sex in patients with type 2 diabetes in 2 randomized, controlled phase 3 studies in Japan. Endocr. J. 2017, 64, 553–560. [Google Scholar] [CrossRef] [Green Version]
- Mirabelli, M.; Chiefari, E.; Caroleo, P.; Arcidiacono, B.; Corigliano, D.M.; Giuliano, S.; Brunetti, F.S.; Tanyolaç, S.; Foti, D.P.; Puccio, L.; et al. Long-Term Effectiveness of Liraglutide for Weight Management and Glycemic Control in Type 2 Diabetes. Int. J. Environ. Res. Public Health 2020, 17, 207. [Google Scholar] [CrossRef] [Green Version]
- Overgaard, R.V.; Petri, K.C.C.; Jacobsen, L.V.; Jensen, C.B. Liraglutide 3.0 mg for Weight Management: A Population Pharmacokinetic Analysis. Clin. Pharmacokinet. 2016, 55, 1413–1422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, F.; Wu, S.; Guo, S.; Yu, K.; Yang, Z.; Li, L.; Zhang, Y.; Ji, L.; Zhan, S. Effect of GLP-1 receptor agonists on waist circumference among type 2 diabetes patients: A systematic review and network meta-analysis. Endocrine 2014, 48, 794–803. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Zhong, J.; Lin, H.; Zhao, Z.; Yan, Z.; He, H.; Ni, Y.; Liu, D.; Zhu, Z. Blood pressure-lowering effects of GLP-1 receptor agonists exenatide and liraglutide: A meta-analysis of clinical trials. Diabetes Obes. Metab. 2013, 15, 737–749. [Google Scholar] [CrossRef] [PubMed]
- Sun, F.; Wu, S.; Wang, J.; Guo, S.; Chai, S.; Yang, Z.; Li, L.; Zhang, Y.; Ji, L.; Zhan, S. Effect of Glucagon-like Peptide-1 Receptor Agonists on Lipid Profiles Among Type 2 Diabetes: A Systematic Review and Network Meta-analysis. Clin. Ther. 2015, 37, 225–241. [Google Scholar] [CrossRef]
- Leon, B.M.; Maddox, T.M. Diabetes and cardiovascular disease: Epidemiology, biological mechanisms, treatment recommendations and future research. World J. Diabetes 2015, 6, 1246–1258. [Google Scholar] [CrossRef]
- Poudel, I.; Tejpal, C.; Rashid, H.; Jahan, N. Major Adverse Cardiovascular Events: An Inevitable Outcome of ST-elevation myocardial infarction? A Literature Review. Cureus 2019, 11, e5280. [Google Scholar] [CrossRef] [Green Version]
- Hupfeld, C.; Mudaliar, S. Navigating the “MACE” in Cardiovascular Outcomes Trials and decoding the relevance of Atherosclerotic Cardiovascular Disease benefits versus Heart Failure benefits. Diabetes Obes. Metab. 2019, 21, 1780–1789. [Google Scholar] [CrossRef] [Green Version]
- Maric, C. Risk factors for cardiovascular disease in women with diabetes. Gend. Med. 2010, 7, 551–556. [Google Scholar] [CrossRef] [Green Version]
- Lin, D.S.-H.; Lee, J.-K.; Chen, W.-J. Major adverse cardiovascular and limb events in patients with diabetes treated with GLP-1 receptor agonists vs DPP-4 inhibitors. Diabetologia 2021, 64, 1949–1962. [Google Scholar] [CrossRef]
- Singh, A.; Singh, R. Gender difference in cardiovascular outcomes with SGLT-2 inhibitors and GLP-1 receptor agonist in type 2 diabetes: A systematic review and meta-analysis of cardio-vascular outcome trials. Diabetes Metab. Syndr. Clin. Res. Rev. 2020, 14, 181–187. [Google Scholar] [CrossRef]
- D’Andrea, E.; Kesselheim, A.S.; Franklin, J.M.; Jung, E.H.; Hey, S.P.; Patorno, E. Heterogeneity of antidiabetic treatment effect on the risk of major adverse cardiovascular events in type 2 diabetes: A systematic review and meta-analysis. Cardiovasc. Diabetol. 2020, 19, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Raparelli, V.; Elharram, M.; Moura, C.S.; Abrahamowicz, M.; Bernatsky, S.; Behlouli, H.; Pilote, L. Sex Differences in Cardiovascular Effectiveness of Newer Glucose-Lowering Drugs Added to Metformin in Type 2 Diabetes Mellitus. J. Am. Hear. Assoc. 2020, 9, e012940. [Google Scholar] [CrossRef] [PubMed]
- Nathan, B.M.; Rudser, K.D.; Abuzzahab, M.J.; Fox, C.K.; Coombes, B.; Bomberg, E.M.; Kelly, A.S. Predictors of weight-loss response with glucagon-like peptide-1 receptor agonist treatment among adolescents with severe obesity. Clin. Obes. 2015, 6, 73–78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilding, J.P.H.; Overgaard, R.V.; Jacobsen, L.V.; Jensen, C.B.; Le Roux, C.W. Exposure-response analyses of liraglutide 3.0 mg for weight management. Diabetes Obes. Metab. 2016, 18, 491–499. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petri, K.C.C.; Ingwersen, S.H.; Flint, A.; Zacho, J.; Overgaard, R.V. Exposure-response analysis for evaluation of semaglutide dose levels in type 2 diabetes. Diabetes Obes. Metab. 2018, 20, 2238–2245. [Google Scholar] [CrossRef]
- Nauck, M.A.; Petrie, J.R.; Sesti, G.; Mannucci, E.; Courrèges, J.P.; Lindegaard, M.L.; Jensen, C.B.; Atkin, S.L. A Phase 2, Randomized, Dose-Finding Study of the Novel Once-Weekly Human GLP-1 Analog, Semaglutide, Compared with Placebo and Open-Label Liraglutide in Patients with Type 2 Diabetes. Diabetes Care 2016, 39, 231–241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Costante, G.; Meringolo, D. Calcitonin as a biomarker of C cell disease: Recent achievements and current challenges. Endocrine 2020, 67, 273–280. [Google Scholar] [CrossRef]
- Joung, K.-I.; Jung, G.-W.; Park, H.-H.; Lee, H.; Park, S.-H.; Shin, J.-Y. Gender differences in adverse event reports associated with antidiabetic drugs. Sci. Rep. 2020, 10, 1–10. [Google Scholar] [CrossRef]
- McGill, J.; Vlajnic, A.; Knutsen, P.; Recklein, C.; Rimler, M.; Fisher, S. Effect of gender on treatment outcomes in type 2 diabetes mellitus. Diabetes Res. Clin. Pr. 2013, 102, 167–174. [Google Scholar] [CrossRef]
- Han, E.; Kim, A.; Lee, S.J.; Kim, J.-Y.; Kim, J.H.; Lee, W.J.; Lee, B.-W. Characteristics of Dapagliflozin Responders: A Longitudinal, Prospective, Nationwide Dapagliflozin Surveillance Study in Korea. Diabetes Ther. 2018, 9, 1689–1701. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Li, J.; Shan, Z.; Yang, W.; Liu, J.; Tian, H.; Zhou, Z.; Ji, Q.; Weng, J.; Jia, W.; et al. Gender-differential effects on blood glucose levels between acarbose and metformin in Chinese patients with newly diagnosed type 2 diabetes: A sub-analysis of the MARCH trial. Endocr. J. 2021, 68, 69–79. [Google Scholar] [CrossRef] [PubMed]
- Campesi, I.; Seghieri, G.; Franconi, F. Type 2 diabetic women are not small type 2 diabetic men: Sex-and-gender differences in antidiabetic drugs. Curr. Opin. Pharmacol. 2021, 60, 40–45. [Google Scholar] [CrossRef] [PubMed]
- Marchese, E.; Rodeghier, C.; Monson, R.S.; McCracken, B.; Shi, T.; Schrock, W.; Martellotto, J.; Oberholzer, J.; Danielson, K.K. Enumerating β-Cells in Whole Human Islets: Sex Differences and Associations with Clinical Outcomes After Islet Transplantation. Diabetes Care 2015, 38, e176–e177. [Google Scholar] [CrossRef] [Green Version]
- Hall, E.; Volkov, P.; Dayeh, T.; Esguerra, J.L.S.; Salö, S.; Eliasson, L.; Rönn, T.; Bacos, K.; Ling, C. Sex differences in the genome-wide DNA methylation pattern and impact on gene expression, microRNA levels and insulin secretion in human pancreatic islets. Genome Biol. 2014, 15, 1–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gannon, M.; Kulkarni, R.N.; Tse, H.M.; Mauvais-Jarvis, F. Sex differences underlying pancreatic islet biology and its dysfunction. Mol. Metab. 2018, 15, 82–91. [Google Scholar] [CrossRef]
- Liu, G.; Li, Y.; Zhang, T.; Li, M.; Li, S.; He, Q.; Liu, S.; Xu, M.; Xiao, T.; Shao, Z.; et al. Single-cell RNA Sequencing Reveals Sexually Dimorphic Transcriptome and Type 2 Diabetes Genes in Mouse Islet β Cells. Genom. Proteom. Bioinform. 2021, 19, 408–422. [Google Scholar] [CrossRef]
- Richard, J.; Anderberg, R.H.; López-Ferreras, L.; Olandersson, K.; Skibicka, K.P. Sex and estrogens alter the action of glucagon-like peptide-1 on reward. Biol. Sex Differ. 2016, 7, 6. [Google Scholar] [CrossRef] [Green Version]
- Gong, E.J.; Garrel, D.; Calloway, D.H. Menstrual cycle and voluntary food intake. Am. J. Clin. Nutr. 1989, 49, 252–258. [Google Scholar] [CrossRef] [Green Version]
- Finan, B.; Yang, B.; Ottaway, N.; Stemmer, K.; Müller, T.D.; Yi, C.-X.; Habegger, K.; Schriever, S.C.; García-Cáceres, C.; Kabra, D.G.; et al. Targeted estrogen delivery reverses the metabolic syndrome. Nat. Med. 2012, 18, 1847–1856. [Google Scholar] [CrossRef] [Green Version]
- Vogel, H.; Wolf, S.; Rabasa, C.; Rodriguez-Pacheco, F.; Babaei, C.S.; Stöber, F.; Goldschmidt, J.; DiMarchi, R.D.; Finan, B.; Tschöp, M.H.; et al. GLP-1 and estrogen conjugate acts in the supramammillary nucleus to reduce food-reward and body weight. Neuropharmacology 2016, 110, 396–406. [Google Scholar] [CrossRef] [Green Version]
- Kirkman, M.S.; Rowan-Martin, M.T.; Levin, R.; Fonseca, V.A.; Schmittdiel, J.A.; Herman, W.H.; Aubert, R.E. Determinants of Adherence to Diabetes Medications: Findings from a Large Pharmacy Claims Database. Diabetes Care 2015, 38, 604–609. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weiss, T.; Carr, R.D.; Pal, S.; Yang, L.; Sawhney, B.; Boggs, R.; Rajpathak, S.; Iglay, K. Real-World Adherence and Discontinuation of Glucagon-Like Peptide-1 Receptor Agonists Therapy in Type 2 Diabetes Mellitus Patients in the United States. Patient Prefer. Adherence 2020, 14, 2337–2345. [Google Scholar] [CrossRef] [PubMed]
Exenatide | Liraglutide | Albiglutide | Lixisenatide | Dulaglutide | Semaglutide | |
---|---|---|---|---|---|---|
Molecular weight (Dalton) | 4187 [26] | 3751 [27] | 3283.6 [28] | 4858 [29] | 59,669 [30] | 4114 [31] |
Molecular formation | C184H282N50O60S [26] | C172H265N43O51 [27] | C148H224N40O45 [28] | C215H347N61O65S [29] | C2646H4044N704O836S18 [32] | C187H291N45O59 [31] |
Structure | Natural peptide (exendin-4) from the saliva of the lizard Heloderma suspectum (53% homology) [33] | Slightly modified GLP-1 (97% homology) with free fatty acid side chain attached [33] | Two modified GLP-1 molecules amino-terminally attached to the linear structure of albumin [33] | Exenatide plus poly-lysine tail [33] | Two modified GLP-1 molecules attached to an immunoglobulin (Fc) fragment [33] | Slightly modified GLP-1 (94% homology) with free fatty acid side chain attached [33] |
Time to peak (h/days) | 2.1–2.2 h [34] | 11.0–13.75 h [35] | 3–5 days [36] | ≈2 h [37] | 48 h [38] | 24 h (subcutaneous injection) [39] |
Elimination half-life (t 1/2) | 3.3–4 h [34] | 12.6–14.3 h [35] | 5.7–6.8 days [36] | 2.6 h [37] | 4.7–5.5 days (0.75 mg); 4.7 days (1.5 mg) [40] | 7.6 days [39] |
Drug-drug interactions | Drug-drug interactions with digoxin, lovastatin, lisinopril, and acetaminophen [41] | Very low potential for pharmacokinetic drug–drug interactions related to cytochrome P450. No clinically relevant interactions between steady-state liraglutide and insulin detemir, atorvastatin, griseofulvin, paracetamol, digoxin, lisinopril or oral contraceptives [42] | Coadministration with chloroquine, hydroxychloroquine, lanreotide, octreotide, pasireotide, thioctic acid is not recommended [43] | Delays gastric emptying and can reduce the rate of absorption of oral medications such as acetaminophen, ethinyl estradiol, and warfarin. Does not affect the activity of cytochrome P450 isoenzymes [44] | Delays gastric emptying and can reduce the rate of absorption of oral medications. Concomitant use with an insulin secretagogue (e.g., sulfonylurea) or with insulin may increase the risk of hypoglycemia [38] | Minor delay of gastric emptying. No clinically relevant effect on the exposure of metformin, warfarin, atorvastatin or digoxin [45] |
Adverse effects | Nausea, vomiting, diarrhea, dyspepsia, dizziness, headache [41] | Nausea, vomiting, diarrhea, dyspepsia, constipation, injection site reactions, low incidence of hypoglycemia [42] | Nausea, vomiting, diarrhea, constipation, gastroesophageal reflux disease, abdominal pain [46] | Nausea, vomiting, diarrhea. Concomitant use with an additional medication known to cause hypoglycemia can increase the risk of the latter [44] | Nausea, vomiting, diarrhea, abdominal pain, decreased appetite, hypoglycemia [47] | Nausea, vomiting and diarrhea, increased risk of cholelithiasis [48] |
Exposure–Response Analyses of Semaglutide (Kristin C.C. Petri et al.) [73] | Exposure–Response Analyses of Liraglutide (J.P.H.Wilding et al.) [72] | Dose-Finding Study of Semaglutide (Michael A. Nauck et al.) [74] | |
---|---|---|---|
HbA1c reduction | Exposure dependent | Exposure dependent | Dose dependent |
Body weight loss | Exposure dependent | Exposure dependent | Dose dependent |
Increase in pulse rate | Exposure independent | Exposure independent (p-value for slope = ∼0.18) | Dose dependent |
Episodes of nausea | Exposure dependent | Exposure dependent for episodes of any severity (p-value for slope = 0.004) | Dose dependent |
Exposure independent for moderate/severe episodes (p-value for slope = 0.90) | |||
Episodes of vomiting | Exposure dependent | Exposure dependent for episodes of any severity with doses up to 1.8 mg | Dose dependent |
Exposure independent for moderate/severe episodes (p-value for slope = 0.85) | |||
Diarrhoea | Exposure independent | Data not provided | Dose dependent |
Constipation | Exposure independent | Data not provided | Data not provided |
Elevated calcitonin levels (biomarker of C-cell activity and mass [75]) | Exposure independent | Exposure independent (p-value for slope = ∼0.49) | No effect |
Hypoglycemia | Data not provided | Exposure independent (p-value for slope = 0.83) | Dose independent |
Adverse effects of the gallbladder, malignant neoplasms, malignant breast neoplasms or benign colorectal neoplasms | Data not provided | Exposure independent | Data not provided |
Acute pancreatitis | Data not provided | Exposure indepndent | No effect |
Differences in Response | |
---|---|
Hypoglycemic efficacy | No sex differences noted in the majority of studies (ref. [21,50,51]) Female superiority noted in a few studies (ref. [5,6,52,53,54]) Male superiority noted in one study (ref. [22]) |
Weight loss | Female superiority noted in the majority of studies (ref. [6,22,50,56,57]) |
MACE CVD risk factors i. WC ii. BP iii. Lipid profile | No sex differences noted (ref. [68,69]) Higher risk in females (ref. [66] Lower risk in females (ref. [70]) Similar reduction between sexes (ref. [5]) Similar reduction between sexes (ref. [5,21]) Similar alterations (except for no reduction of LDL-C in females ref. [21]) |
Adverse events i. GI AE ii. Headaches iii. Hypoglycemia | More frequent in females (ref. [57,73,76]) More frequent in females (ref. [76]) No sex differences noted (ref. [57]) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rentzeperi, E.; Pegiou, S.; Koufakis, T.; Grammatiki, M.; Kotsa, K. Sex Differences in Response to Treatment with Glucagon-like Peptide 1 Receptor Agonists: Opportunities for a Tailored Approach to Diabetes and Obesity Care. J. Pers. Med. 2022, 12, 454. https://doi.org/10.3390/jpm12030454
Rentzeperi E, Pegiou S, Koufakis T, Grammatiki M, Kotsa K. Sex Differences in Response to Treatment with Glucagon-like Peptide 1 Receptor Agonists: Opportunities for a Tailored Approach to Diabetes and Obesity Care. Journal of Personalized Medicine. 2022; 12(3):454. https://doi.org/10.3390/jpm12030454
Chicago/Turabian StyleRentzeperi, Elpiniki, Stavroula Pegiou, Theocharis Koufakis, Maria Grammatiki, and Kalliopi Kotsa. 2022. "Sex Differences in Response to Treatment with Glucagon-like Peptide 1 Receptor Agonists: Opportunities for a Tailored Approach to Diabetes and Obesity Care" Journal of Personalized Medicine 12, no. 3: 454. https://doi.org/10.3390/jpm12030454
APA StyleRentzeperi, E., Pegiou, S., Koufakis, T., Grammatiki, M., & Kotsa, K. (2022). Sex Differences in Response to Treatment with Glucagon-like Peptide 1 Receptor Agonists: Opportunities for a Tailored Approach to Diabetes and Obesity Care. Journal of Personalized Medicine, 12(3), 454. https://doi.org/10.3390/jpm12030454