The Challenge and Importance of Integrating Drug–Nutrient–Genome Interactions in Personalized Cardiovascular Healthcare
Abstract
:1. Introduction
2. Drug–Nutrient Interactions Related to CYP Genes
2.1. Antihypertensives—Calcium Channel Blockers
2.1.1. Nifedipine
2.1.2. Felodipine
2.1.3. Amlodipine
2.1.4. Manidipine, Nisoldipine, Nicardipine, Nitrendipine
2.2. Lipid-Lowering Drugs, HMG-CoA Reductase Inhibitors
2.2.1. Simvastatin
2.2.2. Atorvastatin
2.2.3. Rosuvastatin
2.3. Antiarrhythmics
2.4. Anticoagulants
3. P-Glycoprotein-Related DNGIs
3.1. Digoxin
3.2. Talinolol
3.3. Quinidine and Diltiazem
4. Organic Anion-Transporting Polypeptides (OATPs)-Related DNGIs
Aliskiren
5. Current Challenges
6. Future Perspectives
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Day, R.O.; Snowden, L.; McLachlan, A.J. Life-threatening drug interactions: What the physician needs to know. Intern. Med. J. 2017, 47, 501–512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Edwards, I.R.; Aronson, J.K. Adverse drug reactions: Definitions, diagnosis, and management. Lancet 2000, 356, 1255–1259. [Google Scholar] [CrossRef]
- Kongkaew, C.; Noyce, P.R.; Ashcroft, D.M. Hospital admissions associated with adverse drug reactions: A systematic review of prospective observational studies. Ann. Pharmacother. 2008, 42, 1017–1025. [Google Scholar] [CrossRef] [PubMed]
- European Commission. 2008. Available online: https://ec.europa.eu/commission/presscorner/detail/en/MEMO_08_782 (accessed on 15 February 2022).
- WHO. 2018. Available online: https://www.who.int/medicines/regulation/medicines-safety/M_SBN_Jun18.pdf?ua=1 (accessed on 15 February 2022).
- Ased, S.; Wells, J.; Morrow, L.E.; Malesker, M.A. Clinically Significant Food-Drug Interactions. Consult. Pharm. 2018, 33, 649–657. [Google Scholar] [CrossRef]
- Schmidt, L.E.; Dalhoff, K. Food-drug interactions. Drugs 2002, 62, 1481–1502. [Google Scholar] [CrossRef]
- Amadi, C.N.; Mgbahurike, A.A. Selected Food/Herb-Drug Interactions: Mechanisms and Clinical Relevance. Am. J. Ther. 2018, 25, e423–e433. [Google Scholar] [CrossRef]
- Bush, T.M.; Rayburn, K.S.; Holloway, S.W.; Sanchez-Yamamoto, D.S.; Allen, B.L.; Lam, T.; So, B.K.; Tran, D.H.; Greyher, E.R.; Kantor, S.; et al. Adverse interactions between herbal and dietary substances and prescription medications: A clinical survey. Altern. Health Med. 2007, 13, 30–35. [Google Scholar]
- Fuentes, A.V.; Pineda, M.D.; Venkata, K.C.N. Comprehension of Top 200 Prescribed Drugs in the US as a Resource for Pharmacy Teaching, Training and Practice. Pharmacy 2018, 6, 43. [Google Scholar] [CrossRef] [Green Version]
- Frishman, W.H.; Brosnan, B.D.; Grossman, M.; Dasgupta, D.; Sun, D.K. Adverse dermatologic effects of cardiovascular drug therapy: Part III. Cardiol. Rev. 2002, 10, 337–348. [Google Scholar] [CrossRef]
- Ortiz de Montellano, P.R. Cytochrome P450-activated prodrugs. Future Med. Chem. 2013, 5, 213–228. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez-Fragoso, L.; Martinez-Arismendi, J.L.; Orozco-Bustos, D.; Reyes-Esparza, J.; Torres, E.; Burchiel, S.W. Potential risks resulting from fruit/vegetable-drug interactions: Effects on drug-metabolizing enzymes and drug transporters. J. Food Sci. 2011, 76, R112–R124. [Google Scholar] [CrossRef] [PubMed]
- Guengerich, F.P. Cytochrome p450 and chemical toxicology. Chem. Res. Toxicol. 2008, 21, 70–83. [Google Scholar] [CrossRef]
- Nebert, D.W.; Wikvall, K.; Miller, W.L. Human cytochromes P450 in health and disease. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2013, 368, 20120431. [Google Scholar] [CrossRef] [PubMed]
- Kimura, Y.; Ito, H.; Ohnishi, R.; Hatano, T. Inhibitory effects of polyphenols on human cytochrome P450 3A4 and 2C9 activity. Food Chem. Toxicol. 2010, 48, 429–435. [Google Scholar] [CrossRef]
- Gkouskou, K.G.; Georgiopoulos, G.; Vlastos, I.; Lazou, E.; Chaniotis, D.; Papaioannou, T.G.; Mantzoros, C.S.; Sanoudou, D.; Eliopoulos, A.G. CYP1A2 polymorphisms modify the association of habitual coffee consumption with appetite, macronutrient intake, and body mass index: Results from an observational cohort and a cross-over randomized study. Int. J. Obes. 2022, 46, 162–168. [Google Scholar] [CrossRef]
- Uesawa, Y.; Takeuchi, T.; Mohri, K. Integrated analysis on the physicochemical properties of dihydropyridine calcium channel blockers in grapefruit juice interactions. Curr. Pharm. Biotechnol. 2012, 13, 1705–1717. [Google Scholar] [CrossRef] [PubMed]
- Waller, D.G.; Renwick, A.G.; Gruchy, B.S.; George, C.F. The first pass metabolism of nifedipine in man. Br. J. Clin. Pharmacol. 1984, 18, 951–954. [Google Scholar] [CrossRef] [Green Version]
- Holtbecker, N.; Fromm, M.F.; Kroemer, H.K.; Ohnhaus, E.E.; Heidemann, H. The nifedipine-rifampin interaction. Evidence for induction of gut wall metabolism. Drug Metab. Dispos. 1996, 24, 1121–1123. [Google Scholar]
- Moore, L.B.; Goodwin, B.; Jones, S.A.; Wisely, G.B.; Serabjit-Singh, C.J.; Willson, T.M.; Collins, J.L.; Kliewer, S.A. St. John’s wort induces hepatic drug metabolism through activation of the pregnane X receptor. Proc. Natl. Acad. Sci. USA 2000, 97, 7500–7502. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.D.; Li, J.L.; Su, Q.B.; Guan, S.; Chen, J.; Du, J.; He, Y.W.; Zeng, J.; Zhang, J.X.; Chen, X.; et al. Impact of the haplotypes of the human pregnane X receptor gene on the basal and St John’s wort-induced activity of cytochrome P450 3A4 enzyme. Br. J. Clin. Pharmacol. 2009, 67, 255–261. [Google Scholar] [CrossRef] [Green Version]
- Yoshioka, M.; Ohnishi, N.; Koishi, T.; Obata, Y.; Nakagawa, M.; Matsumoto, T.; Tagagi, K.; Takara, K.; Ohkuni, T.; Yokoyama, T.; et al. Studies on interactions between functional foods or dietary supplements medicines, I.V. Effects of ginkgo biloba leaf extract on the pharmacokinetics and pharmacodynamics of nifedipine in healthy volunteers. Biol. Pharm. Bull. 2004, 27, 2006–2009. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoshioka, M.; Ohnishi, N.; Sone, N.; Egami, S.; Takara, K.; Yokoyama, T.; Kuroda, K. Studies on interactions between functional foods or dietary supplements medicines, I.I.I. Effects of ginkgo biloba leaf extract on the pharmacokinetics of nifedipine in rats. Biol. Pharm. Bull. 2004, 27, 2042–2045. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dahan, A.; Altman, H. Food-drug interaction: Grapefruit juice augments drug bioavailability—Mechanism, extent and relevance. Eur. J. Clin. Nutr. 2004, 58, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Greenblatt, D.J.; von Moltke, L.L.; Harmatz, J.S.; Chen, G.; Weemhoff, J.L.; Jen, C.; Kelley, C.J.; LeDuc, B.W.; Zinny, M.A. Time course of recovery of cytochrome p450 3A function after single doses of grapefruit juice. Clin. Pharm. Ther. 2003, 74, 121–129. [Google Scholar] [CrossRef]
- Veronese, M.L.; Gillen, L.P.; Burke, J.P.; Dorval, E.P.; Hauck, W.W.; Pequignot, E.; Waldman, S.A.; Greenberg, H.E. Exposure-dependent inhibition of intestinal and hepatic CYP3A4 in vivo by grapefruit juice. J. Clin. Pharmacol. 2003, 43, 831–839. [Google Scholar] [CrossRef] [PubMed]
- Rashid, T.J.; Martin, U.; Clarke, H.; Waller, D.G.; Renwick, A.G.; George, C.F. Factors affecting the absolute bioavailability of nifedipine. Br. J. Clin. Pharmacol. 1995, 40, 51–58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bailey, D.G.; Spence, J.D.; Munoz, C.; Arnold, J.M. Interaction of citrus juices with felodipine and nifedipine. Lancet 1991, 337, 268–269. [Google Scholar] [CrossRef]
- Odou, P.; Ferrari, N.; Barthelemy, C.; Brique, S.; Lhermitte, M.; Vincent, A.; Libersa, C.; Robert, H. Grapefruit juice-nifedipine interaction: Possible involvement of several mechanisms. J. Clin. Pharm. Ther. 2005, 30, 153–158. [Google Scholar] [CrossRef]
- Wilkinson, G.R. The effects of diet, aging and disease-states on presystemic elimination and oral drug bioavailability in humans. Adv. Drug Deliv. Rev. 1997, 27, 129–159. [Google Scholar] [CrossRef]
- Zhou, Y.; Ingelman-Sundberg, M.; Lauschke, V.M. Worldwide Distribution of Cytochrome P450 Alleles: A Meta-analysis of Population-scale Sequencing Projects. Clin. Pharm. Ther. 2017, 102, 688–700. [Google Scholar] [CrossRef] [Green Version]
- Mohri, K.; Uesawa, Y. Effects of furanocoumarin derivatives in grapefruit juice on nifedipine pharmacokinetics in rats. Pharm. Res. 2001, 18, 177–182. [Google Scholar] [CrossRef]
- Uesawa, Y.; Mohri, K. UV-irradiated grapefruit juice loses pharmacokinetic interaction with nifedipine in rats. Biol. Pharm. Bull. 2006, 29, 1286–1289. [Google Scholar] [CrossRef] [Green Version]
- Uesawa, Y.; Mohri, K. The use of heat treatment to eliminate drug interactions due to grapefruit juice. Biol. Pharm. Bull. 2006, 29, 2274–2278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mayo Clinic. Nifedipine. Available online: https://www.mayoclinic.org/drugs-supplements/nifedipine-oral-route/precautions/drg-20071680 (accessed on 15 February 2022).
- NHS Nifedipine. Available online: https://www.nhs.uk/medicines/nifedipine/ (accessed on 15 February 2022).
- Sueyoshi, T.; Negishi, M. Phenobarbital response elements of cytochrome P450 genes and nuclear receptors. Annu. Rev. Pharm. Toxicol. 2001, 41, 123–143. [Google Scholar] [CrossRef]
- Baarnhielm, C.; Skanberg, I.; Borg, K.O. Cytochrome P-450-dependent oxidation of felodipine—A 1,4-dihydropyridine—To the corresponding pyridine. Xenobiotica 1984, 14, 719–726. [Google Scholar] [CrossRef] [PubMed]
- Bailey, D.G.; Arnold, J.M.; Bend, J.R.; Tran, L.T.; Spence, J.D. Grapefruit juice-felodipine interaction: Reproducibility and characterization with the extended release drug formulation. Br. J. Clin. Pharmacol. 1995, 40, 135–140. [Google Scholar] [PubMed]
- Bailey, D.G.; Arnold, J.M.; Munoz, C.; Spence, J.D. Grapefruit juice--felodipine interaction: Mechanism, predictability, and effect of naringin. Clin. Pharm. Ther. 1993, 53, 637–642. [Google Scholar] [CrossRef] [PubMed]
- Lundahl, J.; Regardh, C.G.; Edgar, B.; Johnsson, G. Effects of grapefruit juice ingestion--pharmacokinetics and haemodynamics of intravenously and orally administered felodipine in healthy men. Eur. J. Clin. Pharmacol. 1997, 52, 139–145. [Google Scholar] [CrossRef]
- Dresser, G.K.; Bailey, D.G.; Carruthers, S.G. Grapefruit juice--felodipine interaction in the elderly. Clin. Pharm. Ther. 2000, 68, 28–34. [Google Scholar] [CrossRef]
- Paine, M.F.; Widmer, W.W.; Hart, H.L.; Pusek, S.N.; Beavers, K.L.; Criss, A.B.; Brown, S.S.; Thomas, B.F.; Watkins, P.B. A furanocoumarin-free grapefruit juice establishes furanocoumarins as the mediators of the grapefruit juice-felodipine interaction. Am. J. Clin. Nutr. 2006, 83, 1097–1105. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.; Wang, F.; Li, Q.; Zhu, M.; Du, A.; Tang, W.; Chen, W. Amlodipine metabolism in human liver microsomes and roles of CYP3A4/5 in the dihydropyridine dehydrogenation. Drug Metab. Dispos. 2014, 42, 245–249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Josefsson, M.; Zackrisson, A.L.; Ahlner, J. Effect of grapefruit juice on the pharmacokinetics of amlodipine in healthy volunteers. Eur. J. Clin. Pharmacol. 1996, 51, 189–193. [Google Scholar] [CrossRef] [PubMed]
- Vincent, J.; Harris, S.I.; Foulds, G.; Dogolo, L.C.; Willavize, S.; Friedman, H.L. Lack of effect of grapefruit juice on the pharmacokinetics and pharmacodynamics of amlodipine. Br. J. Clin. Pharmacol. 2000, 50, 455–463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Josefsson, M.; Ahlner, J. Amlodipine and grapefruit juice. Br. J. Clin. Pharmacol. 2002, 53, 405. [Google Scholar] [CrossRef]
- NHS Amlodipine. Available online: https://www.nhs.uk/medicines/amlodipine/ (accessed on 15 February 2022).
- Drugs.com. Amlodipine. Available online: https://www.drugs.com/food-interactions/amlodipine.html?professional=1 (accessed on 15 February 2022).
- Mayo Clinic. Amlodipine. Available online: https://www.mayoclinic.org/drugs-supplements/amlodipine/drg-20061784?p=1 (accessed on 15 February 2022).
- McKeage, K.; Scott, L.J. Manidipine: A review of its use in the management of hypertension. Drugs 2004, 64, 1923–1940. [Google Scholar] [CrossRef]
- Tomlinson, B.; Chow, M.S. Stereoselective interaction of manidipine and grapefruit juice: A new twist on an old tale. Br. J. Clin. Pharmacol. 2006, 61, 529–532. [Google Scholar] [CrossRef] [Green Version]
- Takanaga, H.; Ohnishi, A.; Murakami, H.; Matsuo, H.; Higuchi, S.; Urae, A.; Irie, S.; Furuie, H.; Matsukuma, K.; Kimura, M.; et al. Relationship between time after intake of grapefruit juice and the effect on pharmacokinetics and pharmacodynamics of nisoldipine in healthy subjects. Clin. Pharm. Ther. 2000, 67, 201–214. [Google Scholar] [CrossRef] [Green Version]
- Uno, T.; Ohkubo, T.; Sugawara, K.; Higashiyama, A.; Motomura, S.; Ishizaki, T. Effects of grapefruit juice on the stereoselective disposition of nicardipine in humans: Evidence for dominant presystemic elimination at the gut site. Eur. J. Clin. Pharmacol. 2000, 56, 643–649. [Google Scholar] [CrossRef]
- Faria, A.; Monteiro, R.; Azevedo, I.; Calhau, C. Pomegranate juice effects on cytochrome P450S expression: In vivo studies. J. Med. Food. 2007, 10, 643–649. [Google Scholar] [CrossRef]
- Voruganti, S.; Rapolu, K.; Tota, S.; Yamsani, S.K.; Yamsani, M.R. Effect of pomegranate juice on the pharmacokinetics of nitrendipine in rabbits. Eur. J. Drug Metab. Pharmacokinet. 2012, 37, 77–81. [Google Scholar] [CrossRef]
- Voruganti, S.; Yamsani, S.K.; Ravula, S.K.; Gannu, R.; Yamsani, M.R. Effect of pomegranate juice on intestinal transport and pharmacokinetics of nitrendipine in rats. Phytother. Res. 2012, 26, 1240–1245. [Google Scholar] [CrossRef] [PubMed]
- Blum, C.B. Comparison of properties of four inhibitors of 3-hydroxy-3-methylglutaryl-coenzyme A reductase. Am. J. Cardiol. 1994, 73, 3D–11D. [Google Scholar] [CrossRef]
- Pedersen, T.R.; Tobert, J.A. Simvastatin: A review. Expert Opin. Pharmacother. 2004, 5, 2583–2596. [Google Scholar] [CrossRef] [PubMed]
- Raal, F.J.; Pilcher, G.J.; Illingworth, D.R.; Pappu, A.S.; Stein, E.A.; Laskarzewski, P.; Mitchel, Y.B.; Melino, M.R. Expanded-dose simvastatin is effective in homozygous familial hypercholesterolaemia. Atherosclerosis 1997, 135, 249–256. [Google Scholar] [CrossRef]
- Schwenke, D.C.; Carew, T.E. Initiation of atherosclerotic lesions in cholesterol-fed rabbits. I. Focal increases in arterial LDL concentration precede development of fatty streak lesions. Arteriosclerosis 1989, 9, 895–907. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hess, D.C.; Fagan, S.C. Pharmacology and clinical experience with simvastatin. Expert Opin. Pharmacother. 2001, 2, 153–163. [Google Scholar] [CrossRef]
- Skottheim, I.B.; Gedde-Dahl, A.; Hejazifar, S.; Hoel, K.; Asberg, A. Statin induced myotoxicity: The lactone forms are more potent than the acid forms in human skeletal muscle cells in vitro. Eur. J. Pharm. Sci. 2008, 33, 317–325. [Google Scholar] [CrossRef] [PubMed]
- Lilja, J.J.; Neuvonen, M.; Neuvonen, P.J. Effects of regular consumption of grapefruit juice on the pharmacokinetics of simvastatin. Br. J. Clin. Pharmacol. 2004, 58, 56–60. [Google Scholar] [CrossRef] [Green Version]
- Dreier, J.P.; Endres, M. Statin-associated rhabdomyolysis triggered by grapefruit consumption. Neurology 2004, 62, 670. [Google Scholar] [CrossRef]
- Jessurun, N.T.; Drent, M.; Wijnen, P.A.; Harmsze, A.M.; van Puijenbroek, E.P.; Bekers, O.; Bast, A. Role of Drug-Gene Interactions and Pharmacogenetics in Simvastatin-Associated Pulmonary Toxicity. Drug Saf. 2021, 44, 1179–1191. [Google Scholar] [CrossRef]
- Khan, N.; Mukhtar, H. Tea Polyphenols in Promotion of Human Health. Nutrients 2018, 11, 39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, W.; Zhang, Q.; Yang, Y.; Xu, J.; Fan, A.; Yang, C.S.; Li, N.; Lu, Y.; Chen, J.; Zhao, D.; et al. Epigallocatechin-3-gallate decreases the transport and metabolism of simvastatin in rats. Xenobiotica 2017, 47, 86–92. [Google Scholar] [CrossRef] [PubMed]
- Park, S.J.; Yeo, C.W.; Shim, E.J.; Kim, H.; Liu, K.H.; Shin, J.G.; Shon, J.H. Pomegranate juice does not affect the disposition of simvastatin in healthy subjects. Eur. J. Drug Metab. Pharmacokinet. 2016, 41, 339–344. [Google Scholar] [CrossRef] [PubMed]
- Sugimoto, K.; Ohmori, M.; Tsuruoka, S.; Nishiki, K.; Kawaguchi, A.; Harada, K.; Arakawa, M.; Sakamoto, K.; Masada, M.; Miyamori, I.; et al. Different effects of St John’s wort on the pharmacokinetics of simvastatin and pravastatin. Clin. Pharm. Ther. 2001, 70, 518–524. [Google Scholar] [CrossRef]
- Eggertsen, R.; Andreasson, A.; Andren, L. Effects of treatment with a commercially available St John’s Wort product (Movina) on cholesterol levels in patients with hypercholesterolemia treated with simvastatin. Scand. J. Prim. Health Care. 2007, 25, 154–159. [Google Scholar] [CrossRef] [Green Version]
- Bode, A.M.; Dong, Z. The two faces of capsaicin. Cancer Res. 2011, 71, 2809–2814. [Google Scholar] [CrossRef] [Green Version]
- Zhai, X.J.; Chen, J.G.; Liu, J.M.; Shi, F.; Lu, Y.N. Food-drug interactions: Effect of capsaicin on the pharmacokinetics of simvastatin and its active metabolite in rats. Food Chem. Toxicol. 2013, 53, 168–173. [Google Scholar] [CrossRef]
- Park, J.E.; Kim, K.B.; Bae, S.K.; Moon, B.S.; Liu, K.H.; Shin, J.G. Contribution of cytochrome P450 3A4 and 3A5 to the metabolism of atorvastatin. Xenobiotica 2008, 38, 1240–1251. [Google Scholar] [CrossRef]
- Fukazawa, I.; Uchida, N.; Uchida, E.; Yasuhara, H. Effects of grapefruit juice on pharmacokinetics of atorvastatin and pravastatin in Japanese. Br. J. Clin. Pharmacol. 2004, 57, 448–455. [Google Scholar] [CrossRef] [Green Version]
- Lilja, J.J.; Kivisto, K.T.; Neuvonen, P.J. Grapefruit juice increases serum concentrations of atorvastatin and has no effect on pravastatin. Clin. Pharm. Ther. 1999, 66, 118–127. [Google Scholar] [CrossRef]
- Ando, H.; Tsuruoka, S.; Yanagihara, H.; Sugimoto, K.; Miyata, M.; Yamazoe, Y.; Takamura, T.; Kaneko, S.; Fujimura, A. Effects of grapefruit juice on the pharmacokinetics of pitavastatin and atorvastatin. Br. J. Clin. Pharmacol. 2005, 60, 494–497. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reddy, P.; Ellington, D.; Zhu, Y.; Zdrojewski, I.; Parent, S.J.; Harmatz, J.S.; Greenblatt, D.J.; Browne, K., Jr. Serum concentrations and clinical effects of atorvastatin in patients taking grapefruit juice daily. Br. J. Clin. Pharmacol. 2011, 72, 434–441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andren, L.; Andreasson, A.; Eggertsen, R. Interaction between a commercially available St. John’s wort product (Movina) and atorvastatin in patients with hypercholesterolemia. Eur. J. Clin. Pharmacol. 2007, 63, 913–916. [Google Scholar] [CrossRef] [PubMed]
- McTaggart, F.; Buckett, L.; Davidson, R.; Holdgate, G.; McCormick, A.; Schneck, D.; Smith, G.; Warwick, M. Preclinical and clinical pharmacology of Rosuvastatin, a new 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor. Am. J. Cardiol. 2001, 87, 28B–32B. [Google Scholar] [CrossRef]
- Hidaka, M.; Okumura, M.; Fujita, K.; Ogikubo, T.; Yamasaki, K.; Iwakiri, T.; Setoguchi, N.; Arimori, K. Effects of pomegranate juice on human cytochrome p450 3A (CYP3A) and carbamazepine pharmacokinetics in rats. Drug Metab. Dispos. 2005, 33, 644–648. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- NHS Rosuvastatin. Available online: https://www.nhs.uk/medicines/rosuvastatin/ (accessed on 15 February 2022).
- Christensen, H.; Asberg, A.; Holmboe, A.B.; Berg, K.J. Coadministration of grapefruit juice increases systemic exposure of diltiazem in healthy volunteers. Eur. J. Clin. Pharmacol. 2002, 58, 515–520. [Google Scholar] [CrossRef] [PubMed]
- Fuhr, U.; Muller-Peltzer, H.; Kern, R.; Lopez-Rojas, P.; Junemann, M.; Harder, S.; Horst-Staib, A. Effects of grapefruit juice and smoking on verapamil concentrations in steady state. Eur. J. Clin. Pharmacol. 2002, 58, 45–53. [Google Scholar] [CrossRef]
- Libersa, C.C.; Brique, S.A.; Motte, K.B.; Caron, J.F.; Guedon-Moreau, L.M.; Humbert, L.; Vincent, A.; Devos, P.; Lhermitte, M.A. Dramatic inhibition of amiodarone metabolism induced by grapefruit juice. Br. J. Clin. Pharmacol. 2000, 49, 373–378. [Google Scholar] [CrossRef] [Green Version]
- Damkier, P.; Hansen, L.L.; Brosen, K. Effect of diclofenac, disulfiram, itraconazole, grapefruit juice and erythromycin on the pharmacokinetics of quinidine. Br. J. Clin. Pharmacol. 1999, 48, 829–838. [Google Scholar] [CrossRef] [Green Version]
- Guentert, T.W.; Holford, N.H.; Coates, P.E.; Upton, R.A.; Riegelman, S. Quinidine pharmacokinetics in man: Choice of a disposition model and absolute bioavailability studies. J Pharm. Biopharm. 1979, 7, 315–330. [Google Scholar] [CrossRef]
- Min, D.I.; Ku, Y.M.; Geraets, D.R.; Lee, H. Effect of grapefruit juice on the pharmacokinetics and pharmacodynamics of quinidine in healthy volunteers. J. Clin. Pharmacol. 1996, 36, 469–476. [Google Scholar] [CrossRef] [PubMed]
- Pinto, A.G.; Horlander, J.; Chalasani, N.; Hamman, M.; Asghar, A.; Kolwankar, D.; Hall, S.D. Diltiazem inhibits human intestinal cytochrome P450 3A (CYP3A) activity in vivo without altering the expression of intestinal mRNA or protein. Br. J. Clin. Pharmacol. 2005, 59, 440–446. [Google Scholar] [CrossRef] [Green Version]
- Agosti, S.; Casalino, L.; Bertero, G.; Barsotti, A.; Brunelli, C.; Morelloni, S. A dangerous fruit juice. Am. J. Emerg. Med. 2012, 30, 248.e5–248.e8. [Google Scholar] [CrossRef] [PubMed]
- Labbe, L.; Abolfathi, Z.; Robitaille, N.M.; St-Maurice, F.; Gilbert, M.; Turgeon, J. Stereoselective disposition of the antiarrhythmic agent mexiletine during the concomitant administration of caffeine. Ther. Drug Monit. 1999, 21, 191–199. [Google Scholar] [CrossRef]
- Kaminsky, L.S.; Zhang, Z.Y. Human P450 metabolism of warfarin. Pharm. Ther. 1997, 73, 67–74. [Google Scholar] [CrossRef]
- Clapauch, S.H.; Benchimol-Barbosa, P.R. Warfarin resistance and caffeine containing beverages. Int. J. Cardiol. 2012, 156, e4–e5. [Google Scholar] [CrossRef] [PubMed]
- Lash, D.B.; Ward, S. CYP2C9-mediated warfarin and milk thistle interaction. J. Clin. Pharm. Ther. 2020, 45, 368–369. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.H.; Yamazaki, M. Role of P-glycoprotein in pharmacokinetics: Clinical implications. Clin. Pharm. 2003, 42, 59–98. [Google Scholar] [CrossRef]
- Norwood, D.A.; Parke, C.K.; Rappa, L.R. A Comprehensive Review of Potential Warfarin-Fruit Interactions. J. Pharm. Pract. 2015, 28, 561–571. [Google Scholar] [CrossRef]
- Lurie, Y.; Loebstein, R.; Kurnik, D.; Almog, S.; Halkin, H. Warfarin and vitamin K intake in the era of pharmacogenetics. Br. J. Clin. Pharmacol. 2010, 70, 164–170. [Google Scholar] [CrossRef] [Green Version]
- Saito, R.; Takeda, K.; Yamamoto, K.; Nakagawa, A.; Aoki, H.; Fujibayashi, K.; Wakasa, M.; Motoyama, A.; Iwadare, M.; Ishida, R.; et al. Nutri-pharmacogenomics of warfarin anticoagulation therapy: VKORC1 genotype-dependent influence of dietary vitamin K intake. J. Thromb. Thrombolysis 2014, 38, 105–114. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.H.; Wang, Y.W.; Yeh Liu, P.Y.; Kao Yang, Y.H. A practical approach to minimize the interaction of dietary vitamin K with warfarin. J. Clin. Pharm. Ther. 2014, 39, 56–60. [Google Scholar] [CrossRef] [PubMed]
- The P-glycoprotein transport system and cardiovascular drugs. J. Am. Coll. Cardiol. 2013, 61, 2495–2502. [CrossRef] [PubMed] [Green Version]
- Zhang, W.; Han, Y.; Lim, S.L.; Lim, L.Y. Dietary regulation of P-gp function and expression. Expert Opin. Drug Metab. Toxicol. 2009, 5, 789–801. [Google Scholar] [CrossRef]
- Johne, A.; Brockmoller, J.; Bauer, S.; Maurer, A.; Langheinrich, M.; Roots, I. Pharmacokinetic interaction of digoxin with an herbal extract from St John’s wort (Hypericum perforatum). Clin. Pharm. Ther. 1999, 66, 338–345. [Google Scholar] [CrossRef]
- Mueller, S.C.; Uehleke, B.; Woehling, H.; Petzsch, M.; Majcher-Peszynska, J.; Hehl, E.M.; Sievers, H.; Frank, B.; Riethling, A.K.; Drewelow, B. Effect of St John’s wort dose and preparations on the pharmacokinetics of digoxin. Clin. Pharm. Ther. 2004, 75, 546–557. [Google Scholar] [CrossRef]
- Arold, G.; Donath, F.; Maurer, A.; Diefenbach, K.; Bauer, S.; Henneicke-von Zepelin, H.H.; Friede, M.; Roots, I. No relevant interaction with alprazolam, caffeine, tolbutamide, and digoxin by treatment with a low-hyperforin St John’s wort extract. Planta Med. 2005, 71, 331–337. [Google Scholar] [CrossRef]
- Ozturk, N.; Ozturk, D.; Pala-Kara, Z.; Okyar, A. Pharmacokinetics of talinolol is modified by barnidipine: Implication of P-glycoprotein modulation. Pharmazie 2017, 72, 29–34. [Google Scholar]
- Spahn-Langguth, H.; Langguth, P. Grapefruit juice enhances intestinal absorption of the P-glycoprotein substrate talinolol. Eur. J. Pharm. Sci. 2001, 12, 361–367. [Google Scholar] [CrossRef]
- De Castro, W.V.; Mertens-Talcott, S.; Derendorf, H.; Butterweck, V. Grapefruit juice-drug interactions: Grapefruit juice and its components inhibit P-glycoprotein (ABCB1) mediated transport of talinolol in Caco-2 cells. J Pharm Sci. 2007, 96, 2808–2817. [Google Scholar] [CrossRef]
- Schwarz, U.I.; Seemann, D.; Oertel, R.; Miehlke, S.; Kuhlisch, E.; Fromm, M.F.; Kim, R.B.; Bailey, D.G.; Kirch, W. Grapefruit juice ingestion significantly reduces talinolol bioavailability. Clin. Pharm. Ther. 2005, 77, 291–301. [Google Scholar] [CrossRef] [PubMed]
- Shirasaka, Y.; Kuraoka, E.; Spahn-Langguth, H.; Nakanishi, T.; Langguth, P.; Tamai, I. Species difference in the effect of grapefruit juice on intestinal absorption of talinolol between human and rat. J. Pharm. Exp. Ther. 2010, 332, 181–189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oda, K.; Murakami, T. Pharmacokinetic interaction of green tea beverage containing cyclodextrins and high concentration catechins with P-glycoprotein substrates in LLC-GA5-COL150 cells in vitro and in the small intestine of rats in vivo. J. Pharm. Pharmacol. 2017, 69, 1736–1744. [Google Scholar] [CrossRef]
- Qiang, F.; Kang, K.W.; Han, H.K. Repeated dosing of piperine induced gene expression of P-glycoprotein via stimulated pregnane-X-receptor activity and altered pharmacokinetics of diltiazem in rats. Biopharm. Drug Dispos. 2012, 33, 446–454. [Google Scholar] [CrossRef] [PubMed]
- Oswald, S. Organic Anion Transporting Polypeptide (OATP) transporter expression, localization and function in the human intestine. Pharm. Ther. 2019, 195, 39–53. [Google Scholar] [CrossRef] [PubMed]
- Bajraktari-Sylejmani, G.; Weiss, J. Potential Risk of Food-Drug Interactions: Citrus Polymethoxyflavones and Flavanones as Inhibitors of the Organic Anion Transporting Polypeptides (OATP) 1B1, 1B3, and 2B1. Eur. J. Drug Metab. Pharmacokinet. 2020, 45, 809–815. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wolkoff, A.W.; Morris, M.E. Flavonoids as a novel class of human organic anion-transporting polypeptide OATP1B1 (OATP-C) modulators. Drug Metab. Dispos. 2005, 33, 1666–1672. [Google Scholar] [CrossRef] [Green Version]
- Wen, F.; Shi, M.; Bian, J.; Zhang, H.; Gui, C. Identification of natural products as modulators of OATP2B1 using LC-MS/MS to quantify OATP-mediated uptake. Pharm. Biol. 2016, 54, 293–302. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.; Lauschke, V.M. Genetic variability and population diversity of the human SLCO (OATP) transporter family. Pharm. Res. 2019, 139, 550–559. [Google Scholar] [CrossRef]
- Vaidyanathan, S.; Camenisch, G.; Schuetz, H.; Reynolds, C.; Yeh, C.M.; Bizot, M.N.; Dieterich, H.A.; Howard, D.; Dole, W.P. Pharmacokinetics of the oral direct renin inhibitor aliskiren in combination with digoxin, atorvastatin, and ketoconazole in healthy subjects: The role of P-glycoprotein in the disposition of aliskiren. J. Clin. Pharmacol. 2008, 48, 1323–1338. [Google Scholar] [CrossRef]
- Rebello, S.; Zhao, S.; Hariry, S.; Dahlke, M.; Alexander, N.; Vapurcuyan, A.; Hanna, I.; Jarugula, V. Intestinal OATP1A2 inhibition as a potential mechanism for the effect of grapefruit juice on aliskiren pharmacokinetics in healthy subjects. Eur. J. Clin. Pharmacol. 2012, 68, 697–708. [Google Scholar] [CrossRef]
- Tapaninen, T.; Neuvonen, P.J.; Niemi, M. Grapefruit juice greatly reduces the plasma concentrations of the OATP2B1 and CYP3A4 substrate aliskiren. Clin. Pharm. Ther. 2010, 88, 339–342. [Google Scholar] [CrossRef] [PubMed]
- Tapaninen, T.; Neuvonen, P.J.; Niemi, M. Orange and apple juice greatly reduce the plasma concentrations of the OATP2B1 substrate aliskiren. Br. J. Clin. Pharmacol. 2011, 71, 718–726. [Google Scholar] [CrossRef] [PubMed]
- Drugs.com. Aliskiren. Available online: https://www.drugs.com/drug-interactions/aliskiren-with-eliglustat-124-0-3556-0.html (accessed on 15 February 2022).
- NICE. Aliskiren. Available online: https://bnf.nice.org.uk/drug/aliskiren.html (accessed on 15 February 2022).
- Fujita, K. Food-drug interactions via human cytochrome P450 3A (CYP3A). Drug Metab. Drug Interact. 2004, 20, 195–217. [Google Scholar] [CrossRef]
- Ronaldson-Bouchard, K.; Vunjak-Novakovic, G. Organs-on-a-Chip: A Fast Track for Engineered Human Tissues in Drug Development. Cell Stem Cell 2018, 22, 310–324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rossi, G.; Manfrin, A.; Lutolf, M.P. Progress and potential in organoid research. Nat. Rev. Genet. 2018, 19, 671–687. [Google Scholar] [CrossRef] [PubMed]
- Roy, H.; Nandi, S. In-Silico Modeling in Drug Metabolism and Interaction: Current Strategies of Lead Discovery. Curr. Pharm. Des. 2019, 25, 3292–3305. [Google Scholar] [CrossRef] [PubMed]
- Gkouskou, K.; Vlastos, I.; Karkalousos, P.; Chaniotis, D.; Sanoudou, D.; Eliopoulos, A.G. The “Virtual Digital Twins” Concept in Precision Nutrition. Adv. Nutr. 2020, 11, 1405–1413. [Google Scholar] [CrossRef]
- Gkouskou, K.K.; Grammatikopoulou, M.G.; Vlastos, I.; Sanoudou, D.; Eliopoulos, A.G. Genotype-guided dietary supplementation in precision nutrition. Nutr. Rev. 2021, 79, 1225–1235. [Google Scholar] [CrossRef]
- Kennedy, J.; Wang, C.C.; Wu, C.H. Patient Disclosure about Herb and Supplement Use among Adults in the US. Evid. Based Complement. Altern. Med. 2008, 5, 451–456. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stouras, I.; Papaioannou, T.G.; Tsioufis, K.; Eliopoulos, A.G.; Sanoudou, D. The Challenge and Importance of Integrating Drug–Nutrient–Genome Interactions in Personalized Cardiovascular Healthcare. J. Pers. Med. 2022, 12, 513. https://doi.org/10.3390/jpm12040513
Stouras I, Papaioannou TG, Tsioufis K, Eliopoulos AG, Sanoudou D. The Challenge and Importance of Integrating Drug–Nutrient–Genome Interactions in Personalized Cardiovascular Healthcare. Journal of Personalized Medicine. 2022; 12(4):513. https://doi.org/10.3390/jpm12040513
Chicago/Turabian StyleStouras, Ioannis, Theodore G. Papaioannou, Konstantinos Tsioufis, Aristides G. Eliopoulos, and Despina Sanoudou. 2022. "The Challenge and Importance of Integrating Drug–Nutrient–Genome Interactions in Personalized Cardiovascular Healthcare" Journal of Personalized Medicine 12, no. 4: 513. https://doi.org/10.3390/jpm12040513
APA StyleStouras, I., Papaioannou, T. G., Tsioufis, K., Eliopoulos, A. G., & Sanoudou, D. (2022). The Challenge and Importance of Integrating Drug–Nutrient–Genome Interactions in Personalized Cardiovascular Healthcare. Journal of Personalized Medicine, 12(4), 513. https://doi.org/10.3390/jpm12040513