Clinical Implications of Krüpple-like Transcription Factor KLF-14 and Certain Micro-RNA (miR-27a, miR-196a2, miR-423) Gene Variations as a Risk Factor in the Genetic Predisposition to PCOS
Abstract
:1. Introduction
2. Methodology
2.1. Study Participants and Criteria
2.1.1. Biochemical Serum Profile
2.1.2. Extraction and Qualitative Assessment of Genomic DNA
2.1.3. Genotyping of KLF-14, miR-27, miR-423, and miR-196a2
2.2. Gel Electrophoresis and PCR Product Visualization
2.3. KLF-14 rs972283
2.4. MiR-27a rs895819
2.5. MiR-423 rs6505162
2.6. MiR-196a2 rs11614913
3. Statistical Analysis
4. Results
4.1. Comparative Biochemical Profiling Showed Altered Clinical Markers in PCOS Patients
4.2. HWE Equilibrium Showed no Deviation
4.3. Allele Distribution and Genotype Frequency in PCOS Patients and Controls (p-Values) for Krüppel-like Factor 14 rs972283 G > A Genotypes
4.4. Association between Krüppel-like Factor 14 rs972283 G > A Genotypes and PCOS Susceptibility as Determined by Multivariate Analysis
4.5. Allele Distribution and Genotype Frequency in PCOS Patients and Controls (p-Values) for miR-27a rs895819 A > G Genotypes
4.6. Association between miR-27a rs895819 A > G Genotypes and PCOS Susceptibility as Determined by Multivariate Analysis
4.7. Allele Distribution and Genotype Frequency in PCOS Patients and Controls (p-Values) for miR-423 rs6505162 C > A Genotypes
4.8. Association between miR-423 rs6505162 C > A Genotypes and PCOS Susceptibility as Determined by Multivariate Analysis
4.9. Allele Distribution and Genotype Frequency in PCOS Patients and Controls (p-Values) for miR-196a-2 rs11614913 C > T Genotypes
4.10. Association between miR-196a-2 rs11614913 C > T Genotypes and PCOS Susceptibility as Determined by Multivariate Analysis
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Joham, A.E.; Teede, H.J.; Ranasinha, S.; Zoungas, S.; Boyle, J. Prevalence of infertility and use of fertility treatment in women with polycystic ovary syndrome: Data from a large community-based cohort study. J. Women’s Health 2015, 24, 299–307. [Google Scholar] [CrossRef] [PubMed]
- Escobar-Morreale, H.F. Polycystic ovary syndrome: Definition, aetiology, diagnosis and treatment. Nat. Rev. Endocrinol. 2018, 14, 270–284. [Google Scholar] [CrossRef] [PubMed]
- Melo, A.S.; Ferriani, R.A.; Navarro, P.A. Treatment of infertility in women with polycystic ovary syndrome: Approach to clinical practice. Clinics 2015, 70, 765–769. [Google Scholar] [CrossRef]
- Stepto, N.K.; Cassar, S.; Joham, A.E.; Hutchison, S.K.; Harrison, C.L.; Goldstein, R.F.; Teede, H.J. Women with polycystic ovary syndrome have intrinsic insulin resistance on euglycaemic-hyperinsulaemic clamp. Hum. Reprod. 2013, 28, 777–784. [Google Scholar] [CrossRef]
- Qin, J.Z.; Pang, L.H.; Li, M.J.; Fan, X.J.; Huang, R.D.; Chen, H.Y. Obstetric complications in women with polycystic ovary syndrome: A systematic review and meta-analysis. Reprod. Biol. Endocrinol. 2013, 11, 56. [Google Scholar] [CrossRef] [Green Version]
- Naver, K.V.; Grinsted, J.; Larsen, S.O.; Hedley, P.L.; Jørgensen, F.S.; Christiansen, M.; Nilas, L. Increased risk of preterm delivery and pre-eclampsia in women with polycystic ovary syndrome and hyperandrogenaemia. BJOG 2014, 121, 575–581. [Google Scholar]
- Sukhumsirichart, W. Polymorphisms, Genetic Diversity and Disease Susceptibility; Liu, Y., Ed.; IntechOpen: London, UK, 2018. [Google Scholar] [CrossRef] [Green Version]
- Richardson, M.M.; Powell, E.E.; Barrie, H.D.; Clouston, A.D.; Purdie, D.M.; Jonsson, J.R. A combination of genetic polymorphisms increases the risk of progressive disease in chronic hepatitis C. J. Med. Genet. 2005, 42, e45. [Google Scholar] [CrossRef]
- Deiuliis, J.A. MicroRNAs as regulators of metabolic disease: Pathophysiologic significance and emerging role as biomarkers and therapeutics. Int. J. Obes. 2016, 40, 88–101. [Google Scholar] [CrossRef] [Green Version]
- Friedman, R.C.; KK-HFarh Burge, C.B.; Bartel, D.P. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 2009, 19, 92–105. [Google Scholar] [CrossRef] [Green Version]
- Kwak, P.B.; Iwasaki, S.; Tomari, Y. The microRNA pathway and cancer. Cancer Sci. 2010, 101, 2309–2315. [Google Scholar] [CrossRef]
- Gong, W.; Xiao, D.; Ming, G.; Yin, J.; Zhou, H.; Liu, Z. Type 2 diabetes mellitus-related genetic polymorphisms in microRNAs and microRNA target sites. J. Diabetes 2014, 6, 279–289. [Google Scholar] [CrossRef] [PubMed]
- Elfaki, I.; Mir, R.; Mir, M.M.; AbuDuhier, F.M.; Babakr, A.T.; Barnawi, J. Potential Impact of MicroRNA Gene Polymorphisms in the Pathogenesis of Diabetes and Atherosclerotic Cardiovascular Disease. J. Pers. Med. 2019, 9, 51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mu, L.; Sun, X.; Tu, M.; Zhang, D. Non-coding RNAs in polycystic ovary syndrome: A systematic review and meta-analysis. Reprod. Biol. Endocrinol. 2021, 19, 10. [Google Scholar] [CrossRef] [PubMed]
- Ellwanger, J.H.; Zambra, F.M.B.; Guimarães, R.L.; Chies, J.A.B. MicroRNA-Related Polymorphisms in Infectious Diseases-Tiny Changes with a Huge Impact on Viral Infections and Potential Clinical Applications. Front. Immunol. 2018, 9, 1316. [Google Scholar] [CrossRef]
- Jia, W.; Zeng, L.; Luo, S.; Bai, F.; Zhong, R.; Wu, L.; Huang, G.-L.; Pu, X. Association of microRNA-423 rs6505162 C>A polymorphism with susceptibility and metastasis of colorectal carcinoma. Medicine 2018, 97, e9846. [Google Scholar] [CrossRef]
- Choupani, J.; Nariman-Saleh-Fam, Z.; Saadatian, Z.; Ouladsahebmadarek, E.; Masotti, A.; Bastami, M. Association of mir-196a-2 rs11614913 and mir-149 rs2292832 Polymorphisms with Risk of Cancer: An Updated Meta-Analysis. Front. Genet. 2019, 10, 186. [Google Scholar] [CrossRef] [Green Version]
- Arancibia, T.; Morales-Pison, S.; Maldonado, E.; Jara, L. Association between single-nucleotide polymorphisms in miRNA and breast cancer risk: An updated review. Biol. Res. 2021, 54, 26. [Google Scholar] [CrossRef]
- Wang, M.; Sun, J.; Xu, B.; Chrusciel, M.; Gao, J.; Bazert, M.; Stelmaszewska, J.; Xu, Y.; Zhang, H.; Pawelczyk, L.; et al. Functional Characterization of MicroRNA-27a-3p Expression in Human Polycystic Ovary Syndrome. Endocrinology. 2018, 159, 297–309. [Google Scholar] [CrossRef]
- Yang, M.; Ren, Y.; Lin, Z.; Tang, C.; Jia, Y.; Lai, Y.; Zhou, T.; Wu, S.; Liu, H.; Yang, G.; et al. Krüppel-like factor 14 increases insulin sensitivity through activation of PI3K/Akt signal pathway. Cell. Signal. 2015, 27, 2201–2208. [Google Scholar] [CrossRef]
- Small, K.S.; Todorčević, M.; Civelek, M.; Moustafa, J.S.E.-S.; Wang, X.; Simon, M.M.; Fernandez-Tajes, J.; Mahajan, A.; Horikoshi, M.; Hugill, A.; et al. Regulatory variants at KLF14 influence type 2 diabetes risk via a female-specific effect on adipocyte size and body composition. Nat. Genet. 2018, 50, 572–580. [Google Scholar] [CrossRef]
- Kong, A.; Steinthorsdottir, V.; Masson, G.; Thorleifsson, G.; Sulem, P.; Besenbacher, S.; Jonasdottir, A.; Sigurdsson, A.; Kristinsson, K.T.; Jonasdottir, A.; et al. Parental origin of sequence variants associated with complex diseases. Nature 2009, 462, 868–874. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koppes, E.; Shaffer, B.; Sadovsky, E.; Himes, K.; Barak, Y.; Sadovsky, Y.; Chaillet, J.R. Klf14 is an imprinted transcription factor that regulates placental growth. Placenta 2019, 88, 61–67. [Google Scholar] [CrossRef] [PubMed]
- The Rotterdam ESHRE/ASRM-Sponsored PCOS Consensus Workshop Group. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome. Fertil. Steril. 2004, 81, 19–25. [Google Scholar] [CrossRef] [PubMed]
- Ezzidi, I.; Mtiraoui, N.; Ali, M.E.; Al Masoudi, A.; Abuduhier, F. Adiponectin (ADIPOQ) gene variants and haplotypes in Saudi Arabian women with polycystic ovary syndrome (PCOS): A case–control study. Gynecol. Endocrinol. 2020, 36, 66–71. [Google Scholar] [CrossRef]
- Nikolić, Z.; Savić Pavićević, D.; Vučić, N.; Cidilko, S.; Filipović, N.; Cerović, S.; Vukotić, V.; Romac, S.; Brajušković, G. Assessment of association between genetic variants in microRNA genes hsa-miR-499, hsa-miR-196a2 and hsa-miR-27a and prostate cancer risk in Serbian population. Exp. Mol. Pathol. 2015, 99, 145–150. [Google Scholar] [CrossRef]
- Jha, C.K.; Mir, R.; Elfaki, I.; Khullar, N.; Rehman, S.; Javid, J.; Banu, S. Chahal SMS Potential Impact of MicroRNA-423 Gene Variability in Coronary Artery Disease. Endocr. Metab. Immune Disord. Drug Targets 2019, 19, 67–74. [Google Scholar] [CrossRef]
- Zabala, A.S.; Vasquez Gomez, M.E.; Álvarez, M.F.; Siewert, S. Tetra Primer ARMS PCR Optimization to Detect Single Nucleotide Polymorphism of the KLF14 Gene. Open Access Libr. J. 2017, 4, e4145. [Google Scholar] [CrossRef]
- Doulah, A.; Salehzadeh, A.; Mojarrad, M. Association of single nucleotide polymorphisms in miR- 499 and miR-196a with susceptibility to breast cancer. Tropical. J. Pharm. Res. 2018, 17, 319. [Google Scholar] [CrossRef] [Green Version]
- Mir, R.; Elfaki, I.; Duhier, F.M.A.; Alotaibi, M.A.; AlAlawy, A.I.; Barnawi, J.; Babakr, A.T.; Mir, M.M.; Mirghani, H.; Hamadi, A.; et al. Molecular Determination of mirRNA-126 rs4636297, Phosphoinositide-3-Kinase Regulatory Subunit 1-Gene Variability rs7713645, rs706713 (Tyr73Tyr), rs3730089 (Met326Ile) and Their Association with Susceptibility to T2D. J. Pers. Med. 2021, 11, 861. [Google Scholar] [CrossRef]
- Amihăesei, I.C.; Chelaru, L.; Lăcrămioara Zamfir, C. Polycystic Ovary Syndrome, A Complex Entity Involving Reproductive and Metabolic Impairments: A Systematic Review. Rev. Med. Chir. Soc. Med. Nat. Iasi. 2016, 120, 755–759. [Google Scholar]
- Teede, H.; Deeks, A.; Moran, L. Polycystic ovary syndrome: A complex condition with psychological, reproductive and metabolic manifestations that impacts on health across the lifespan. BMC Med. 2010, 8, 41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teede, H.J.; Misso, M.L.; Costello, M.F.; Dokras, A.; Laven, J.; Moran, L.; Piltonen, T.; Norman, R.J.; International PCOS Network. Recom-mendations from the international evidence-based guideline for the assessment and management of polycystic ovary syndrome. Fertil Steril. 2018, 110, 364–379. [Google Scholar]
- Aversa, A.; La Vignera, S.; Rago, R.; Gambineri, A.; Nappi, R.E.; Calogero, A.E.; Ferlin, A. Fundamental Concepts and Novel Aspects of Polycystic Ovarian Syndrome: Expert Consensus Resolutions. Front. Endocrinol. 2020, 11, 516. [Google Scholar] [CrossRef] [PubMed]
- Rodgers, R.J.; Avery, J.C.; Moore, V.M.; Davies, M.J.; Azziz, R.; Stener-Victorin, E.; Moran, L.J.; Robertson, S.A.; Stepto, N.K.; Norman, R.J.; et al. Complex diseases and co-morbidities: Polycystic ovary syndrome and type 2 diabetes mellitus. Endocr. Connect. 2019, 8, R71–R75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Couto Alves, A.; Valcarcel, B.; Mäkinen, V.P.; Morin-Papunen, L.; Sebert, S.; Kangas, A.J.; Soininen, P.; Das, S.; de Iorio, M.; Coin, L.; et al. Metabolic profiling of polycystic ovary syndrome reveals interactions with abdominal obesity. Int. J. Obes. 2017, 41, 1331–1340. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.J.; Choi, Y.M. Dyslipidemia in women with polycystic ovary syndrome. Obstet. Gynecol. Sci. 2013, 56, 137–142. [Google Scholar] [CrossRef] [Green Version]
- Rajkhowa, M.; Neary, R.H.; Kumpatla, P.; Game, F.L.; Jones, P.W.; Obhrai, M.S.; Clayton, R.N. Altered composition of high density lipoproteins in women with the polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 1997, 82, 3389–3394. [Google Scholar] [CrossRef]
- Holte, J.; Bergh, T.; Berne, C.; Lithell, H. Serum lipoprotein lipid profile in women with the polycystic ovary syndrome: Relation to anthropometric, endocrine and metabolic variables. Clin. Endocrinol. 1994, 41, 463–471. [Google Scholar] [CrossRef]
- Ruddenklau, A.; Campbell, R.E. Neuroendocrine Impairments of Polycystic Ovary Syndrome. Endocrinology 2019, 160, 2230–2242. [Google Scholar] [CrossRef]
- Knight, J.C. Regulatory polymorphisms underlying complex disease traits. J. Mol. Med. 2005, 83, 97–109. [Google Scholar] [CrossRef] [Green Version]
- de la Chapelle, A. Genetic predisposition to human disease: Allele-specific expression and low-penetrance regulatory loci. Oncogene 2009, 28, 3345–3348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valle, L.; Serena-Acedo, T.; Liyanarachchi, S.; Hampel, H.; Comeras, I.; Li, Z.; Zeng, Q.; Zhang, H.T.; Pennison, M.J.; Sadim, M.; et al. Germline allele-specific expression of TGFBR1 confers an increased risk of colorectal cancer. Science 2008, 321, 1361–1365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Voight, B.F.; Scott, L.J.; Steinthorsdottir, V.; Morris, A.P.; Dina, C.; Welch, R.P.; Zeggini, E.; Huth, C.; Aulchenko, Y.S.; Thorleifsson, G.; et al. MAGIC investigators; GIANT Consortium. Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis. Nat. Genet. 2010, 42, 579–589. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Li, S.; Yang, Y.; Yang, X.; Liu, Y.; Liu, Y.; Hu, W.; Jin, L.; Wang, X. Genome-wide association study validation identifies novel loci for atherosclerotic cardiovascular disease. J. Thromb. Haemost. 2012, 10, 1508–1514. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Civelek, M. Transcription Factor KLF14 and Metabolic Syndrome. Front. Cardiovasc. Med. 2020, 7, 91. [Google Scholar] [CrossRef]
- McConnell, B.B.; Yang, V.W. Mammalian Krüppel-like factors in health and diseases. Physiol. Rev. 2010, 90, 1337–1381. [Google Scholar] [CrossRef]
- Small, K.S.; Hedman, A.K.; Grundberg, E.; Nica, A.C.; Thorleifsson, G.; Kong, A.; Thorsteindottir, U.; Shin, S.-Y.; Richards, H.B.; the GIANT Consortium; et al. Identification of an imprinted master trans regulator at the KLF14 locus related to multiple metabolic phenotypes. Nat. Genet. 2011, 43, 561–564. [Google Scholar] [CrossRef] [Green Version]
- Aguet, F.; Muñoz, M. Genetic effects on gene expression across human tissues. Nature 2017, 550, 204–213. [Google Scholar]
- Wang, J.; Zhang, J.; Shen, J.; Hu, D.; Yan, G.; Liu, X.; Xu, X.; Pei, L.; Li, Y.; Sun, C. Association of KCNQ1 and KLF14 polymorphisms and risk of type 2 diabetes mellitus: A global meta-analysis. Hum. Immunol. 2014, 75, 342–347. [Google Scholar] [CrossRef]
- Huang, P.; Yin, R.X.; Huang, K.K.; Zeng, X.N.; Guo, T.; Lin, Q.Z.; Wu, J.; Wu, D.F.; Li, H.; Pan, S.L. Association of the KLF14 rs4731702 SNP and serum lipid levels in the Guangxi Mulao and Han populations. Biomed. Res. Int. 2013, 2013, 231515. [Google Scholar] [CrossRef] [Green Version]
- Barber, T.M.; Hanson, P.; Weickert, M.O.; Franks, S. Obesity and Polycystic Ovary Syndrome: Implications for Pathogenesis and Novel Management Strategies. Clin. Med. Insights Reprod. Health 2019, 13, 1179558119874042. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Brien, J.; Hayder, H.; Zayed, Y.; Peng, C. Overview of MicroRNA Biogenesis, Mechanisms of Actions, and Circulation. Front. Endocrinol. 2018, 9, 402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rottiers, V.; Näär, A.M. MicroRNAs in metabolism and metabolic disorders. Nat. Rev. Mol. Cell Biol. 2012, 13, 239–250. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Grove, M.L.; Yu, B.; Jones, B.C.; Morrison, A.; Boerwinkle, E.; Liu, X. Genetic variants in microRNA genes and targets associated with cardiovascular disease risk factors in the African-American population. Hum. Genet. 2018, 137, 85–94. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Zhang, Y.; Bai, R.; Yang, R.; Shan, Z.; Ma, C.; Yang, J.; Sun, D. Association of Genetic Polymorphisms in MicroRNAs With Type 2 Diabetes Mellitus in a Chinese Population. Front. Endocrinol. 2021, 11, 587561. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.Y.; Wang, S.G.; Wang, J.L.; Zhou, L.Y.; Liu, H.J.; Wang, Y.F. Effect of miRNA-27a and Leptin Polymorphisms on Risk of Recurrent Spontaneous Abortion. Med. Sci. Monit. 2016, 22, 3514–3522. [Google Scholar] [CrossRef] [Green Version]
- Sung, J.H.; Kim, S.H.; Yang, W.I.; Kim, W.J.; Moon, J.Y.; Kim, I.J.; Cha, D.H.; Cho, S.Y.; Kim, J.O.; Kim, K.A.; et al. MiRNA polymorphisms (miR-146a, miR-149, miR-196a2 and miR-499) are associated with the risk of coronary artery disease. Mol. Med. Rep. 2016, 14, 2328–2342. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Xu, J.H.; Qu, Q.Q.; Zhong, G.Q. Risk of Cardiovascular and Cerebrovascular Events in Polycystic Ovarian Syndrome Women: A Meta-Analysis of Cohort Studies. Front. Cardiovasc. Med. 2020, 7, 552421. [Google Scholar] [CrossRef]
- Jaafar, S.O.; Jaffar, J.O.; Ibrahim, S.A.; Jarjees, K.K. MicroRNA Variants miR-27a rs895819 and miR-423 rs6505162, but not miR-124-1 rs531564, are Linked to Endometriosis and its Severity. Br. J. Biomed. Sci. 2022, 79, 10207. [Google Scholar] [CrossRef]
- Bachtiar, M.; Ooi, B.N.S.; Wang, J.; Jin, Y.; Tan, T.W.; Chong, S.S.; Lee, C.G.L. Towards precision medicine: Interrogating the human genome to identify drug pathways associated with potentially functional, population-differentiated polymorphisms. Pharm. J. 2019, 19, 516–527. [Google Scholar] [CrossRef] [Green Version]
Direction | Sequence | Product Size | Temp. |
---|---|---|---|
ARMS primers of KLF14 rs972283 genotyping | |||
KLF14 F1 | 5′-GTCATAGGTCAAACAGCTAGATATTGGGT-3′ | 437 bp | 60 °C |
KLF14R1 | 5′-TCTACAGGACCAACTCAAATTATGAGGT-3′ | ||
KLF14 F2 (G allele) | 5′-TCATTGTATACTTGGAAAAAATCCTACATG-3′ | 274 bp | |
KLF14 R2 (A allele) | 5′-TATGTAAAAATAAGTATGCGCCATGCCT-3′ | 221 bp | |
ARMS primers of miR-27a rs895819 genotyping | |||
miR27a F1 | 5′-GGCTTGACCCCTGTTCCTGCTGAACT-3′ | 353 bp | 63 °C |
miR27a R1 | 5′-TTGCTTCCTGTCACAAATCACATTGCCA-3′ | ||
miR27a F2 (G allele) | 5′-GGAACTTAGCCACTGTGAACACGACTTTGC-3′ | 184 bp | |
miR27a R2 (A allele) | 5′-CTTAGCTGCTTGTGAGCAGGGTCCCCA-3′ | 226 bp | |
ARMS primers of miR-423 rs6505162 genotyping | |||
miR-423 F1 | 5′-TTTTCCCGGATGGAAGCCCGAAGTTTGA-3′ | 336 bp | 62 °C |
miR-423 R1 | 5′-TTTTGCGGCAACGTATACCCCAATTTCC-3′ | ||
miR-423 F2 (A allele) | 5′-TGAGGCCCCTCAGTCTTGCTTCCCAA-3′ | 228 bp | |
miR-423 R2 (C allele) | 5′-CAAGCGGGGAGAAACTCAAGCGCGAGG-3′ | 160 bp | |
ARMS primers of Hsa-miR-196a2 rs11614913 genotyping | |||
miR-196a2 F1 | 5-ACCCCCTTCCCTTCTCCTCCAGATAGAT-3 | 297 bp | 61 °C |
miR-196a2 R1 | 5-AAAGCAGGGTTCTCCAGACTTGTTCTGC-3 | ||
miR-196a2 F2 (T allele) | 5-AGTTTTGAACTCGGCAACAAGAAACGGT-3 | 199 bp | |
miR-196a2 R2 (C allele) | 5-GACGAAAACCGACTGATGTAACTCCGG-3 | 153 bp |
Characteristic | Controls a | Cases a | pb |
---|---|---|---|
Age | 28.32 ± 4.12 | 27.59 ± 4.93 | 0.226 |
FBG | 5.52 ± 0.87 | 7.45 ± 2.03 | <0.001 |
Free insulin (mU/mL) c | 7.49 ± 2.58 | 13.18 ± 2.98 | <0.001 |
HbA1c | 5.20 ± 0.48 | 5.35 ± 0.42 | 0.117 |
HOMA | 1.90 ± 0.89 | 5.34 ± 4.24 | <0.001 |
TAGs (mmol/L) c | 1.63 ± 0.46 | 1.81 ± 0.62 | 0.059 |
Cholesterol (mmol/L) c | 1.78 ± 0.59 | 1.88 ± 0.59 | <0.001 |
LDL (mmol/L) c | 1.74 ± 0.57 | 3.70 ± 1.45 | <0.001 |
HDL (mmol/L) c | 1.44 ± 0.27 | 1.60 ± 0.467 | <0.001 |
Estradiol levels (pmol/L) d | 241.23 (138.12–478.76) | 247.45 (156.21–502.76) | 0.251 |
FSH levels (mIU/mL) d | 1.3 (1.24–1.96) | 5.0 (3.96–4.85) | <0.001 |
LH levels (mIU/mL) d | 0.09 (0.09–1.69) | 3.42 (0.89–9.86) | <0.001 |
Testosterone levels (ng/dL) d | 23.8 (22.33–20.77) | 52.0 (33.99–73.73) | <0.001 |
Progesterone levels (ng/mL) d | 16.52 (2.14–19.24) | 20.18 (2.78–36.29) | <0.006 |
Prolactin levels (µg/L) d | 11.45 (6.17–11.64) | 15.0 (12.76–16.329) | 0.74 |
BMI (kg/m2) c | 23.71 ± 2.32 | 26.2± 2.52 | <0.001 |
Subjects | N | GG | GA | AA | Df | X2 | G | A | p-Value |
---|---|---|---|---|---|---|---|---|---|
Cases | 107 | 40 (37.38%) | 35 (32.71%) | 32 (29.90%) | 2 | 8.94 | 0.54 | 0.46 | 0.011 |
Controls | 115 | 47 (40.86%) | 52 (45.21%) | 16 (13.91%) | 0.64 | 0.36 |
Genotypes | Healthy Controls | PCOS Cases | OR (95% CI) | Risk Ratio (RR) | p-Value |
---|---|---|---|---|---|
(n = 115) | (n = 107) | ||||
Codominant | |||||
KLF14-GG | 47 | 40 | (ref.) | (ref.) | |
KLF14-GA | 52 | 35 | 0.79 (0.433–1.442) | 0.90 (0.6973–1.171) | 0.44 |
KLF14-AA | 16 | 32 | 2.35 (1.1286–4.8932) | 1.62 (1.0390–2.5280) | 0.022 |
Dominant | |||||
KLF14-GG | 47 | 40 | (ref.) | (ref.) | |
KLF14-(GA + AA) | 68 | 67 | 1.15 (0.6747–1.9867) | 1.07 (0.8301–1.3856) | 0.59 |
Recessive | |||||
KLF14-(GG + GA) | 99 | 75 | (ref.) | (ref.) | |
KLF14-AA | 16 | 32 | 2.64 (1.3496–5.1641) | 1.70 (1.1210–2.5990) | 0.0046 |
Allele | |||||
KLF14-G | 146 | 115 | (ref.) | (ref.) | |
KLF14-A | 84 | 97 | 1.46 (1.0017–2.1456) | 1.20 (0.9968–1.4576) | 0.049 |
Subjects | N | AA | AG | GG | Df | X2 | A | G | p-Value |
---|---|---|---|---|---|---|---|---|---|
Cases | 105 | 40 (38.09%) | 55 (52.38%) | 10 (9.52%) | 6.93 | 2 | 0.64 | 0.36 | 0.031 |
Controls | 115 | 60 (52.17%) | 40 (34.78%) | 15 (13.04%) | 0.69 | 0.31 |
Genotypes | Healthy Controls | PCOS Cases | OR (95% CI) | Risk Ratio (RR) | p-Value |
---|---|---|---|---|---|
(n = 115) | (n = 105) | ||||
Codominant | |||||
miR-27a-AA | 60 | 40 | (ref.) | (ref.) | |
miR-27a-GA | 40 | 55 | 2.06 (1.1653–3.650) | 1.42 (1.0716–1.894) | 0.012 |
miR-27a-GG | 15 | 10 | 1.0 (0.4088 to 2.4464) | 1.0 (0.6992 to 1.4302) | 0.10 |
Dominant | |||||
miR-27a-AA | 60 | 40 | (ref.) | (ref.) | |
miR-27a-(GA + GG) | 55 | 65 | 1.77 (1.035–3.0347) | 1.30 (1.0176–1.684) | 0.036 |
Recessive | |||||
miR-27a-(AA + GA) | 80 | 95 | (ref.) | (ref.) | |
miR-27a-GG | 15 | 10 | 0.56 (0.2391–1.3183) | 0.76 (0.5324–1.0904) | 0.185 |
Allele | |||||
miR-27a-A | 140 | 135 | (ref.) | (ref.) | |
miR-27a-G | 70 | 75 | 1.11 (0.742–1.6617) | 1.05 (0.8594–1.293) | 0.06 |
Subjects | N | CC | CA | AA | Df | X2 | C | A | p-Value |
---|---|---|---|---|---|---|---|---|---|
Cases | 105 | 30 (28.57%) | 62 (59.04%) | 13 (12.38%) | 2 | 3.03 | 0.58 | 0.42 | 0.21 |
Controls | 100 | 21 (21%) | 59 (59%) | 20 (20%) | 0.51 | 0.49 |
Genotypes | Healthy Controls | PCOS Cases | OR (95% CI) | Risk Ratio (RR) | p-Value |
---|---|---|---|---|---|
(n = 100) | (n = 105) | ||||
Codominant | |||||
miRNA-423–CC | 21 | 30 | (ref.) | (ref.) | |
miRNA-423–CA | 59 | 62 | 0.73 (0.3795–1.425) | 0.84 (0.5801–1.229) | 0.36 |
miRNA-423–AA | 20 | 13 | 0.45 (0.1862–1.112) | 0.67 (0.4428–1.042) | 0.08 |
Dominant | |||||
miR-423–CC | 21 | 30 | (ref.) | (ref.) | |
miR-423–(CA + AA) | 79 | 75 | 0.66 (0.3501–1.2615) | 0.80 (0.558–1.153) | 0.21 |
Recessive | |||||
miR-423–(CC + CA) | 80 | 92 | (ref.) | (ref.) | |
miR-423–AA | 20 | 13 | 0.56 (0.260–1.206) | 0.76 (0.5582–1.0551) | 0.14 |
Allele | |||||
miR-423–C | 101 | 122 | (ref.) | (ref.) | |
miR-423–A | 99 | 88 | 0.73 (0.4983–1.0867) | 0.85 (0.7021–1.0425) | 0.123 |
Subjects | N | CC | CT | TT | Df | X2 | C | T | p-Value |
---|---|---|---|---|---|---|---|---|---|
Cases | 115 | 49 (42.60%) | 55 (47.82%) | 11 (9.56%) | 7.7 | 2 | 0.77 | 0.23 | 0.021 |
Controls | 115 | 70 (60.86%) | 38 (33.04%) | 07 (6.08%) | 0.83 | 0.17 |
Genotypes | Controls | PCOS Cases | OR (95% CI) | Risk Ratio (RR) | p-Value |
---|---|---|---|---|---|
115 | 115 | ||||
Codominant | |||||
miR-196a-2-CC | 70 | 49 | (ref.) | (ref.) | |
miR-196a-2-CT | 38 | 55 | 2.06 (1.191 to 3.589) | 1.43 (1.080 to 1.918) | 0.009 |
miR-196a-2-TT | 07 | 11 | 2.24 (0.813 to 6.197) | 1.51 (0.831 to 2.751) | 0.11 |
Dominant | |||||
miR-196a-2-CC | 70 | 49 | (ref.) | (ref.) | |
miR-196a-2-(CT + TT) | 45 | 66 | 2.09 (1.238 to 3.546) | 1.45 (1.106 to 1.902) | 0.005 |
Recessive | |||||
miR-196a-2-(CC + CT) | 108 | 104 | (ref.) | (ref.) | |
miR-196a-2-TT | 07 | 11 | 1.63 (0.60 to 4.370) | 1.31 (0.723 to 2.372) | 0.32 |
Allele | |||||
miR-196a-2-C | 178 | 153 | (ref.) | (ref.) | |
miR-196a-2–T | 52 | 77 | 1.72 (1.140 to 2.603) | 1.33 (1.0573 to 1.68) | 0.009 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mir, R.; Saeedi, N.H.; Jalal, M.M.; Altayar, M.A.; Barnawi, J.; Hamadi, A.; Tayeb, F.J.; Alshammari, S.E.; Mtiraoui, N.; M. Ali, M.E.; et al. Clinical Implications of Krüpple-like Transcription Factor KLF-14 and Certain Micro-RNA (miR-27a, miR-196a2, miR-423) Gene Variations as a Risk Factor in the Genetic Predisposition to PCOS. J. Pers. Med. 2022, 12, 586. https://doi.org/10.3390/jpm12040586
Mir R, Saeedi NH, Jalal MM, Altayar MA, Barnawi J, Hamadi A, Tayeb FJ, Alshammari SE, Mtiraoui N, M. Ali ME, et al. Clinical Implications of Krüpple-like Transcription Factor KLF-14 and Certain Micro-RNA (miR-27a, miR-196a2, miR-423) Gene Variations as a Risk Factor in the Genetic Predisposition to PCOS. Journal of Personalized Medicine. 2022; 12(4):586. https://doi.org/10.3390/jpm12040586
Chicago/Turabian StyleMir, Rashid, Nizar H. Saeedi, Mohammed M. Jalal, Malik A. Altayar, Jameel Barnawi, Abdullah Hamadi, Faris J. Tayeb, Sanad E. Alshammari, Nabil Mtiraoui, Mohammed Eltigani M. Ali, and et al. 2022. "Clinical Implications of Krüpple-like Transcription Factor KLF-14 and Certain Micro-RNA (miR-27a, miR-196a2, miR-423) Gene Variations as a Risk Factor in the Genetic Predisposition to PCOS" Journal of Personalized Medicine 12, no. 4: 586. https://doi.org/10.3390/jpm12040586
APA StyleMir, R., Saeedi, N. H., Jalal, M. M., Altayar, M. A., Barnawi, J., Hamadi, A., Tayeb, F. J., Alshammari, S. E., Mtiraoui, N., M. Ali, M. E., Abuduhier, F. M., & Ullah, M. F. (2022). Clinical Implications of Krüpple-like Transcription Factor KLF-14 and Certain Micro-RNA (miR-27a, miR-196a2, miR-423) Gene Variations as a Risk Factor in the Genetic Predisposition to PCOS. Journal of Personalized Medicine, 12(4), 586. https://doi.org/10.3390/jpm12040586