Investigation of the Relationship between Cardiovascular Biomarkers and Brachial–Ankle Pulse Wave Velocity in Hemodialysis Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Comorbidity, Clinical Data, and Traditional CV Biomarkers
2.3. Measurement of BaPWV
2.4. Multiplex Analysis of Novel CV Biomarkers
2.5. Statistical Analysis
3. Results
3.1. Study Flowchart and Baseline Characteristics of Patients
3.2. The Linear Association between CV Biomarkers and BaPWV
3.3. Multivariable Linear Regression Model Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lv, J.-C.; Zhang, L.-X. Prevalence and Disease Burden of Chronic Kidney Disease. Adv. Exp. Med. Biol. 2019, 1165, 3–15. [Google Scholar] [CrossRef] [PubMed]
- Glassock, R.J.; Warnock, D.G.; Delanaye, P. The global burden of chronic kidney disease: Estimates, variability and pitfalls. Nat. Rev. Nephrol. 2016, 13, 104–114. [Google Scholar] [CrossRef] [PubMed]
- Visseren, F.L.J.; Mach, F.; Smulders, Y.M.; Carballo, D.; Koskinas, K.C.; Bäck, M.; Williams, B. 2021 ESC Guidelines on cardiovascular disease prevention in clinical practice. Eur. Heart J. 2021, 42, 3227–3337. [Google Scholar] [CrossRef] [PubMed]
- Vallianou, N.G.; Mitesh, S.; Gkogkou, A.; Geladari, E. Chronic Kidney Disease and Cardiovascular Disease: Is there Any Relationship? Curr. Cardiol. Rev. 2019, 15, 55–63. [Google Scholar] [CrossRef]
- Provenzano, M.; Andreucci, M.; De Nicola, L.; Garofalo, C.; Battaglia, Y.; Borrelli, S.; Gagliardi, I.; Faga, T.; Michael, A.; Mastroroberto, P.; et al. The Role of Prognostic and Predictive Biomarkers for Assessing Cardiovascular Risk in Chronic Kidney Disease Patients. BioMed Res. Int. 2020, 2020, 2314128. [Google Scholar] [CrossRef] [PubMed]
- Maloberti, A.; Meani, P.; Vallerio, P.; Varrenti, M.; Casadei, F.; Musca, F.; Facchetti, R.; Di Blasio, A.M.; Ravassa, S.; Mancia, G.; et al. Annexin A5 in treated hypertensive patients and its association with target organ damage. J. Hypertens. 2017, 35, 154–161. [Google Scholar] [CrossRef]
- Maloberti, A.; Farina, F.; Carbonaro, M.; Piccinelli, E.; Bassi, I.; Pansera, F.; Grassi, G.; Mancia, G.; Palestini, P.; Giannattasio, C. In healthy normotensive subjects age and blood pressure better predict subclinical vascular and cardiac organ damage than atherosclerosis biomarkers. Blood Press. 2018, 27, 262–270. [Google Scholar] [CrossRef]
- Yilmaz, M.I.; Siriopol, D.; Saglam, M.; Kurt, Y.G.; Unal, H.U.; Eyileten, T.; Gok, M.; Cetinkaya, H.; Oguz, Y.; Sari, S.; et al. Plasma endocan levels associate with inflammation, vascular abnormalities, cardiovascular events, and survival in chronic kidney disease. Kidney Int. 2014, 86, 1213–1220. [Google Scholar] [CrossRef] [Green Version]
- Pawlak, K.; Mysliwiec, M.; Pawlak, D. Endocan—The new endothelial activation marker independently associated with soluble endothelial adhesion molecules in uraemic patients with cardiovascular disease. Clin. Biochem. 2015, 48, 425–430. [Google Scholar] [CrossRef]
- Matsui, M.; Samejima, K.-I.; Takeda, Y.; Tanabe, K.; Morimoto, K.; Okamoto, K.; Tagawa, M.; Onoue, K.; Okayama, S.; Kawata, H.; et al. Prognostic Impact of Placental Growth Factor on Mortality and Cardiovascular Events in Dialysis Patients. Am. J. Nephrol. 2015, 42, 117–125. [Google Scholar] [CrossRef]
- Matsui, M.; Uemura, S.; Takeda, Y.; Samejima, K.-I.; Matsumoto, T.; Hasegawa, A.; Tsushima, H.; Hoshino, E.; Ueda, T.; Morimoto, K.; et al. Placental Growth Factor as a Predictor of Cardiovascular Events in Patients with CKD from the NARA-CKD Study. J. Am. Soc. Nephrol. 2015, 26, 2871–2881. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Q.; Yin, K.; Zhu, M.; Lin, X.; Fang, Y.; Lu, J.; Li, Z.; Ni, Z. Galectin-3 is associated with arterial stiffness among hemodialysis patients. Biomarkers Med. 2019, 13, 437–443. [Google Scholar] [CrossRef] [PubMed]
- Hsu, B.-G.; Wang, C.-H.; Lai, Y.-H.; Tsai, J.-P. Serum Galectin-3 Level Is Positively Associated with Endothelial Dysfunction in Patients with Chronic Kidney Disease Stage 3 to 5. Toxins 2021, 13, 532. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Ji, Y.; Ju, H.; Chen, H.; Sun, M. Circulating Fetuin-A and Risk of All-Cause Mortality in Patients with Chronic Kidney Disease: A Systematic Review and Meta-Analysis. Front. Physiol. 2019, 10, 966. [Google Scholar] [CrossRef] [PubMed]
- Sevinc, C.; Yilmaz, G.; Ustundag, S. The relationship between calcification inhibitor levels in chronic kidney disease and the development of atherosclerosis. Ren. Fail. 2021, 43, 1349–1358. [Google Scholar] [CrossRef]
- Moallem, S.A.; Nazemian, F.; Eliasi, S.; Alamdaran, S.A.; Shamsara, J.; Mohammadpour, A.H. Correlation between cathepsin D serum concentration and carotid intima-media thickness in hemodialysis patients. Int. Urol. Nephrol. 2010, 43, 841–848. [Google Scholar] [CrossRef]
- Yamamoto-Nonaka, K.; Koike, M.; Asanuma, K.; Takagi, M.; Trejo, J.A.O.; Seki, T.; Hidaka, T.; Ichimura, K.; Sakai, T.; Tada, N.; et al. Cathepsin D in Podocytes Is Important in the Pathogenesis of Proteinuria and CKD. J. Am. Soc. Nephrol. 2016, 27, 2685–2700. [Google Scholar] [CrossRef] [Green Version]
- Heerspink, H.J.L.; Parving, H.-H.; Andress, D.L.; Bakris, G.; Correa-Rotter, R.; Hou, F.-F.; Kitzman, D.W.; Kohan, D.; Makino, H.; McMurray, J.J.V.; et al. Atrasentan and renal events in patients with type 2 diabetes and chronic kidney disease (SONAR): A double-blind, randomised, placebo-controlled trial. Lancet 2019, 393, 1937–1947. [Google Scholar] [CrossRef]
- Williams, B.; Mancia, G.; Spiering, W.; Agabiti Rosei, E.; Azizi, M.; Burnier, M.; Clement, D.; Coca, A.; De Simone, G.; Dominiczak, A.; et al. 2018 Practice Guidelines for the management of arterial hypertension of the European Society of Hypertension and the European Society of Cardiology: ESH/ESC Task Force for the Management of Arterial Hypertension. J. Hypertens. 2018, 36, 2284–2309. [Google Scholar] [CrossRef] [Green Version]
- Ohkuma, T.; Ninomiya, T.; Tomiyama, H.; Kario, K.; Hoshide, S.; Kita, Y.; Yamashita, T. Brachial-Ankle Pulse Wave Velocity and the Risk Prediction of Cardiovascular Disease: An Individual Participant Data Meta-Analysis. Hypertension 2017, 69, 1045–1052. [Google Scholar] [CrossRef]
- Avramovski, P.; Janakievska, P.; Sotiroski, K.; Zafirova-Ivanovska, B.; Sikole, A. Aortic pulse wave velocity is a strong predictor of all-cause and cardiovascular mortality in chronic dialysis patients. Ren Fail. 2014, 36, 176–186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Townsend, R.R. Arterial Stiffness in CKD: A Review. Am. J. Kidney Dis. 2019, 73, 240–247. [Google Scholar] [CrossRef] [PubMed]
- Hyun, Y.Y.; Kim, H.; Oh, K.-H.; Ahn, C.; Park, S.K.; Chae, N.W.; Han, S.H.; Kim, Y.-S.; Lee, S.W.; Kim, C.S.; et al. Arterial Stiffness as a Risk Factor for Subclinical Coronary Artery Calcification in Predialysis Chronic Kidney Disease: From the KNOW-CKD Study. Kidney Blood Press. Res. 2019, 44, 426–434. [Google Scholar] [CrossRef] [PubMed]
- Tripepi, G.; Agharazii, M.; Pannier, B.; D’Arrigo, G.; Mallamaci, F.; Zoccali, C.; London, G. Pulse Wave Velocity and Prognosis in End-Stage Kidney Disease. Hypertension 2018, 71, 1126–1132. [Google Scholar] [CrossRef] [PubMed]
- Wu, P.H.; Lin, Y.T.; Wu, P.Y.; Huang, J.C.; Chen, S.C.; Chang, J.M.; Chen, H.C. A Low Ankle-Brachial Index and High Brachial-Ankle Pulse Wave Velocity Are Associated with Poor Cognitive Function in Patients Undergoing Hemodialysis. Dis. Markers 2019, 2019, 9421352. [Google Scholar] [CrossRef] [PubMed]
- Zoccali, C.; Mallamaci, F.; Tripepi, G. Traditional and emerging cardiovascular risk factors in end-stage renal disease. Kidney Int. 2003, 63, S105–S110. [Google Scholar] [CrossRef] [Green Version]
- Cecelja, M.; Chowienczyk, P. Role of arterial stiffness in cardiovascular disease. JRSM Cardiovasc. Dis. 2012, 1, 1–10. [Google Scholar] [CrossRef]
- Sugawara, J.; Hayashi, K.; Yokoi, T.; Cortez-Cooper, M.Y.; DeVan, A.E.; Anton, M.A.; Tanaka, H. Brachial-ankle pulse wave velocity: An index of central arterial stiffness? J. Hum. Hypertens. 2005, 19, 401–406. [Google Scholar] [CrossRef]
- Vlachopoulos, C.; Aznaouridis, K.; Terentes-Printzios, D.; Ioakeimidis, N.; Stefanadis, C. Prediction of cardiovascular events and all-cause mortality with brachial-ankle elasticity index: A systematic review and meta-analysis. Hypertension 2012, 60, 556–562. [Google Scholar] [CrossRef] [Green Version]
- Fujiwara, Y.; Chaves, P.; Takahashi, R.; Amano, H.; Kumagai, S.; Fujita, K.; Yoshida, H.; Wang, D.G.; Varadhan, R.; Uchida, H.; et al. Relationships between brachial-ankle pulse wave velocity and conventional atherosclerotic risk factors in community-dwelling people. Prev. Med. 2004, 39, 1135–1142. [Google Scholar] [CrossRef]
- Kuang, D.-W.; Li, C.-L.; Kuok, U.-I.; Cheung, K.; Lio, W.-I.; Xin, J. Risk factors associated with brachial–ankle pulse wave velocity among peritoneal dialysis patients in Macao. BMC Nephrol. 2012, 13, 143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, C.S.; Bae, E.H.; Ma, S.K.; Han, S.H.; Lee, K.-B.; Lee, J.; Oh, K.-H.; Chae, D.W.; Kim, S.W. Representatives of the KNOW-CKD Study Group Chronic Kidney Disease-Mineral Bone Disorder in Korean Patients: A Report from the KoreaN Cohort Study for Outcomes in Patients With Chronic Kidney Disease (KNOW-CKD). J. Korean Med. Sci. 2017, 32, 240–248. [Google Scholar] [CrossRef] [PubMed]
- Matsushita, K.; Sang, Y.; Ballew, S.H.; Astor, B.C.; Hoogeveen, R.C.; Solomon, S.D.; Coresh, J. Cardiac and kidney markers for cardiovascular prediction in individuals with chronic kidney disease: The Atherosclerosis Risk in Communities study. Arter. Thromb. Vasc. Biol. 2014, 34, 1770–1777. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roman, M.J.; Ganau, A.; Saba, P.S.; Pini, R.; Pickering, T.G.; Devereux, R.B. Impact of Arterial Stiffening on Left Ventricular Structure. Hypertension 2000, 36, 489–494. [Google Scholar] [CrossRef] [Green Version]
- Feistritzer, H.-J.; Reinstadler, S.J.; Klug, G.; Kremser, C.; Rederlechner, A.; Mair, J.; Müller, S.; Franz, W.-M.; Metzler, B. N-terminal pro-B-type natriuretic peptide is associated with aortic stiffness in patients presenting with acute myocardial infarction. Eur. Heart J. Acute Cardiovasc. Care 2016, 5, 560–567. [Google Scholar] [CrossRef]
- Otsuka, K.; Nakanishi, K.; Shimada, K.; Nakamura, H.; Inanami, H.; Nishioka, H.; Yoshiyama, M. Ankle-brachial index, arterial stiffness, and biomarkers in the prediction of mortality and outcomes in patients with end-stage kidney disease. Clin. Cardiol. 2019, 42, 656–662. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Kim, E.D.; Wu, A.; Meyer, M.L.; Cheng, S.; Hoogeveen, R.C.; Ballantyne, C.M.; Tanaka, H.; Heiss, G.; Selvin, E.; et al. Central and peripheral pulse wave velocity and subclinical myocardial stress and damage in older adults. PLoS ONE 2019, 14, e0212892. [Google Scholar] [CrossRef]
- Hitsumoto, T. Relationships between the arterial velocity pulse index as a novel marker of atherosclerosis and biomarkers of cardiac or renal condition in patients with type 2 diabetes mellitus. Diabetol. Int. 2017, 9, 48–55. [Google Scholar] [CrossRef]
- Odaira, M.; Tomiyama, H.; Matsumoto, C.; Yoshida, M.; Shiina, K.; Nagata, M.; Yamashina, A. Strength of relationships of the pulse wave velocity and central hemodynamic indices with the serum N-terminal fragment B-type natriuretic peptide levels in men: A worksite cohort study. Circ. J. 2012, 76, 1928–1933. [Google Scholar] [CrossRef] [Green Version]
- Yang, R.Y.; Rabinovich, G.A.; Liu, F.T. Galectins: Structure, function and therapeutic potential. Expert Rev. Mol. Med. 2008, 10, e17. [Google Scholar] [CrossRef]
- Sharma, U.C.; Pokharel, S.; Van Brakel, T.J.; van Berlo, J.; Cleutjens, J.P.M.; Schroen, B.; André, S.; Crijns, H.J.G.M.; Gabius, H.-J.; Maessen, J.; et al. Galectin-3 Marks Activated Macrophages in Failure-Prone Hypertrophied Hearts and Contributes to Cardiac Dysfunction. Circulation 2004, 110, 3121–3128. [Google Scholar] [CrossRef] [PubMed]
- Dong, R.; Zhang, M.; Hu, Q.; Zheng, S.; Soh, A.; Zheng, Y.; Yuan, H. Galectin-3 as a novel biomarker for disease diagnosis and a target for therapy (Review). Int. J. Mol. Med. 2018, 41, 599–614. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Madrigal-Matute, J.; Lindholt, J.S.; Fernandez-Garcia, C.E.; Martin, A.B.; Burillo, E.; Zalba, G.; Beloqui, O.; Llamas-Granda, P.; Ortiz, A.; Egido, J.; et al. Galectin-3, a Biomarker Linking Oxidative Stress and Inflammation with the Clinical Outcomes of Patients with Atherothrombosis. J. Am. Heart Assoc. 2014, 3, e000785. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Locatelli, F.; Canaud, B.; Eckardt, K.-U.; Stenvinkel, P.; Wanner, C.; Zoccali, C. Oxidative stress in end-stage renal disease: An emerging threat to patient outcome. Nephrol. Dial. Transplant. 2003, 18, 1272–1280. [Google Scholar] [CrossRef]
- Barderas, M.G.; Dardé, V.M.; de la Cuesta, F.; Martin-Ventura, J.L.; Blanco-Colio, L.M.; Jiménez-Narcher, J.; Vivanco, F. Proteomic analysis of circulating monocytes identifies cathepsin D as a potential novel plasma marker of acute coronary syndromes. Clin. Med. Cardiol. 2008, 2, 191–200. [Google Scholar] [CrossRef]
- Liu, J.; Sukhova, G.K.; Sun, J.-S.; Xu, W.-H.; Libby, P.; Shi, G.-P. Lysosomal Cysteine Proteases in Atherosclerosis. Arter. Thromb. Vasc. Biol. 2004, 24, 1359–1366. [Google Scholar] [CrossRef] [Green Version]
- Benes, P.; Vetvicka, V.; Fusek, M. Cathepsin D—Many functions of one aspartic protease. Crit. Rev. Oncol. Hematol. 2008, 68, 12–28. [Google Scholar] [CrossRef] [Green Version]
- Hakala, J.K.; Oksjoki, R.; Laine, P.; Du, H.; Grabowski, G.A.; Kovanen, P.T.; Pentikaïnen, M.O. Lysosomal Enzymes Are Released From Cultured Human Macrophages, Hydrolyze LDL In Vitro, and Are Present Extracellularly in Human Atherosclerotic Lesions. Arter. Thromb. Vasc. Biol. 2003, 23, 1430–1436. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Yuan, X.-M. Increased Expression and Translocation of Lysosomal Cathepsins Contribute to Macrophage Apoptosis in Atherogenesis. Ann. N. Y. Acad. Sci. 2004, 1030, 427–433. [Google Scholar] [CrossRef]
- Özkayar, N.; Akyel, F.; Barça, A.N.; Pişkinpaşa, S.V.; Turhan, T.; Ateş, I.; DeDe, F. The relation between serum cathepsin D level and carotid intima-media thickness in nondiabetic hypertensive patients. Turk. J. Med Sci. 2016, 46, 13–17. [Google Scholar] [CrossRef]
- Li, Z.; Qin, Y.; Du, L.; Luo, X. An improvement of carotid intima-media thickness and pulse wave velocity in renal transplant recipients. BMC Med. Imaging 2018, 18, 23. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, S.; Okamoto, K.; Maesato, K.; Moriya, H.; Ohtake, T. Important role of blood rheology in atherosclerosis of patients with hemodialysis. Hemodial. Int. 2005, 9, 268–274. [Google Scholar] [CrossRef] [PubMed]
- Jung, J.H.; Chae, Y.J.; Lee, D.H.; Cho, Y.I.; Ko, M.M.; Park, S.K.; Kim, W. Changes in whole blood viscosity during hemodialysis and mortality in patients with end-stage renal disease. Clin. Hemorheol. Microcirc. 2017, 65, 285–297. [Google Scholar] [CrossRef] [PubMed]
Characteristics | All Patients (n = 176) 1 |
---|---|
Age (y old) | 60 ± 11 |
Men, n (%) | 95 (54%) |
Smoking history, n (%) | 64 (36.4%) |
Body mass index (Kg/m2) | 24.1 ± 3.8 |
Systolic blood pressure (mmHg) | 156 ± 25.5 |
Diastolic blood pressure (mmHg) | 81.5 ± 14.6 |
Hemodialysis vintage (mo) | 91.8 ± 64.3 |
Arteriovenous shunt | |
Arteriovenous fistula, n (%) | 156 (88.6%) |
Arteriovenous graft, n (%) | 20 (11.4%) |
Cause of end-stage kidney disease | |
Hypertension, n (%) | 13 (7.4%) |
Diabetes mellitus, n (%) | 75 (42.6%) |
Glomerulonephritis, n (%) | 69 (39.2%) |
Others, n (%) * | 19 (10.8%) |
Comorbidities | |
Diabetes mellitus, n (%) | 84 (47.7%) |
Hypertension, n (%) | 124 (70.5%) |
Hyperlipidemia, n (%) | 77 (43.8%) |
Coronary artery disease, n (%) | 25 (14.2%) |
Cerebrovascular disease, n (%) | 12 (6.8%) |
Clinical laboratory data | |
Hemoglobin (mg/dL) | 10.4 (9.7, 11.1) |
Albumin (mg/dL) | 3.9 (3.7, 4.1) |
Low-density lipoprotein cholesterol (mg/dL) | 87.5 (63.5, 107) |
Ion Calcium (mg/dL) | 4.7 (4.4, 5) |
Phosphate (mg/dL) | 4.7 (4.1, 5.3) |
C-reactive protein (mg/L) | 0.2 (0.1, 0.5) |
Dialysis dose, Single pool Kt/V | 1.6 (1.4, 1.7) |
Clinical cardiovascular biomarkers | |
High sensitivity troponin T (ng/mL) | 0.1 (0.04, 0.09) |
N-terminal pro-brain natriuretic peptide (ng/mL) | 2.8 (1.5, 5.8) |
Novel cardiovascular biomarkers | |
Endocan-1 (ng/mL) | 1.4 (1.1, 1.8) |
Placental Growth Factor (pg/mL) | 0.01 (0.0001, 0.03) |
Fetuin-A (ng/mL) | 82.5 (61, 98.5) |
Galectin-3 (ng/mL) | 1 (0.8, 1.2) |
Cathepsin D (ng/mL) | 6.4 (4.9, 9.6) |
Cardiovascular Markers | β (95%CI) | p-Value |
---|---|---|
hsTnT | 0.2 (0.1, 0.2) | <0.01 |
NT-proBNP | 0.04 (0.01, 0.1) | 0.01 |
Endocan-1 | 0.03 (−0.1, 0.11) | 0.5 |
PLGF | 0.02 (−0.02, 0.1) | 0.3 |
Fetuin-A | −0.03 (−0.1, 0.1) | 0.6 |
Galectin-3 | 0.1 (0.01, 0.3) | 0.03 |
Cathepsin D | 0.1 (0.1, 0.2) | <0.01 |
Biomarkers | Multivariable-Adjusted Linear Regression Models * | |||||
---|---|---|---|---|---|---|
Model 1 | p-Value | Model 2 | p-Value | Model 3 | p-Value | |
hsTnT | 0.2 (0.1, 0.2) | <0.01 | 0.2 (0.1, 0.2) | <0.01 | 0.1 (0.04, 0.2) | <0.01 |
NT-proBNP | 0.04 (0.01, 0.1) | 0.01 | 0.04 (0.01, 0.1) | 0.01 | 0.001 (−0.03, 0.03) | 0.4 |
Galectin-3 | 0.1 (−0.01, 0.3) | 0.1 | 0.1 (0.01, 0.3) | 0.03 | 0.1 (−0.04, 0.2) | 0.1 |
Cathepsin D | 0.1 (0.03, 0.2) | 0.004 | 0.1 (0.1, 0.2) | <0.01 | 0.1 (0.02, 0.1) | 0.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chou, P.-R.; Wu, P.-Y.; Wu, P.-H.; Huang, T.-H.; Huang, J.-C.; Chen, S.-C.; Lee, S.-C.; Kuo, M.-C.; Chiu, Y.-W.; Hsu, Y.-L.; et al. Investigation of the Relationship between Cardiovascular Biomarkers and Brachial–Ankle Pulse Wave Velocity in Hemodialysis Patients. J. Pers. Med. 2022, 12, 636. https://doi.org/10.3390/jpm12040636
Chou P-R, Wu P-Y, Wu P-H, Huang T-H, Huang J-C, Chen S-C, Lee S-C, Kuo M-C, Chiu Y-W, Hsu Y-L, et al. Investigation of the Relationship between Cardiovascular Biomarkers and Brachial–Ankle Pulse Wave Velocity in Hemodialysis Patients. Journal of Personalized Medicine. 2022; 12(4):636. https://doi.org/10.3390/jpm12040636
Chicago/Turabian StyleChou, Ping-Ruey, Pei-Yu Wu, Ping-Hsun Wu, Teng-Hui Huang, Jiun-Chi Huang, Szu-Chia Chen, Su-Chu Lee, Mei-Chuan Kuo, Yi-Wen Chiu, Ya-Ling Hsu, and et al. 2022. "Investigation of the Relationship between Cardiovascular Biomarkers and Brachial–Ankle Pulse Wave Velocity in Hemodialysis Patients" Journal of Personalized Medicine 12, no. 4: 636. https://doi.org/10.3390/jpm12040636
APA StyleChou, P. -R., Wu, P. -Y., Wu, P. -H., Huang, T. -H., Huang, J. -C., Chen, S. -C., Lee, S. -C., Kuo, M. -C., Chiu, Y. -W., Hsu, Y. -L., Chang, J. -M., & Hwang, S. -J. (2022). Investigation of the Relationship between Cardiovascular Biomarkers and Brachial–Ankle Pulse Wave Velocity in Hemodialysis Patients. Journal of Personalized Medicine, 12(4), 636. https://doi.org/10.3390/jpm12040636