Clinical Implications of Glyoxalase1 Gene Polymorphism and Elevated Levels of the Reactive Metabolite Methylglyoxal in the Susceptibility of Type 2 Diabetes Mellitus in the Patients from Asir and Tabuk Regions of Saudi Arabia
Abstract
:1. Introduction
2. Methodology
2.1. Study Population
2.2. Ethical Approval
2.3. Selection of Study Population
2.3.1. Inclusion Criteria for Patients and Controls
2.3.2. Exclusion Criteria
2.3.3. Data Collection
2.4. Sample Collection from T2DM Patients
2.5. Sample Collection from Healthy Controls
2.6. DNA Extraction from T2DM Patients
2.7. Genotyping of GLO-I rs2736654 C>A, rs1130534 T>A
2.8. Preparation of PCR Cocktail
2.9. Estimation of Methylglyoxal
2.10. Statistical Analysis
3. Results
3.1. Demographic Features and Baseline
3.2. Statistical Comparisons between T2DM Patients and Controls for GLO-I rs2736654 C>A Genotypes
3.3. Estimation of Association between GLO-I rs2736654 C>A Gene Variation with T2DM by Multivariate Analysis
3.4. Statistical Comparisons of GLO-I rs2736654 C>A (rs4647 A>C) Genotypes with Demographic Features and Biochemical Characteristics T2DM Patients
3.5. Statistical Comparisons of GLO-rs1130534 T>A between T2DM Patients and Controls
3.6. Multivariate Analysis to Estimate the Association between GLO-rs1130534 T>A Gene Variation in T2DM Patients
3.7. Statistical Comparisons between GLO-rs1130534 T>A Genotypes and T2DM Patient Characteristics
3.8. Correlation between Serum Methylglyoxal Levels and T2DM
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- He, Y.; Zhou, C.; Huang, M.; Tang, C.; Liu, X.; Yue, Y.; Diao, Q.; Zheng, Z.; Liu, D. Glyoxalase system: A systematic review of its biological activity, related-diseases, screening methods and small molecule regulators. Biomed. Pharmacother. 2020, 131, 110663. [Google Scholar] [CrossRef] [PubMed]
- Morgenstern, J.; Katz, S.; Krebs-Haupenthal, J.; Chen, J.; Saadatmand, A.; Cortizo, F.G.; Moraru, A.; Zemva, J.; Campos, M.C.; Teleman, A.; et al. Phosphorylation of T107 by CamKIIdelta regulates the detoxification efficiency and proteomic integrity of glyoxalase 1. Cell Rep. 2020, 32, 108160. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, T.; Borges, P.; Mar, L.; Marques, D.; Albano, M.; Eickhoff, H.; Carrelo, C.; Almeida, B.; Pires, S.; Abrantes, M.; et al. GLP-1 improves adipose tissue glyoxalase activity and capillarization improving insulin sensitivity in type 2 diabetes. Pharmacol. Res. 2020, 161, 105198. [Google Scholar] [CrossRef] [PubMed]
- Sousa Silva, M.; Gomes, R.A.; Ferreira, A.E.; Ponces Freire, A.; Cordeiro, C. The glyoxalase pathway: The first hundred years… and beyond. Biochem. J. 2013, 453, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Antognelli, C.; Ferri, I.; Bellezza, G.; Siccu, P.; Love, H.D.; Talesa, V.N.; Sidoni, A. Glyoxalase 2 drives tumorigenesis in human prostate cells in a mechanism involving androgen receptor and p53-p21 axis. Mol. Carcinog. 2017, 56, 2112–2126. [Google Scholar] [CrossRef] [PubMed]
- Mannervik, B. Molecular enzymology of the glyoxalase system. Drug Metabol. Drug Interact. 2008, 23, 13–27. [Google Scholar] [CrossRef]
- Phillips, S.A.; Thornalley, P.J. The formation of methylglyoxal from triose phosphates. Investigation using a specific assay for methylglyoxal. Eur. J. Biochem. 1993, 212, 101–105. [Google Scholar] [CrossRef]
- Maessen, D.E.; Stehouwer, C.D.; Schalkwijk, C.G. The role of methylglyoxal and the glyoxalase system in diabetes and other age-related diseases. Clin. Sci. 2015, 128, 839–861. [Google Scholar] [CrossRef]
- Thornalley, P.J.; Waris, S.; Fleming, T.; Santarius, T.; Larkin, S.J.; Winklhofer-Roob, B.M.; Stratton, M.R.; Rabbani, N. Imidazopurinones are markers of physiological genomic damage linked to DNA instability and glyoxalase 1-associated tumour multidrug resistance. Nucleic Acids Res. 2010, 38, 5432–5442. [Google Scholar] [CrossRef] [Green Version]
- Rabbani, N.; Thornalley, P.J. Methylglyoxal, glyoxalase 1 and the dicarbonyl proteome. Amino Acids 2012, 42, 1133–1142. [Google Scholar] [CrossRef]
- Rabbani, N.; Thornalley, P.J. Glyoxalase in diabetes, obesity and related disorders. Semin. Cell Dev. Biol. 2011, 22, 309–317. [Google Scholar] [CrossRef] [PubMed]
- Schalkwijk, C.G.; Stehouwer, C.D.A. Methylglyoxal, a highly reactive dicarbonyl compound, in diabetes, its vascular complications, and other age-related diseases. Physiol. Rev. 2020, 100, 407–461. [Google Scholar] [CrossRef]
- Chang, T.; Wu, L. Methylglyoxal, oxidative stress, and hypertension. Can. J. Physiol. Pharmacol. 2006, 84, 1229–1238. [Google Scholar] [CrossRef] [PubMed]
- Cianfruglia, L.; Perrelli, A.; Fornelli, C.; Magini, A.; Gorbi, S.; Salzano, A.M.; Antognelli, C.; Retta, F.; Benedetti, V.; Cassoni, P.; et al. KRIT1 Loss-of-function associated with cerebral cavernous malformation disease leads to enhanced s-glutathionylation of distinct structural and regulatory proteins. Antioxidants 2019, 8, 27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Antognelli, C.; Trapani, E.; Delle Monache, S.; Perrelli, A.; Fornelli, C.; Retta, F.; Cassoni, P.; Talesa, V.N.; Retta, S.F. Data in support of sustained upregulation of adaptive redox homeostasis mechanisms caused by KRIT1 loss-of-function. Data Brief. 2018, 16, 929–938. [Google Scholar] [CrossRef]
- Arai, M.; Yuzawa, H.; Nohara, I.; Ohnishi, T.; Obata, N.; Iwayama, Y.; Haga, S.; Toyota, T.; Ujike, H.; Arai, M.; et al. Enhanced carbonyl stress in a subpopulation of schizophrenia. Arch. Gen. Psychiatry 2010, 67, 589–597. [Google Scholar] [CrossRef] [PubMed]
- Xue, M.; Rabbani, N.; Thornalley, P.J. Glyoxalase in ageing. Semin. Cell Dev. Biol. 2011, 22, 293–301. [Google Scholar] [CrossRef] [PubMed]
- Rabbani, N.; Xue, M.; Weickert, M.O.; Thornalley, P.J. Multiple roles of glyoxalase 1-mediated suppression of methylglyoxal glycation in cancer biology-Involvement in tumour suppression, tumour growth, multidrug resistance and target for chemotherapy. Semin. Cancer Biol. 2018, 49, 83–93. [Google Scholar] [CrossRef] [PubMed]
- Al Mansour, M.A. The prevalence and risk factors of type 2 diabetes mellitus (DMT2) in a Semi-Urban Saudi population. Int. J. Environ. Res. Public Health 2019, 17, 7. [Google Scholar] [CrossRef] [Green Version]
- Gaal, Z.; Balogh, I. Monogenic forms of diabetes mellitus. Genet. Endocr. Dis. Syndr. 2019, 111, 385–416. [Google Scholar]
- Cerf, M.E. Beta cell dysfunction and insulin resistance. Front. Endocrinol. 2013, 4, 37. [Google Scholar] [CrossRef] [Green Version]
- Mellitus, D. Diagnosis and classification of diabetes mellitus. Diabetes Care 2009, 32 (Suppl. 1), S62–S67. [Google Scholar]
- Forbes, J.M.; Cooper, M.E. Mechanisms of diabetic complications. Physiol. Rev. 2013, 93, 137–188. [Google Scholar] [CrossRef] [PubMed]
- Rabbani, N.; Thornalley, P.J. Glyoxalase 1 modulation in obesity and diabetes. Antioxid. Redox Signal. 2019, 30, 354–374. [Google Scholar] [CrossRef] [PubMed]
- Toyoda, Y.; Erkut, C.; Pan-Montojo, F.; Boland, S.; Stewart, M.P.; Muller, D.J.; Wurst, W.; Hyman, A.A.; Kurzchalia, T.V. Products of the Parkinson’s disease-related glyoxalase DJ-1, D-lactate and glycolate, support mitochondrial membrane potential and neuronal survival. Biol. Open 2014, 3, 777–784. [Google Scholar] [CrossRef] [Green Version]
- Toyosima, M.; Maekawa, M.; Toyota, T.; Iwayama, Y.; Arai, M.; Ichikawa, T.; Miyashita, M.; Arinami, T.; Itokawa, M.; Yoshikawa, T. Schizophrenia with the 22q11.2 deletion and additional genetic defects: Case history. Br. J. Psychiatry 2011, 199, 245–246. [Google Scholar] [CrossRef]
- Trellu, S.; Courties, A.; Jaisson, S.; Gorisse, L.; Gillery, P.; Kerdine-Romer, S.; Vaamonde-Garcia, C.; Houard, X.; Ekhirch, F.P.; Sautet, A.; et al. Impairment of glyoxalase-1, an advanced glycation end-product detoxifying enzyme, induced by inflammation in age-related osteoarthritis. Arthritis Res. Ther. 2019, 21, 18. [Google Scholar] [CrossRef] [Green Version]
- Antognelli, C.; Mancuso, F.; Frosini, R.; Arato, I.; Calvitti, M.; Calafiore, R.; Talesa, V.N.; Luca, G. Testosterone and follicle stimulating hormone-dependent glyoxalase 1 up-regulation sustains the viability of porcine sertoli cells through the control of hydroimidazolone- and argpyrimidine-mediated NF-kappaB pathway. Am. J. Pathol. 2018, 188, 2553–2563. [Google Scholar] [CrossRef] [Green Version]
- Tatone, C.; Eichenlaub-Ritter, U.; Amicarelli, F. Dicarbonyl stress and glyoxalases in ovarian function. Biochem. Soc. Trans. 2014, 42, 433–438. [Google Scholar] [CrossRef]
- Thornalley, P.J.; Rabbani, N. Glyoxalase in tumourigenesis and multidrug resistance. Semin. Cell Dev. Biol. 2011, 22, 318–325. [Google Scholar] [CrossRef]
- Singh, V.P.; Bali, A.; Singh, N.; Jaggi, A.S. Advanced glycation end products and diabetic complications. Korean J. Physiol. Pharmacol. 2014, 18, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geng, X.; Ma, J.; Zhang, F.; Xu, C. Glyoxalase I in tumor cell proliferation and survival and as a potential target for anticancer therapy. Oncol. Res. Treat. 2014, 37, 570–574. [Google Scholar] [CrossRef] [PubMed]
- Van Herreweghe, F.; Mao, J.; Chaplen, F.W.; Grooten, J.; Gevaert, K.; Vandekerckhove, J.; Vancompernolle, K. Tumor necrosis factor-induced modulation of glyoxalase I activities through phosphorylation by PKA results in cell death and is accompanied by the formation of a specific methylglyoxal-derived AGE. Proc. Natl. Acad. Sci. USA 2002, 99, 949–954. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Birkenmeier, G.; Stegemann, C.; Hoffmann, R.; Gunther, R.; Huse, K.; Birkemeyer, C. Posttranslational modification of human glyoxalase 1 indicates redox-dependent regulation. PLoS ONE 2010, 5, e10399. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Junaid, M.A.; Kowal, D.; Barua, M.; Pullarkat, P.S.; Sklower Brooks, S.; Pullarkat, R.K. Proteomic studies identified a single nucleotide polymorphism in glyoxalase I as autism susceptibility factor. Am. J. Med. Genet. A 2004, 131, 11–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saxena, R.; Voight, B.F.; Lyssenko, V.; Burtt, N.P.; de Bakker, P.I.; Chen, H.; Roix, J.J.; Kathiresan, S.; Hirschhorn, J.N.; Daly, M.J.; et al. Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science 2007, 316, 1331–1336. [Google Scholar] [CrossRef] [PubMed]
- Peculis, R.; Konrade, I.; Skapare, E.; Fridmanis, D.; Nikitina-Zake, L.; Lejnieks, A.; Pirags, V.; Dambrova, M.; Klovins, J. Identification of glyoxalase 1 polymorphisms associated with enzyme activity. Gene 2013, 515, 140–143. [Google Scholar] [CrossRef]
- Wu, J.C.; Li, X.H.; Peng, Y.D.; Wang, J.B.; Tang, J.F.; Wang, Y.F. Association of two glyoxalase I gene polymorphisms with nephropathy and retinopathy in Type 2 diabetes. J. Endocrinol. Investig. 2011, 34, e343–e348. [Google Scholar]
- Maasen, K.; Hanssen, N.M.J.; van der Kallen, C.J.H.; Stehouwer, C.D.A.; van Greevenbroek, M.M.J.; Schalkwijk, C.G. Polymorphisms in glyoxalase i gene are not associated with glyoxalase i expression in whole blood or markers of methylglyoxal stress: The CODAM study. Antioxidants 2021, 10, 219. [Google Scholar] [CrossRef]
- Alotaibi, A.; Perry, L.; Gholizadeh, L.; Al-Ganmi, A. Incidence and prevalence rates of diabetes mellitus in Saudi Arabia: An overview. J. Epidemiol. Glob. Health 2017, 7, 211–218. [Google Scholar] [CrossRef]
- Galicia-Garcia, U.; Benito-Vicente, A.; Jebari, S.; Larrea-Sebal, A.; Siddiqi, H.; Uribe, K.B.; Ostolaza, H.; Martin, C. Pathophysiology of Type 2 Diabetes Mellitus. Int. J. Mol. Sci. 2020, 21, 6275. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, T.; Matafome, P.; Sereno, J.; Almeida, J.; Castelhano, J.; Gamas, L.; Neves, C.; Goncalves, S.; Carvalho, C.; Arslanagic, A.; et al. Methylglyoxal-induced glycation changes adipose tissue vascular architecture, flow and expansion, leading to insulin resistance. Sci. Rep. 2017, 7, 1698. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barua, M.; Jenkins, E.C.; Chen, W.; Kuizon, S.; Pullarkat, R.K.; Junaid, M.A. Glyoxalase I polymorphism rs2736654 causing the Ala111Glu substitution modulates enzyme activity--implications for autism. Autism Res. 2011, 4, 262–270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, D.Y.; Lin, Y.C.; Chang, G.D. Biochemical regulation of the glyoxalase system in response to insulin signaling. Antioxidants 2021, 10, 326. [Google Scholar] [CrossRef] [PubMed]
- Riboulet-Chavey, A.; Pierron, A.; Durand, I.; Murdaca, J.; Giudicelli, J.; Van Obberghen, E. Methylglyoxal impairs the insulin signaling pathways independently of the formation of intracellular reactive oxygen species. Diabetes 2006, 55, 1289–1299. [Google Scholar] [CrossRef] [Green Version]
- Hanssen, N.M.J.; Scheijen, J.; Jorsal, A.; Parving, H.H.; Tarnow, L.; Rossing, P.; Stehouwer, C.D.A.; Schalkwijk, C.G. Higher plasma methylglyoxal levels are associated with incident cardiovascular disease in individuals with type 1 diabetes: A 12-year follow-up study. Diabetes 2017, 66, 2278–2283. [Google Scholar] [CrossRef] [Green Version]
- Yin, J.; Ma, G.; Luo, S.; Luo, X.; He, B.; Liang, C.; Zuo, X.; Xu, X.; Chen, Q.; Xiong, S.; et al. Glyoxalase 1 confers susceptibility to schizophrenia: From genetic variants to phenotypes of neural function. Front. Mol. Neurosci. 2021, 14, 739526. [Google Scholar] [CrossRef]
GLO-I rs2736654 C/A (E>A) Primers | |||
---|---|---|---|
Gene | Sequence | Annealing Tempt | PCR Product |
GLO-I F1 | 5′-GAGAGACTGGAGATCAAGGCAG-3′ | 60 °C | 403 bp |
GLO-I R2-C | 5′-CAATTGGGGCACTGAAGATGATGC-3′ | ||
GLO-I F2-A | 5′-CCATTGTGGTAACTCTGGGTCT-3′ | ||
GLO-I R1 | 5′-TTTTTGTAGCAGGGGTTAGGCCA-3′ | 178 bp | |
GLO-I rs1130534 T>A primers | |||
GLO-I F1 | 5′-GTGTATGTGCTAGCAGAAACTGG-3′ | 62 °C | 456 bp |
GLO-I R1 | 5′-ATGCAGGGGTTAGGCCAATTATG-3′ | ||
GLO-I F2 T | 5′-CATAAAAACAGGCAAACTTACCGAAT-3′ | 213 bp | |
GLO-IR2 A | 5′-GGCAATTCAGACCCTCGAGGT-3′ | 336 bp |
Subjects | n = 101 | Percentage |
---|---|---|
Gender distribution | ||
Males | 52 | 51.48% |
Females | 49 | 48.51% |
Age distribution | ||
Age < 40 | 41 | 40.59% |
Age ≥ 40 | 60 | 59.40% |
Fasting blood glucose | ||
Glucose ≤ 110 mg/dL | 14 | 13.86% |
Glucose > 110 mg/dL | 87 | 86.13% |
Random blood glucose | ||
RBS ≤ 200 mg/dL | 56 | 55.44% |
RBS > 200 mg/dL | 45 | 44.55% |
Total cholesterol | ||
Cholesterol ≤ 200 mg/dL | 60 | 59.40% |
Cholesterol > 200 mg/dL | 41 | 40.59% |
HDL-C | ||
HDL-C ≤ 55 mg/dL | 73 | 72.25 |
HDL-C > 55 mg/dL | 28 | 25.74 |
LDL-C | ||
LDL ≤ 100 mg/dL | 75 | 74.25% |
LDL > 100 mg/dL | 26 | 25.74% |
TG | ||
TG ≤ 150 mg/dL | 64 | 63.36% |
TG > 150 mg/dL | 37 | 36.63 |
HbA1c | ||
HbA1c ≤ 6% | 70 | 69.30% |
HbA1c > 6% | 31 | 30.69% |
Creatinine | ||
Creatinine ≤ 1.35 mg/dL | 83 | 82.17% |
Creatinine > 1.35 mg/dL | 18 | 17.82% |
Characteristic | Controls a | Cases a | p b |
---|---|---|---|
Age | 30.32 ± 5.6.8 | 29.30 ± 4.88 | 0.357 |
HbA1c | 5.5 ± 0.17 | 5.90 ± 0.43 | 0.122 |
Fasting blood glucose | 95.4 ± 1.5 | 120.56 ± 2.33 | <0.001 |
BMI (kg/m2) c | 24.83 ± 2.45 | 28.5 ± 2.64 | <0.001 |
Cholesterol (mg/dL) c | 100.5 ± 1.17 | 230.80 ± 5.58 | <0.001 |
TG (mg/dL) c | 70.85 ± 1.8 | 105.81 ± 2.39 | 0.066 |
HDL (mg/dL) c | 60.87 ± 3.9 | 30.92 ± 3.9 | <0.001 |
LDL (mg/dL) c | 100.07 ± 2.67 | 150.63 ± 3.98 | <0.002 |
n | AA | AC | CC | Df | χ2 | A | C | p Value | |
---|---|---|---|---|---|---|---|---|---|
T2DM patients | 100 | 30(30%) | 58(58%) | 12(12%) | 02 | 19.46 | 0.59 | 0.41 | 0.0001 |
Controls | 144 | 80(55.6%) | 60(41.7%) | 04(2.7%) | 0.76 | 0.24 |
Mode of Inheritance | Controls (n = 144) | T2DM Patients (n = 100) | OR (95% CI) | RR (95% CI) | p-Value |
---|---|---|---|---|---|
Co-dominant model | |||||
GLO-AA | 80 | 30 | 1 (ref.) | 1 (ref.) | |
GLO-CA | 60 | 58 | 2.57(1.4821 to 4.4835) | 1.43(1.158 to 1.76) | 0.0008 |
GLO-CC | 04 | 12 | 8.0(2.3930 to 26.744) | 2.90(1.235 to 6.84) | 0.0007 |
Dominant model | |||||
GLO-AA | 80 | 30 | 1 (ref.) | 1 (ref.) | |
GLO (CA + CC) | 64 | 70 | 2.91(1.7007 to 5.002) | 1.52(1.2333 to 1.88) | 0.0001 |
Recessive model | |||||
GLO (AA + CA) | 140 | 88 | 1 (ref.) | 1 (ref.) | |
GLO-CC | 04 | 12 | 4.77(1.492 to 15.264) | 2.45(1.04 to 5.77) | 0.0084 |
Allelic comparison | |||||
GLO-A | 220 | 118 | 1 (ref.) | 1 (ref.) | |
GLO-C | 68 | 82 | 2.24(1.519 to 3.326) | 1.43(1.184 to 1.740) | 0.0001 |
Subjects | n = 100 * | TT | TA | AA | χ2 | df | p Value |
---|---|---|---|---|---|---|---|
Association with gender | |||||||
Males | 51 | 18 | 30 | 3 | 4.23 | 2 | 0.12 |
Females | 49 | 12 | 28 | 9 | |||
Association with Age | |||||||
Age < 40 | 40 | 16 | 21 | 3 | 3.69 | 2 | 0.158 |
Age ≥ 40 | 60 | 14 | 37 | 9 | |||
Fasting glucose | |||||||
Glucose ≤ 110 mg/dL | 14 | 6 | 6 | 2 | 1.61 | 2 | 0.44 |
Glucose > 110 mg/dL | 86 | 24 | 52 | 10 | |||
Association with RBS | |||||||
RBS ≤ 200 mg/dL | 56 | 10 | 40 | 6 | 10.39 | 2 | 0.0058 |
RBS > 200 mg/dL | 44 | 20 | 18 | 6 | |||
Association with Cholesterol | |||||||
Cholesterol ≤ 200 mg/dL | 60 | 10 | 44 | 6 | 15.47 | 2 | 0.0004 |
Cholesterol > 200 mg/dL | 40 | 20 | 14 | 6 | |||
Association with HDL-C | |||||||
HDL-C ≤ 55 mg/dL | 75 | 20 | 46 | 9 | 1.69 | 2 | 0.42 |
HDL-C > 55 mg/dL | 25 | 10 | 12 | 3 | |||
Association with LDL-C | |||||||
LDL ≤ 100 mg/dL | 74 | 15 | 50 | 9 | 13.48 | 2 | 0.0012 |
LDL > 100 mg/dL | 26 | 15 | 8 | 3 | |||
Association with TG | |||||||
TG ≤ 150 mg/dL | 64 | 18 | 43 | 3 | 10.72 | 2 | 0.004 |
TG > 150 mg/dL | 36 | 12 | 15 | 9 | |||
Association with HBA1c% | |||||||
HBA1c ≤ 6% | 30 | 16 | 8 | 6 | 17.03 | 2 | 0.0002 |
HBA1c > 6% | 70 | 14 | 50 | 6 | |||
Association with Creatinine | |||||||
Creatinine ≤ 1.35 mg/dL | 82 | 23 | 50 | 9 | 4.68 | 2 | 0.09 |
Creatinine > 1.35 mg/dL | 18 | 7 | 8 | 3 |
n | TT% | AT% | AA% | Df | χ2 | T | A | p Value | |
---|---|---|---|---|---|---|---|---|---|
T2DM patients | 101 * | 90(89.10) | 08(7.92) | 03(2.97) | 2 | 6.06 | 0.97 | 0.7 | 0.048 |
Controls | 100 * | 80(80) | 19(19) | 01(1) | 0.90 | 0.10 |
Mode of Inheritance | Controls (n = 100) | T2DM Patients (n = 101) | OR (95% CI) | RR (95% CI) | p-Value |
---|---|---|---|---|---|
Co-dominant model | |||||
GLO-TT | 80 | 90 | 1 (ref.) | 1 (ref.) | |
GLO-AT | 19 | 08 | 0.3(0.1554 to 0.901) | 0.66(0.4993 to 0.89) | 0.02 |
GLO-AA | 01 | 03 | 2.66(0.2719 to 26.153) | 1.88(0.342 to 10.35) | 0.39 |
Dominant model | |||||
GLO-TT | 80 | 90 | 1 (ref.) | 1 (ref.) | |
GLO (AT-AA) | 20 | 11 | 0.48(0.2208 to 1.082) | 0.72(0.537 to 0.99) | 0.07 |
Recessive model | |||||
GLO (TT-AT) | 99 | 98 | 1 (ref.) | 1 (ref.) | |
GLO-AA | 01 | 03 | 3.03(0.309 to 29.640) | 2.01(0.366 to 11.03) | 0.34 |
Allelic Comparison | |||||
GLO-T | 79 | 95 | 1 (ref.) | 1 (ref.) | |
GLO-A | 21 | 06 | 0.27(0.1073 to 0.689) | 0.62(0.4996 to 0.78) | 0.006 |
Subjects | n = 101 | TT | TA | AA | χ2 | df | p-Value |
---|---|---|---|---|---|---|---|
Association with gender | |||||||
Males | 52 | 44 | 6 | 2 | 2.29 | 2 | 0.15 |
Females | 49 | 46 | 2 | 1 | |||
Association with Age | |||||||
Age < 40 | 41 | 34 | 5 | 2 | 2.73 | 2 | 0.25 |
Age ≥ 40 | 60 | 56 | 3 | 1 | |||
Fasting blood glucose | |||||||
Glucose ≤ 110 mg/dL | 14 | 8 | 4 | 2 | 17.62 | 2 | 0.0001 |
Glucose > 110 mg/dL | 87 | 82 | 4 | 1 | |||
Association with RBS | |||||||
RBS ≤ 200 mg/dL | 56 | 51 | 3 | 2 | 1.25 | 2 | 0.53 |
RBS > 200 mg/dL | 45 | 39 | 5 | 1 | |||
Association with total cholesterol | |||||||
Cholesterol < 200 mg/dL | 60 | 57 | 1 | 2 | 7.94 | 2 | 0.0189 |
Cholesterol > 200 mg/dL | 41 | 33 | 7 | 1 | |||
Association with HDL-C | |||||||
HDL-C ≤ 55 mg/dL | 75 | 70 | 3 | 2 | 10.44 | 2 | 0.005 |
HDL-C > 55 mg/dL | 28 | 20 | 5 | 1 | |||
Association with LDL-C | |||||||
LDL ≤ 100 mg/dL | 75 | 71 | 2 | 2 | 11.25 | 2 | 0.003 |
LDL > 100 mg/dL | 26 | 19 | 6 | 1 | |||
Association with TG | |||||||
TG ≤ 150 mg/dL | 64 | 59 | 3 | 2 | 2.51 | 2 | 0.28 |
TG > 150 mg/dL | 37 | 31 | 5 | 1 | |||
Association with HbA1c | |||||||
Hb A1c ≤ 6% | 31 | 22 | 7 | 2 | 15.61 | 2 | 0.004 |
HbA1c > 6% | 70 | 68 | 1 | 1 | |||
Association with Creatinine | |||||||
Creatinine ≤ 1.35 mg/dL | 83 | 68 | 6 | 2 | 0.12 | 2 | 0.94 |
Creatinine > 1.35 mg/dL | 18 | 22 | 2 | 1 |
(A) | |||
T2DM Patients (n = 80) | Controls (n = 80) | p-Value * | |
---|---|---|---|
[MG] Mean + SD (pg/mL) | 258.87 ± 77.10 | 141.79 ± 33.27 | p < 0.0001 t-statistic = −5.375 |
(B) | |||
267.80 ± 79.82 (males) | 243.99 ± 71.48 (females) | p = 0.1835 t-statistic = −1.342 | |
(C) | |||
Age <40 years (n = 30) | Age ≥ 40 years (n = 50) | p-Value | |
Mean + SD | 212.31 ± 64.52 | 271.93 ± 80.90 | p = 0.0037 t-statistic = 2.990 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alhujaily, M.; Mir, M.M.; Mir, R.; Alghamdi, M.A.A.; Wani, J.I.; Sabah, Z.u.; Elfaki, I.; Alnour, T.M.S.; Jeelani, M.; Abomughaid, M.M.; et al. Clinical Implications of Glyoxalase1 Gene Polymorphism and Elevated Levels of the Reactive Metabolite Methylglyoxal in the Susceptibility of Type 2 Diabetes Mellitus in the Patients from Asir and Tabuk Regions of Saudi Arabia. J. Pers. Med. 2022, 12, 639. https://doi.org/10.3390/jpm12040639
Alhujaily M, Mir MM, Mir R, Alghamdi MAA, Wani JI, Sabah Zu, Elfaki I, Alnour TMS, Jeelani M, Abomughaid MM, et al. Clinical Implications of Glyoxalase1 Gene Polymorphism and Elevated Levels of the Reactive Metabolite Methylglyoxal in the Susceptibility of Type 2 Diabetes Mellitus in the Patients from Asir and Tabuk Regions of Saudi Arabia. Journal of Personalized Medicine. 2022; 12(4):639. https://doi.org/10.3390/jpm12040639
Chicago/Turabian StyleAlhujaily, Muhanad, Mohammad Muzaffar Mir, Rashid Mir, Mushabab Ayed Abdullah Alghamdi, Javed Iqbal Wani, Zia ul Sabah, Imadeldin Elfaki, Tarig Mohammad Saad Alnour, Mohammed Jeelani, Mosleh Mohammad Abomughaid, and et al. 2022. "Clinical Implications of Glyoxalase1 Gene Polymorphism and Elevated Levels of the Reactive Metabolite Methylglyoxal in the Susceptibility of Type 2 Diabetes Mellitus in the Patients from Asir and Tabuk Regions of Saudi Arabia" Journal of Personalized Medicine 12, no. 4: 639. https://doi.org/10.3390/jpm12040639
APA StyleAlhujaily, M., Mir, M. M., Mir, R., Alghamdi, M. A. A., Wani, J. I., Sabah, Z. u., Elfaki, I., Alnour, T. M. S., Jeelani, M., Abomughaid, M. M., & Alharbi, S. A. (2022). Clinical Implications of Glyoxalase1 Gene Polymorphism and Elevated Levels of the Reactive Metabolite Methylglyoxal in the Susceptibility of Type 2 Diabetes Mellitus in the Patients from Asir and Tabuk Regions of Saudi Arabia. Journal of Personalized Medicine, 12(4), 639. https://doi.org/10.3390/jpm12040639