Smartphone-Based Body Location-Independent Functional Mobility Analysis in Patients with Parkinson’s Disease: A Step towards Precise Medicine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Objective
2.3. Participants
2.4. Clinical Assessment Protocol
- Demographic and clinical data;
- Functional mobility: The Timed Up and Go (TUG) test;
- Quality of Life: the Parkinson’s Disease Quality of Life Questionnaire (PDQ-39).
2.5. Gait Assessment Protocol
2.6. Data Collection and Analysis
- stride time as the time difference between the final and initial heel strikes of a gait cycle;
- stance phase duration as the time between a heel-strike event and the following toe-off event;
- swing phase duration as the time between a toe-off event and the following heel-strike event;
- stride velocity as stride length divided by stride time.
2.7. Statistical Analysis
3. Results
3.1. Demographic and Clinical Data
3.2. Reliability
3.3. Concurrent Validity
4. Discussion
5. Conclusions
6. Patents
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bouça-Machado, R.; Maetzler, W.; Ferreira, J.J. What Is Functional Mobility Applied to Parkinson’s Disease? J. Parkinson’s Dis. 2018, 8, 121–130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Serra-Añó, P.; Pedrero-Sánchez, J.F.; Inglés, M.; Aguilar-Rodríguez, M.; Vargas-Villanueva, I.; López-Pascual, J. Assessment of Functional Activities in Individuals with Parkinson’s Disease Using a Simple and Reliable Smartphone-Based Procedure. Int. J. Environ. Res. Public Health 2020, 17, 4123. [Google Scholar] [CrossRef] [PubMed]
- Polhemus, A.; Ortiz, L.D.; Brittain, G.; Chynkiamis, N.; Salis, F.; Gaßner, H.; Gross, M.; Kirk, C.; Rossanigo, R.; Taraldsen, K.; et al. Walking on Common Ground: A Cross-Disciplinary Scoping Review on the Clinical Utility of Digital Mobility Outcomes. NPJ Digit. Med. 2021, 4, 149. [Google Scholar] [CrossRef] [PubMed]
- Rochester, L.; Mazzà, C.; Mueller, A.; Caulfield, B.; McCarthy, M.; Becker, C.; Miller, R.; Piraino, P.; Viceconti, M.; Dartee, W.P.; et al. A Roadmap to Inform Development, Validation and Approval of Digital Mobility Outcomes: The Mobilise-D Approach. Digit. Biomark. 2020, 4, 13–27. [Google Scholar] [CrossRef] [PubMed]
- Hansen, C.; Ortlieb, C.; Romijnders, R.; Warmerdam, E.; Welzel, J.; Geritz, J.; Maetzler, W. Reliability of IMU-Derived Temporal Gait Parameters in Neurological Diseases. Sensors 2022, 22, 2304. [Google Scholar] [CrossRef]
- Viceconti, M.; Hernandez Penna, S.; Dartee, W.; Mazzà, C.; Caulfield, B.; Becker, C.; Maetzler, W.; Garcia-Aymerich, J.; Davico, G.; Rochester, L. Toward a Regulatory Qualification of Real-World Mobility Performance Biomarkers in Parkinson’s Patients Using Digital Mobility Outcomes. Sensors 2020, 20, 5920. [Google Scholar] [CrossRef]
- Polhemus, A.M.; Bergquist, R.; Bosch de Basea, M.; Brittain, G.; Buttery, S.C.; Chynkiamis, N.; dalla Costa, G.; Delgado Ortiz, L.; Demeyer, H.; Emmert, K.; et al. Walking-Related Digital Mobility Outcomes as Clinical Trial Endpoint Measures: Protocol for a Scoping Review. BMJ Open 2020, 10, e038704. [Google Scholar] [CrossRef]
- Maetzler, W.; Domingos, J.; Srulijes, K.; Ferreira, J.J.; Bloem, B.R. Quantitative Wearable Sensors for Objective Assessment of Parkinson’s Disease. Mov. Disord. 2013, 28, 1628–1637. [Google Scholar] [CrossRef]
- Kilinçalp, G.; Sjöström, A.-C.; Eriksson, B.; Holmberg, B.; Constantinescu, R.; Bergquist, F. Predictive Value of Ambulatory Objective Movement Measurement for Outcomes of Levodopa/Carbidopa Intestinal Gel Infusion. J. Pers. Med. 2022, 12, 27. [Google Scholar] [CrossRef]
- Espay, A.J.; Bonato, P.; Nahab, F.B.; Maetzler, W.; Dean, J.M.; Klucken, J.; Eskofier, B.M.; Merola, A.; Horak, F.; Lang, A.E.; et al. Technology in Parkinson’s Disease: Challenges and Opportunities. Mov. Disord. 2016, 31, 1272–1282. [Google Scholar] [CrossRef] [Green Version]
- Demographics of Mobile Device Ownership and Adoption in the United States. Available online: https://www.pewresearch.org/ (accessed on 1 May 2021).
- Ponciano, V.; Pires, I.M.; Ribeiro, F.R.; Marques, G.; Villasana, M.V.; Garcia, N.M.; Zdravevski, E.; Spinsante, S. Identification of Diseases Based on the Use of Inertial Sensors: A Systematic Review. Electronics 2020, 9, 778. [Google Scholar] [CrossRef]
- Warmerdam, E.; Hausdorff, J.M.; Atrsaei, A.; Zhou, Y.; Mirelman, A.; Aminian, K.; Espay, A.J.; Hansen, C.; Evers, L.J.W.; Keller, A.; et al. Long-Term Unsupervised Mobility Assessment in Movement Disorders. Lancet Neurol. 2020, 19, 462–470. [Google Scholar] [CrossRef]
- Cui, Y.; Chipchase, J.; Ichikawa, F. A Cross Culture Study on Phone Carrying and Physical Personalization; Springer: Berlin/Heidelberg, Germany, 2007; pp. 483–492. [Google Scholar] [CrossRef]
- Linares-del Rey, M.; Vela-Desojo, L.; Cano-de la Cuerda, R. Mobile Phone Applications in Parkinson’s Disease: A Systematic Review. Neurología 2019, 34, 38–54. [Google Scholar] [CrossRef]
- Antos, S.A.; Albert, M.V.; Kording, K.P. Hand, Belt, Pocket or Bag: Practical Activity Tracking with Mobile Phones. J. Neurosci. Methods 2014, 231, 22–30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silsupadol, P.; Teja, K.; Lugade, V. Reliability and Validity of a Smartphone-Based Assessment of Gait Parameters across Walking Speed and Smartphone Locations: Body, Bag, Belt, Hand, and Pocket. Gait Posture 2017, 58, 516–522. [Google Scholar] [CrossRef] [PubMed]
- Ellis, R.J.; Ng, Y.S.; Zhu, S.; Tan, D.M.; Anderson, B.; Schlaug, G.; Wang, Y. A Validated Smartphone-Based Assessment of Gait and Gait Variability in Parkinson’s Disease. PLoS ONE 2015, 10, e0141694. [Google Scholar] [CrossRef] [Green Version]
- Del Din, S.; Godfrey, A.; Mazzà, C.; Lord, S.; Rochester, L. Free-Living Monitoring of Parkinson’s Disease: Lessons from the Field. Mov. Disord. 2016, 31, 1293–1313. [Google Scholar] [CrossRef]
- Goetz, C.G.; Tilley, B.C.; Shaftman, S.R.; Stebbins, G.T.; Fahn, S.; Martinez-Martin, P.; Poewe, W.; Sampaio, C.; Stern, M.B.; Dodel, R.; et al. Movement Disorder Society-Sponsored Revision of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS): Scale Presentation and Clinimetric Testing Results. Mov. Disord. 2008, 23, 2129–2170. [Google Scholar] [CrossRef]
- Movement Disorder Society Task Force on Rating Scales for Parkinson’s Disease. The Unified Parkinson’s Disease Rating Scale (UPDRS): Status and Recommendations. Mov. Disord. 2003, 18, 738–750. [Google Scholar] [CrossRef]
- Martínez-Martín, P.; Rojo-Abuin, J.M.; Rodríguez-Violante, M.; Serrano-Dueñas, M.; Garretto, N.; Martínez-Castrillo, J.C.; Arillo, V.C.; Fernández, W.; Chaná-Cuevas, P.; Arakaki, T.; et al. Analysis of Four Scales for Global Severity Evaluation in Parkinson’s Disease. NPJ Parkinson’s Dis. 2016, 2, 16007. [Google Scholar] [CrossRef]
- Alberto, S.; Cabral, S.; Proença, J.; Pona-Ferreira, F.; Leitão, M.; Bouça-Machado, R.; Kauppila, L.A.; Veloso, A.P.; Costa, R.M.; Ferreira, J.J.; et al. Validation of Quantitative Gait Analysis Systems for Parkinson’s Disease for Use in Supervised and Unsupervised Environments. BMC Neurol. 2021, 21, 331. [Google Scholar] [CrossRef] [PubMed]
- Madgwick, S.O.H.; Harrison, A.J.L.; Vaidyanathan, R. Estimation of IMU and MARG Orientation Using a Gradient Descent Algorithm. In Proceedings of the 2011 IEEE International Conference on Rehabilitation Robotics 29 June–1 July 2011; IEEE: Zurich, Switzerland, 2011; pp. 1–7. [Google Scholar] [CrossRef]
- Ladetto, Q. On foot navigation: Continuous step calibration using both complementary recursive prediction and adaptive Kalman filtering. In Proceedings of the 13th International Technical Meeting of the Satellite Division of The Institute of Navigation (Ion Gps 2000), Salt Lake City, UT, USA, 19–22 September 2000; pp. 1735–1740. [Google Scholar]
- Shrout, P.E.; Fleiss, J.L. Intraclass Correlations: Uses in Assessing Rater Reliability. Psychol. Bull. 1979, 86, 420–428. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Lawrence Erlbaum Associates: Hillsdale, NJ, USA, 1988. [Google Scholar]
- Beck, Y.; Herman, T.; Brozgol, M.; Giladi, N.; Mirelman, A.; Hausdorff, J.M. SPARC: A New Approach to Quantifying Gait Smoothness in Patients with Parkinson’s Disease. J. NeuroEngineering Rehabil. 2018, 15, 49. [Google Scholar] [CrossRef] [PubMed]
- Gilmore, G.; Gouelle, A.; Adamson, M.B.; Pieterman, M.; Jog, M. Forward and Backward Walking in Parkinson Disease: A Factor Analysis. Gait Posture 2019, 74, 14–19. [Google Scholar] [CrossRef]
- Rafferty, M.R.; Prodoehl, J.; Robichaud, J.A.; David, F.J.; Poon, C.; Goelz, L.C.; Vaillancourt, D.E.; Kohrt, W.M.; Comella, C.L.; Corcos, D.M. Effects of 2 Years of Exercise on Gait Impairment in People With Parkinson Disease: The PRET-PD Randomized Trial. J. Neurol. Phys. Ther. 2017, 41, 21–30. [Google Scholar] [CrossRef] [Green Version]
- Werner, C.; Chalvatzaki, G.; Papageorgiou, X.S.; Tzafestas, C.S.; Bauer, J.M.; Hauer, K. Assessing the Concurrent Validity of a Gait Analysis System Integrated into a Smart Walker in Older Adults with Gait Impairments. Clin. Rehabil. 2019, 33, 1682–1687. [Google Scholar] [CrossRef]
- Critchley, L.A.H.; Critchley, J.A.J.H. A Meta-Analysis of Studies Using Bias and Precision Statistics to Compare Cardiac Output Measurement Techniques. J. Clin. Monit. Comput. 1999, 15, 85–91. [Google Scholar] [CrossRef]
Location | Event Detection (%) | Outlier Exclusion (%) |
---|---|---|
All | 96.3 | 61.5 |
Belt | 96.6 | 73.5 |
Pants | 97.3 | 51.5 |
Hand | 96.6 | 39.5 |
93.8 | 68.0 | |
Bag | 97.4 | 75.2 |
Demographic and Clinical Data | |
---|---|
Age (mean, SD) | 64.3 ± 10.6 |
Male sex (% (n)) | 55 (11) |
Time since diagnosis (mean, SD) | 7.65 ± 5.6 |
Presence of motor fluctuation (% (n)) | 50 (10) |
Presence of dyskinesias (% (n)) | 40 (8) |
Presence of freezing (% (n)) | 50 (10) |
MDS-UPDRS I (range 0–52) | 10.2 ± 7.9 |
MDS-UPDRS II (range 0–52) | 10.0 ± 6.7 |
MDS-UPDRS III (range, 0–132) | 25.4 ± 15.9 |
MDS-UPDRS IV (range 0–24) | 3.2 ± 3.3 |
MDS-UPDRS Total (range 0–260) | 48.7 ± 26.5 |
Hoehn and Yahr stage (range 1–5) | 2 ± 0.6 |
TUG (s) | 9.4 ± 3.0 |
CGI–S (range 0–7) | 3.1 ± 0.9 |
PGI–S (range 0–7) | 3.4 ± 1.0 |
PDQ-39 (Median (Min, Max); range 0–156) | 33.5 (3, 80) |
Location | Stride Time (s) | Stride Cadence (Strides/min) | Stance Time (s) | Swing Time (s) | Stride Length (m) | Stride Velocity (m/s) |
---|---|---|---|---|---|---|
Belt | 0.97 | 0.96 | 0.97 | 0.96 | 0.95 | 0.98 |
Pants | 0.94 | 0.91 | 0.94 | 0.85 | 0.94 | 0.92 |
Hand | 0.91 | 0.90 | 0.91 | 0.90 | 0.89 | 0.90 |
0.93 | 0.91 | 0.94 | 0.91 | 0.98 | 0.98 | |
Bag | 0.93 | 0.95 | 0.94 | 0.93 | 0.98 | 0.95 |
Metric | Location | Intra-Subject Variability | SEM | MDC |
---|---|---|---|---|
Stride time (s) | Belt | 0.025 | 0.019 | 0.044 |
Pants | 0.032 | 0.030 | 0.070 | |
Hand | 0.038 | 0.032 | 0.075 | |
0.026 | 0.018 | 0.043 | ||
Bag | 0.019 | 0.018 | 0.041 | |
Stride cadence (strides/min) | Belt | 1.188 | 0.984 | 2.297 |
Pants | 1.847 | 1.997 | 4.660 | |
Hand | 1.844 | 1.553 | 3.625 | |
1.321 | 1.007 | 2.349 | ||
Bag | 0.885 | 0.799 | 1.865 | |
Stance time (s) | Belt | 0.015 | 0.012 | 0.027 |
Pants | 0.020 | 0.017 | 0.039 | |
Hand | 0.023 | 0.020 | 0.047 | |
0.014 | 0.010 | 0.024 | ||
Bag | 0.010 | 0.010 | 0.023 | |
Swing time (s) | Belt | 0.010 | 0.008 | 0.018 |
Pants | 0.017 | 0.020 | 0.047 | |
Hand | 0.015 | 0.012 | 0.029 | |
0.011 | 0.008 | 0.019 | ||
Bag | 0.006 | 0.006 | 0.015 | |
Stride length (m) | Belt | 0.008 | 0.008 | 0.018 |
Pants | 0.008 | 0.009 | 0.022 | |
Hand | 0.014 | 0.014 | 0.034 | |
0.009 | 0.008 | 0.019 | ||
Bag | 0.004 | 0.004 | 0.010 | |
Stride velocity (m/s) | Belt | 0.014 | 0.012 | 0.027 |
Pants | 0.027 | 0.029 | 0.067 | |
Hand | 0.031 | 0.029 | 0.067 | |
0.017 | 0.012 | 0.028 | ||
Bag | 0.013 | 0.011 | 0.026 |
Metric | Bias | LoA (Lower) | LoA (Upper) | LoA (%) |
---|---|---|---|---|
Stride time (s) | 0.000 | −0.100 | 0.061 | 7.6 |
Stride cadence (strides/min) | 0.000 | −3.169 | 5.357 | 7.5 |
Stance time (s) | 0.006 | −0.059 | 0.099 | 11.9 |
Swing time (s) | −0.009 | −0.088 | 0.047 | 17.4 |
Stride length (m) | −0.005 | −0.099 | 0.075 | 10.0 |
Stride velocity (m/s) | −0.005 | −0.103 | 0.095 | 12.7 |
Metric | Location | Bias | LoA (Lower) | LoA (Upper) | LoA (%) |
---|---|---|---|---|---|
Stride time (s) | Belt | 0.002 | −0.104 | 0.108 | 9.6 |
Hand | −0.006 | −0.111 | 0.106 | 9.7 | |
0.000 | −0.107 | 0.082 | 8.8 | ||
Bag | −0.003 | −0.085 | 0.060 | 6.5 | |
Stride cadence (strides/min) | Belt | 0.057 | −5.357 | 5.288 | 9.8 |
Hand | −0.287 | −5.100 | 4.801 | 9.3 | |
0.000 | −5.381 | 4.557 | 9.0 | ||
Bag | −0.166 | −4.272 | 2.888 | 6.7 | |
Stance time (s) | Belt | 0.000 | −0.077 | 0.074 | 10.9 |
Hand | 0.004 | −0.094 | 0.096 | 13.5 | |
0.000 | −0.057 | 0.074 | 9.6 | ||
Bag | 0.005 | −0.053 | 0.068 | 8.5 | |
Swing time (s) | Belt | −0.001 | −0.054 | 0.051 | 12.9 |
Hand | −0.002 | −0.067 | 0.077 | 17.5 | |
0.000 | −0.045 | 0.054 | 12.4 | ||
Bag | −0.001 | −0.047 | 0.050 | 11.8 | |
Stride length (m) | Belt | 0.005 | −0.030 | 0.045 | 4.4 |
Hand | −0.001 | −0.082 | 0.044 | 7.3 | |
−0.003 | −0.049 | 0.038 | 5.1 | ||
Bag | 0.016 | −0.034 | 0.046 | 4.7 | |
Stride velocity (m/s) | Belt | 0.006 | −0.062 | 0.082 | 9.3 |
Hand | −0.007 | −0.110 | 0.070 | 11.9 | |
−0.004 | −0.072 | 0.062 | 8.4 | ||
Bag | 0.011 | −0.045 | 0.060 | 7.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vila-Viçosa, D.; Leitão, M.; Bouça-Machado, R.; Pona-Ferreira, F.; Alberto, S.; Ferreira, J.J.; Matias, R. Smartphone-Based Body Location-Independent Functional Mobility Analysis in Patients with Parkinson’s Disease: A Step towards Precise Medicine. J. Pers. Med. 2022, 12, 826. https://doi.org/10.3390/jpm12050826
Vila-Viçosa D, Leitão M, Bouça-Machado R, Pona-Ferreira F, Alberto S, Ferreira JJ, Matias R. Smartphone-Based Body Location-Independent Functional Mobility Analysis in Patients with Parkinson’s Disease: A Step towards Precise Medicine. Journal of Personalized Medicine. 2022; 12(5):826. https://doi.org/10.3390/jpm12050826
Chicago/Turabian StyleVila-Viçosa, Diogo, Mariana Leitão, Raquel Bouça-Machado, Filipa Pona-Ferreira, Sara Alberto, Joaquim J. Ferreira, and Ricardo Matias. 2022. "Smartphone-Based Body Location-Independent Functional Mobility Analysis in Patients with Parkinson’s Disease: A Step towards Precise Medicine" Journal of Personalized Medicine 12, no. 5: 826. https://doi.org/10.3390/jpm12050826
APA StyleVila-Viçosa, D., Leitão, M., Bouça-Machado, R., Pona-Ferreira, F., Alberto, S., Ferreira, J. J., & Matias, R. (2022). Smartphone-Based Body Location-Independent Functional Mobility Analysis in Patients with Parkinson’s Disease: A Step towards Precise Medicine. Journal of Personalized Medicine, 12(5), 826. https://doi.org/10.3390/jpm12050826