Two Genetic Mechanisms in Two Siblings with Intellectual Disability, Autism Spectrum Disorder, and Psychosis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Genome-Wide CNV Analysis
2.3. Real-Time Quantitative PCR (RT-qPCR)
2.4. Whole-Genome Sequencing (WGS)
2.5. Sanger Sequencing
2.6. Bioinformatics Analysis and Literature Review
3. Results
3.1. Clinical Reports
3.2. Identification of a Pathogenic CNV in the Younger Sister
3.3. Detection of Multiple Rare Inherited Variants in the Elder Brother
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Patel, D.R.; Cabral, M.D.; Ho, A.; Merrick, J. A clinical primer on intellectual disability. Transl. Pediatr. 2020, 9, S23–S35. [Google Scholar] [CrossRef] [PubMed]
- Maulik, P.K.; Mascarenhas, M.N.; Mathers, C.D.; Dua, T.; Saxena, S. Prevalence of intellectual disability: A meta-analysis of population-based studies. Res. Dev. Disabil. 2011, 32, 419–436. [Google Scholar] [CrossRef] [PubMed]
- McKenzie, K.; Milton, M.; Smith, G.; Ouellette-Kuntz, H. Systematic Review of the Prevalence and Incidence of Intellectual Disabilities: Current Trends and Issues. Curr. Dev. Disord. Rep. 2016, 3, 104–115. [Google Scholar] [CrossRef] [Green Version]
- Zeidan, J.; Fombonne, E.; Scorah, J.; Ibrahim, A.; Durkin, M.S.; Saxena, S.; Yusuf, A.; Shih, A.; Elsabbagh, M. Global prevalence of autism: A systematic review update. Autism Res. 2022, 15, 778–790. [Google Scholar] [CrossRef]
- Varcin, K.J.; Herniman, S.E.; Lin, A.; Chen, Y.; Perry, Y.; Pugh, C.; Chisholm, K.; Whitehouse, A.J.O.; Wood, S.J. Occurrence of psychosis and bipolar disorder in adults with autism: A systematic review and meta-analysis. Neurosci. Biobehav. Rev. 2022, 134, 104543. [Google Scholar] [CrossRef]
- Constantino, J.N.; Strom, S.; Bunis, M.; Nadler, C.; Rodgers, T.; LePage, J.; Cahalan, C.; Stockreef, A.; Evans, L.; Jones, R.; et al. Toward Actionable Practice Parameters for “Dual Diagnosis”: Principles of Assessment and Management for Co-Occurring Psychiatric and Intellectual/Developmental Disability. Curr. Psychiatry Rep. 2020, 22, 9. [Google Scholar] [CrossRef] [Green Version]
- Gomez, L.E.; Navas, P.; Verdugo, M.A.; Tasse, M.J. Empirically supported psychological treatments: The challenges of comorbid psychiatric and behavioral disorders in people with intellectual disability. World J. Psychiatry 2021, 11, 1039–1052. [Google Scholar] [CrossRef]
- Thapar, A.; Rutter, M. Genetic Advances in Autism. J. Autism Dev. Disord. 2021, 51, 4321–4332. [Google Scholar] [CrossRef]
- Dias, C.M.; Walsh, C.A. Recent Advances in Understanding the Genetic Architecture of Autism. Annu. Rev. Genom. Hum. Genet. 2020, 21, 289–304. [Google Scholar] [CrossRef]
- Fakhro, K.A. Genomics of Autism. Adv. Neurobiol. 2020, 24, 83–96. [Google Scholar] [CrossRef]
- Maia, N.; Nabais Sa, M.J.; Melo-Pires, M.; de Brouwer, A.P.M.; Jorge, P. Intellectual disability genomics: Current state, pitfalls and future challenges. BMC Genom. 2021, 22, 909. [Google Scholar] [CrossRef]
- Manning, M.; Hudgins, L.; Professional, P.; Guidelines, C. Array-based technology and recommendations for utilization in medical genetics practice for detection of chromosomal abnormalities. Genet. Med. 2010, 12, 742–745. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, D.T.; Adam, M.P.; Aradhya, S.; Biesecker, L.G.; Brothman, A.R.; Carter, N.P.; Church, D.M.; Crolla, J.A.; Eichler, E.E.; Epstein, C.J.; et al. Consensus statement: Chromosomal microarray is a first-tier clinical diagnostic test for individuals with developmental disabilities or congenital anomalies. Am. J. Hum. Genet. 2010, 86, 749–764. [Google Scholar] [CrossRef]
- Battaglia, A.; Doccini, V.; Bernardini, L.; Novelli, A.; Loddo, S.; Capalbo, A.; Filippi, T.; Carey, J.C. Confirmation of chromosomal microarray as a first-tier clinical diagnostic test for individuals with developmental delay, intellectual disability, autism spectrum disorders and dysmorphic features. Eur. J. Paediatr. Neurol. 2013, 17, 589–599. [Google Scholar] [CrossRef] [PubMed]
- Jang, W.; Kim, Y.; Han, E.; Park, J.; Chae, H.; Kwon, A.; Choi, H.; Kim, J.; Son, J.-O.; Lee, S.-J.; et al. Chromosomal Microarray Analysis as a First-Tier Clinical Diagnostic Test in Patients with Developmental Delay/Intellectual Disability, Autism Spectrum Disorders, and Multiple Congenital Anomalies: A Prospective Multicenter Study in Korea. Ann. Lab. Med. 2019, 39, 299–310. [Google Scholar] [CrossRef] [PubMed]
- Hu, T.; Zhang, Z.; Wang, J.; Li, Q.; Zhu, H.; Lai, Y.; Wang, H.; Liu, S. Chromosomal Aberrations in Pediatric Patients with Developmental Delay/Intellectual Disability: A Single-Center Clinical Investigation. Biomed. Res. Int. 2019, 2019, 9352581. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, C.-L.; Chuang, C.-K.; Tu, R.-Y.; Chiu, H.-C.; Lo, Y.-T.; Chang, Y.-H.; Chen, Y.-J.; Chou, C.-L.; Wu, P.-S.; Chen, C.-P.; et al. Increased Diagnostic Yield of Array Comparative Genomic Hybridization for Autism Spectrum Disorder in One Institution in Taiwan. Medicina 2021, 58, 15. [Google Scholar] [CrossRef]
- Chen, C.-H.; Chen, H.-I.; Chien, W.-H.; Li, L.-H.; Wu, Y.-Y.; Chiu, Y.-N.; Tsai, W.-C.; Gau, S.S.-F. High resolution analysis of rare copy number variants in patients with autism spectrum disorder from Taiwan. Sci. Rep. 2017, 7, 11919. [Google Scholar] [CrossRef] [Green Version]
- Bahassi, E.M.; Stambrook, P.J. Next-generation sequencing technologies: Breaking the sound barrier of human genetics. Mutagenesis 2014, 29, 303–310. [Google Scholar] [CrossRef]
- Metzker, M.L. Sequencing technologies—The next generation. Nat. Rev. Genet. 2010, 11, 31–46. [Google Scholar] [CrossRef] [Green Version]
- Muzzey, D.; Evans, E.A.; Lieber, C. Understanding the Basics of NGS: From Mechanism to Variant Calling. Curr. Genet. Med. Rep. 2015, 3, 158–165. [Google Scholar] [CrossRef] [Green Version]
- Wieczorek, D. Autosomal dominant intellectual disability. Med. Genet. 2018, 30, 318–322. [Google Scholar] [CrossRef] [Green Version]
- Jamra, R. Genetics of autosomal recessive intellectual disability. Med. Genet. 2018, 30, 323–327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buxbaum, J.D.; Daly, M.J.; Devlin, B.; Lehner, T.; Roeder, K.; State, M.W.; Autism Sequencing Consortium. The autism sequencing consortium: Large-scale, high-throughput sequencing in autism spectrum disorders. Neuron 2012, 76, 1052–1056. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Satterstrom, F.K.; Kosmicki, J.A.; Wang, J.; Breen, M.S.; De Rubeis, S.; An, J.-Y.; Peng, M.; Collins, R.; Grove, J.; Klei, L.; et al. Large-Scale Exome Sequencing Study Implicates Both Developmental and Functional Changes in the Neurobiology of Autism. Cell 2020, 180, 568–584.e523. [Google Scholar] [CrossRef] [PubMed]
- Kataoka, M.; Matoba, N.; Sawada, T.; Kazuno, A.A.; Ishiwata, M.; Fujii, K.; Matsuo, K.; Takata, A.; Kato, T. Exome sequencing for bipolar disorder points to roles of de novo loss-of-function and protein-altering mutations. Mol. Psychiatry 2016, 21, 885–893. [Google Scholar] [CrossRef]
- Kato, T. Whole genome/exome sequencing in mood and psychotic disorders. Psychiatry Clin. Neurosci. 2015, 69, 65–76. [Google Scholar] [CrossRef]
- Howrigan, D.P.; Rose, S.A.; Samocha, K.E.; Fromer, M.; Cerrato, F.; Chen, W.J.; Churchhouse, C.; Chambert, K.; Chandler, S.D.; Daly, M.J.; et al. Exome sequencing in schizophrenia-affected parent-offspring trios reveals risk conferred by protein-coding de novo mutations. Nat. Neurosci. 2020, 23, 185–193. [Google Scholar] [CrossRef]
- Martinez-Granero, F.; Blanco-Kelly, F.; Sanchez-Jimeno, C.; Avila-Fernandez, A.; Arteche, A.; Bustamante-Aragones, A.; Rodilla, C.; Rodriguez-Pinilla, E.; Riveiro-Alvarez, R.; Tahsin-Swafiri, S.; et al. Comparison of the diagnostic yield of aCGH and genome-wide sequencing across different neurodevelopmental disorders. NPJ Genom. Med. 2021, 6, 25. [Google Scholar] [CrossRef] [PubMed]
- Arteche-Lopez, A.; Gomez Rodriguez, M.J.; Sanchez Calvin, M.T.; Quesada-Espinosa, J.F.; Lezana Rosales, J.M.; Palma Milla, C.; Gomez-Manjon, I.; Hidalgo Mayoral, I.; Perez de la Fuente, R.; Diaz de Bustamante, A.; et al. Towards a Change in the Diagnostic Algorithm of Autism Spectrum Disorders: Evidence Supporting Whole Exome Sequencing as a First-Tier Test. Genes 2021, 12, 560. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.-H.; Huang, A.; Huang, Y.-S.; Fang, T.-H. Identification of a Rare Novel KMT2C Mutation That Presents with Schizophrenia in a Multiplex Family. J. Pers. Med. 2021, 11, 1254. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.-H.; Huang, Y.-S.; Fang, T.-H. Involvement of Rare Mutations of SCN9A, DPP4, ABCA13, and SYT14 in Schizophrenia and Bipolar Disorder. Int. J. Mol. Sci. 2021, 22, 13189. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.-H.; Huang, Y.-S.; Fang, T.-H. Identification of a novel nonsense homozygous mutation of LINS1 gene in two sisters with intellectual disability, schizophrenia, and anxiety. Biomed. J. 2021, 44, 748–751. [Google Scholar] [CrossRef] [PubMed]
- Alkelai, A.; Greenbaum, L.; Docherty, A.R.; Shabalin, A.A.; Povysil, G.; Malakar, A.; Hughes, D.; Delaney, S.L.; Peabody, E.P.; McNamara, J.; et al. The benefit of diagnostic whole genome sequencing in schizophrenia and other psychotic disorders. Mol. Psychiatry 2022, 27, 1435–1447. [Google Scholar] [CrossRef]
- Riggs, E.R.; Andersen, E.F.; Cherry, A.M.; Kantarci, S.; Kearney, H.; Patel, A.; Raca, G.; Ritter, D.I.; South, S.T.; Thorland, E.C.; et al. Technical standards for the interpretation and reporting of constitutional copy-number variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet. Med. 2020, 22, 245–257. [Google Scholar] [CrossRef] [Green Version]
- Wilson, H.L.; Wong, A.C.C.; Shaw, S.R.; Tse, W.Y.; Stapleton, G.A.; Phelan, M.C.; Hu, S.; Marshall, J.; McDermid, H.E. Molecular characterisation of the 22q13 deletion syndrome supports the role of haploinsufficiency of SHANK3/PROSAP2 in the major neurological symptoms. J. Med. Genet. 2003, 40, 575–584. [Google Scholar] [CrossRef] [Green Version]
- Sarasua, S.M.; Dwivedi, A.; Boccuto, L.; Chen, C.-F.; Sharp, J.L.; Rollins, J.D.; Collins, J.S.; Rogers, R.C.; Phelan, K.; DuPont, B.R. 22q13.2q13.32 genomic regions associated with severity of speech delay, developmental delay, and physical features in Phelan-McDermid syndrome. Genet. Med. 2014, 16, 318–328. [Google Scholar] [CrossRef] [Green Version]
- Frank, Y. The Neurological Manifestations of Phelan-McDermid Syndrome. Pediatr. Neurol. 2021, 122, 59–64. [Google Scholar] [CrossRef]
- Burdeus-Olavarrieta, M.; San Jose-Caceres, A.; Garcia-Alcon, A.; Gonzalez-Penas, J.; Hernandez-Jusdado, P.; Parellada-Redondo, M. Characterisation of the clinical phenotype in Phelan-McDermid syndrome. J. Neurodev. Disord. 2021, 13, 26. [Google Scholar] [CrossRef]
- Levy, T.; Foss-Feig, J.H.; Betancur, C.; Siper, P.M.; Trelles-Thorne, M.D.P.; Halpern, D.; Frank, Y.; Lozano, R.; Layton, C.; Britvan, B.; et al. Strong evidence for genotype-phenotype correlations in Phelan-McDermid syndrome: Results from the developmental synaptopathies consortium. Hum. Mol. Genet. 2022, 31, 625–637. [Google Scholar] [CrossRef]
- Harony-Nicolas, H.; De Rubeis, S.; Kolevzon, A.; Buxbaum, J.D. Phelan McDermid Syndrome: From Genetic Discoveries to Animal Models and Treatment. J. Child Neurol. 2015, 30, 1861–1870. [Google Scholar] [CrossRef] [Green Version]
- De Rubeis, S.; Siper, P.M.; Durkin, A.; Weissman, J.; Muratet, F.; Halpern, D.; Trelles, M.D.P.; Frank, Y.; Lozano, R.; Wang, A.T.; et al. Delineation of the genetic and clinical spectrum of Phelan-McDermid syndrome caused by SHANK3 point mutations. Mol. Autism 2018, 9, 31. [Google Scholar] [CrossRef]
- Li, Y.; Jia, X.; Wu, H.; Xun, G.; Ou, J.; Zhang, Q.; Li, H.; Bai, T.; Hu, Z.; Zou, X.; et al. Genotype and phenotype correlations for SHANK3 de novo mutations in neurodevelopmental disorders. Am. J. Med. Genet. A 2018, 176, 2668–2676. [Google Scholar] [CrossRef] [PubMed]
- Giza, J.; Urbanski, M.J.; Prestori, F.; Bandyopadhyay, B.; Yam, A.; Friedrich, V.; Kelley, K.; D’Angelo, E.; Goldfarb, M. Behavioral and cerebellar transmission deficits in mice lacking the autism-linked gene islet brain-2. J. Neurosci. 2010, 30, 14805–14816. [Google Scholar] [CrossRef]
- Ricciardello, A.; Tomaiuolo, P.; Persico, A.M. Genotype-phenotype correlation in Phelan-McDermid syndrome: A comprehensive review of chromosome 22q13 deleted genes. Am. J. Med. Genet. A 2021, 185, 2211–2233. [Google Scholar] [CrossRef]
- Miller, C.L.; Llenos, I.C.; Dulay, J.R.; Barillo, M.M.; Yolken, R.H.; Weis, S. Expression of the kynurenine pathway enzyme tryptophan 2,3-dioxygenase is increased in the frontal cortex of individuals with schizophrenia. Neurobiol. Dis. 2004, 15, 618–629. [Google Scholar] [CrossRef] [PubMed]
- Miller, C.L.; Llenos, I.C.; Dulay, J.R.; Weis, S. Upregulation of the initiating step of the kynurenine pathway in postmortem anterior cingulate cortex from individuals with schizophrenia and bipolar disorder. Brain Res. 2006, 1073–1074, 25–37. [Google Scholar] [CrossRef] [PubMed]
- Comings, D.E.; Gade, R.; Muhleman, D.; Chiu, C.; Wu, S.; To, M.; Spence, M.; Dietz, G.; Winn-Deen, E.; Rosenthal, R.J.; et al. Exon and intron variants in the human tryptophan 2,3-dioxygenase gene: Potential association with Tourette syndrome, substance abuse and other disorders. Pharmacogenetics 1996, 6, 307–318. [Google Scholar] [CrossRef] [PubMed]
- Nabi, R.; Serajee, F.J.; Chugani, D.C.; Zhong, H.; Huq, A.H.M.M. Association of tryptophan 2,3 dioxygenase gene polymorphism with autism. Am. J. Med. Genet. Part B Neuropsychiatr. Genet. 2004, 125B, 63–68. [Google Scholar] [CrossRef]
- Kanai, M.; Funakoshi, H.; Takahashi, H.; Hayakawa, T.; Mizuno, S.; Matsumoto, K.; Nakamura, T. Tryptophan 2,3-dioxygenase is a key modulator of physiological neurogenesis and anxiety-related behavior in mice. Mol. Brain 2009, 2, 8. [Google Scholar] [CrossRef] [Green Version]
- Too, L.K.; Li, K.M.; Suarna, C.; Maghzal, G.J.; Stocker, R.; McGregor, I.S.; Hunt, N.H. Deletion of TDO2, IDO-1 and IDO-2 differentially affects mouse behavior and cognitive function. Behav. Brain Res. 2016, 312, 102–117. [Google Scholar] [CrossRef] [PubMed]
- Miller, C.L. The Epigenetics of Psychosis: A Structured Review with Representative Loci. Biomedicines 2022, 10, 561. [Google Scholar] [CrossRef] [PubMed]
- Murr, R.; Vaissiere, T.; Sawan, C.; Shukla, V.; Herceg, Z. Orchestration of chromatin-based processes: Mind the TRRAP. Oncogene 2007, 26, 5358–5372. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tapias, A.; Lazaro, D.; Yin, B.-K.; Rasa, S.M.M.; Krepelova, A.; Sacramento, E.K.; Grigaravicius, P.; Koch, P.; Kirkpatrick, J.; Ori, A.; et al. HAT cofactor TRRAP modulates microtubule dynamics via SP1 signaling to prevent neurodegeneration. eLife 2021, 10, e61531. [Google Scholar] [CrossRef] [PubMed]
- Yin, B.-K.; Wang, Z.-Q. Beyond HAT Adaptor: TRRAP Liaisons with Sp1-Mediated Transcription. Int. J. Mol. Sci. 2021, 22, 12445. [Google Scholar] [CrossRef] [PubMed]
- Herceg, Z.; Hulla, W.; Gell, D.; Cuenin, C.; Lleonart, M.; Jackson, S.; Wang, Z.-Q. Disruption of Trrap causes early embryonic lethality and defects in cell cycle progression. Nat. Genet. 2001, 29, 206–211. [Google Scholar] [CrossRef]
- Xu, B.; Ionita-Laza, I.; Roos, J.L.; Boone, B.; Woodrick, S.; Sun, Y.; Levy, S.; Gogos, J.A.; Karayiorgou, M. De novo gene mutations highlight patterns of genetic and neural complexity in schizophrenia. Nat. Genet. 2012, 44, 1365–1369. [Google Scholar] [CrossRef] [Green Version]
- Mavros, C.F.; Brownstein, C.A.; Thyagrajan, R.; Genetti, C.A.; Tembulkar, S.; Graber, K.; Murphy, Q.; Cabral, K.; VanNoy, G.E.; Bainbridge, M.; et al. De novo variant of TRRAP in a patient with very early onset psychosis in the context of non-verbal learning disability and obsessive-compulsive disorder: A case report. BMC Med. Genet. 2018, 19, 197. [Google Scholar] [CrossRef]
- Gupta, A.R.; Westphal, A.; Yang, D.Y.J.; Sullivan, C.A.W.; Eilbott, J.; Zaidi, S.; Voos, A.; Wyk, B.C.V.; Ventola, P.; Waqar, Z.; et al. Neurogenetic analysis of childhood disintegrative disorder. Mol. Autism 2017, 8, 19. [Google Scholar] [CrossRef] [Green Version]
- Cogne, B.; Ehresmann, S.; Beauregard-Lacroix, E.; Rousseau, J.; Besnard, T.; Garcia, T.; Petrovski, S.; Avni, S.; McWalter, K.; Blackburn, P.R.; et al. Missense Variants in the Histone Acetyltransferase Complex Component Gene TRRAP Cause Autism and Syndromic Intellectual Disability. Am. J. Hum. Genet. 2019, 104, 530–541. [Google Scholar] [CrossRef] [Green Version]
- Martin, H.C.; Jones, W.D.; McIntyre, R.; Sanchez-Andrade, G.; Sanderson, M.; Stephenson, J.D.; Jones, C.P.; Handsaker, J.; Gallone, G.; Bruntraeger, M.; et al. Quantifying the contribution of recessive coding variation to developmental disorders. Science 2018, 362, 1161–1164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huffmeier, U.; Kraus, C.; Reuter, M.S.; Uebe, S.; Abbott, M.A.; Ahmed, S.A.; Rawson, K.L.; Barr, E.; Li, H.; Bruel, A.L.; et al. EIF3F-related neurodevelopmental disorder: Refining the phenotypic and expanding the molecular spectrum. Orphanet J. Rare Dis. 2021, 16, 136. [Google Scholar] [CrossRef]
- Herzing, L.B.; Kim, S.-J.; Cook, E.H., Jr.; Ledbetter, D.H. The human aminophospholipid-transporting ATPase gene ATP10C maps adjacent to UBE3A and exhibits similar imprinted expression. Am. J. Hum. Genet. 2001, 68, 1501–1505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, S.-J.; Herzing, L.B.; Veenstra-VanderWeele, J.; Lord, C.; Courchesne, R.; Leventhal, B.L.; Ledbetter, D.H.; Courchesne, E.; Cook, E.H., Jr. Mutation screening and transmission disequilibrium study of ATP10C in autism. Am. J. Med. Genet. 2002, 114, 137–143. [Google Scholar] [CrossRef] [PubMed]
- da Silva Montenegro, E.M.; Costa, C.S.; Campos, G.; Scliar, M.; de Almeida, T.F.; Zachi, E.C.; Silva, I.M.W.; Chan, A.J.S.; Zarrei, M.; Lourenco, N.C.V.; et al. Meta-Analyses Support Previous and Novel Autism Candidate Genes: Outcomes of an Unexplored Brazilian Cohort. Autism Res. 2020, 13, 199–206. [Google Scholar] [CrossRef] [PubMed]
- Yagi, T.; Takeichi, M. Cadherin superfamily genes: Functions, genomic organization, and neurologic diversity. Genes Dev. 2000, 14, 1169–1180. [Google Scholar] [CrossRef]
- Redies, C.; Hertel, N.; Hubner, C.A. Cadherins and neuropsychiatric disorders. Brain Res. 2012, 1470, 130–144. [Google Scholar] [CrossRef]
- Bhalla, K.; Luo, Y.; Buchan, T.; Beachem, M.A.; Guzauskas, G.F.; Ladd, S.; Bratcher, S.J.; Schroer, R.J.; Balsamo, J.; DuPont, B.R.; et al. Alterations in CDH15 and KIRREL3 in patients with mild to severe intellectual disability. Am. J. Hum. Genet. 2008, 83, 703–713. [Google Scholar] [CrossRef] [Green Version]
- Dhanoa, B.S.; Cogliati, T.; Satish, A.G.; Bruford, E.A.; Friedman, J.S. Update on the Kelch-like (KLHL) gene family. Hum. Genom. 2013, 7, 13. [Google Scholar] [CrossRef] [Green Version]
- Gajecka, M.; Mackay, K.L.; Shaffer, L.G. Monosomy 1p36 deletion syndrome. Am. J. Med. Genet. C Semin. Med. Genet. 2007, 145C, 346–356. [Google Scholar] [CrossRef]
- Rocha, C.F.; Vasques, R.B.; Santos, S.R.; Paiva, C.L. Mini-Review: Monosomy 1p36 syndrome: Reviewing the correlation between deletion sizes and phenotypes. Genet. Mol. Res. 2016, 15, gmr.15017942. [Google Scholar] [CrossRef] [PubMed]
- Paciorkowski, A.R.; Thio, L.L.; Rosenfeld, J.A.; Gajecka, M.; Gurnett, C.A.; Kulkarni, S.; Chung, W.K.; Marsh, E.D.; Gentile, M.; Reggin, J.D.; et al. Copy number variants and infantile spasms: Evidence for abnormalities in ventral forebrain development and pathways of synaptic function. Eur. J. Hum. Genet. 2011, 19, 1238–1245. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.-T.; Huang, T.-N.; Hsueh, Y.-P. KLHL17/Actinfilin, a brain-specific gene associated with infantile spasms and autism, regulates dendritic spine enlargement. J. Biomed. Sci. 2020, 27, 103. [Google Scholar] [CrossRef] [PubMed]
- Bernstein, E.; Caudy, A.A.; Hammond, S.M.; Hannon, G.J. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 2001, 409, 363–366. [Google Scholar] [CrossRef]
- Song, M.-S.; Rossi, J.J. Molecular mechanisms of Dicer: Endonuclease and enzymatic activity. Biochem. J. 2017, 474, 1603–1618. [Google Scholar] [CrossRef] [Green Version]
- Robertson, J.C.; Jorcyk, C.L.; Oxford, J.T. DICER1 Syndrome: DICER1 Mutations in Rare Cancers. Cancers 2018, 10, 143. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez, I.A.; Stewart, D.R.; Schultz, K.A.P.; Field, A.P.; Hill, D.A.; Dehner, L.P. DICER1 tumor predisposition syndrome: An evolving story initiated with the pleuropulmonary blastoma. Mod. Pathol. 2022, 35, 4–22. [Google Scholar] [CrossRef]
- Klein, S.; Lee, H.; Ghahremani, S.; Kempert, P.; Ischander, M.; Teitell, M.A.; Nelson, S.F.; Martinez-Agosto, J.A. Expanding the phenotype of mutations in DICER1: Mosaic missense mutations in the RNase IIIb domain of DICER1 cause GLOW syndrome. J. Med. Genet. 2014, 51, 294–302. [Google Scholar] [CrossRef] [Green Version]
- Klein, S.D.; Martinez-Agosto, J.A. Hotspot Mutations in DICER1 Causing GLOW Syndrome-Associated Macrocephaly via Modulation of Specific microRNA Populations Result in the Activation of PI3K/ATK/mTOR Signaling. Microrna 2020, 9, 70–80. [Google Scholar] [CrossRef]
- Venger, K.; Elbracht, M.; Carlens, J.; Deutz, P.; Zeppernick, F.; Lassay, L.; Kratz, C.; Zenker, M.; Kim, J.; Stewart, D.R.; et al. Unusual phenotypes in patients with a pathogenic germline variant in DICER1. Fam. Cancer 2021. [Google Scholar] [CrossRef]
- Khan, N.E.; Bauer, A.J.; Doros, L.; Schultz, K.A.; Decastro, R.M.; Harney, L.A.; Kase, R.G.; Carr, A.G.; Harris, A.K.; Williams, G.M.; et al. Macrocephaly associated with the DICER1 syndrome. Genet. Med. 2017, 19, 244–248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ponten, E.; Frisk, S.; Taylan, F.; Vaz, R.; Wessman, S.; de Kock, L.; Pal, N.; Foulkes, W.D.; Lagerstedt-Robinson, K.; Nordgren, A. A complex DICER1 syndrome phenotype associated with a germline pathogenic variant affecting the RNase IIIa domain of DICER1. J. Med. Genet. 2022, 59, 141–146. [Google Scholar] [CrossRef] [PubMed]
- Beveridge, N.J.; Gardiner, E.; Carroll, A.P.; Tooney, P.A.; Cairns, M.J. Schizophrenia is associated with an increase in cortical microRNA biogenesis. Mol. Psychiatry 2010, 15, 1176–1189. [Google Scholar] [CrossRef] [PubMed]
- Santarelli, D.M.; Beveridge, N.J.; Tooney, P.A.; Cairns, M.J. Upregulation of dicer and microRNA expression in the dorsolateral prefrontal cortex Brodmann area 46 in schizophrenia. Biol. Psychiatry 2011, 69, 180–187. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Wang, J.; Lu, X.; Song, X.; Ye, Y.; Zhou, J.; Ying, B.; Wang, L. Evaluation of six SNPs of MicroRNA machinery genes and risk of schizophrenia. J. Mol. Neurosci. 2013, 49, 594–599. [Google Scholar] [CrossRef]
- Wang, Q.; Li, M.; Yang, Z.; Hu, X.; Wu, H.-M.; Ni, P.; Ren, H.; Deng, W.; Li, M.; Ma, X.; et al. Increased co-expression of genes harboring the damaging de novo mutations in Chinese schizophrenic patients during prenatal development. Sci. Rep. 2015, 5, 18209. [Google Scholar] [CrossRef] [Green Version]
- Davis, T.H.; Cuellar, T.L.; Koch, S.M.; Barker, A.J.; Harfe, B.D.; McManus, M.T.; Ullian, E.M. Conditional loss of Dicer disrupts cellular and tissue morphogenesis in the cortex and hippocampus. J. Neurosci. 2008, 28, 4322–4330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, T.; Zhao, P.A.; Eichler, E.E. Rare variants and the oligogenic architecture of autism. Trends Genet. 2022. [Google Scholar] [CrossRef]
- Du, Y.; Li, Z.; Liu, Z.; Zhang, N.; Wang, R.; Li, F.; Zhang, T.; Jiang, Y.; Zhi, X.; Wang, Z.; et al. Nonrandom occurrence of multiple de novo coding variants in a proband indicates the existence of an oligogenic model in autism. Genet. Med. 2020, 22, 170–180. [Google Scholar] [CrossRef]
- Chilian, B.; Abdollahpour, H.; Bierhals, T.; Haltrich, I.; Fekete, G.; Nagel, I.; Rosenberger, G.; Kutsche, K. Dysfunction of SHANK2 and CHRNA7 in a patient with intellectual disability and language impairment supports genetic epistasis of the two loci. Clin. Genet. 2013, 84, 560–565. [Google Scholar] [CrossRef]
- John, J.; Kukshal, P.; Bhatia, T.; Nimgaonkar, V.; Deshpande, S.; Thelma, B. Rare variant based evidence for oligogenic contribution of neurodevelopmental pathway genes to schizophrenia. Schizophr. Res. 2019, 210, 296–298. [Google Scholar] [CrossRef] [PubMed]
- John, J.; Bhattacharyya, U.; Yadav, N.; Kukshal, P.; Bhatia, T.; Nimgaonkar, V.; Deshpande, S.N.; Thelma, B. Multiple rare inherited variants in a four generation schizophrenia family offer leads for complex mode of disease inheritance. Schizophr. Res. 2019, 216, 288–294. [Google Scholar] [CrossRef] [PubMed]
Cytogenetic location | 22q13.31–13.33 |
Nucleotide Position | 47445140-51197725 |
Size | 3753 Kb |
TBC1D22A, LOC339685, LINC01644, LINC00898, LOC284930, MIR3201, FAM19A5, LOC284933, MIR4535, LINC01310, C22orf34, MIR3667, BRD1 *, ZBED4, ALG12 *, CRELD2, PIM3, MIR6821, IL17REL, TTLL8, MLC1 *, MOV10L1, PANX2, TRABD, SELENOO, TUBGCP6 *, HDAC10, MAPK12, MAPK11, PLXNB2 *, DENND6B, PPP6R2, SBF1 *, ADM2, MIOX, LMF2, NCAPH2, SCO2 *, TYMP *, ODF3B, KLHDC7B, SYCE3, CPT1B, CHKB-CPT1B *, CHKB, CHKB-AS1, MAPK8IP2 *, ARSA *, SHANK3, LOC105373100, ACR, RPL23AP82 |
Forward (5′-3′) | Reverse (5′-3′) | Size (bp) | |
---|---|---|---|
KLHL17 | CCCTCTTGCCCTGTGCCTTCTACT | CGGAATTAAGCCACTGCAGGTCAA | 395 |
TDO2 | CTCTCTCAGGACTATTAATGCC | AATCTGGGCATGGAAACCCGTT | 338 |
TRRAP | GTGAGGGTGCGCCTCAGTTTGTTA | ACCCAAGACCGTCAGTGGTCTGAG | 336 |
EIF3F | AGCAGAGCGCACAAATTCCAGAAG | AGGGTCTGAGGATGAGGCTGGAG | 329 |
DICER1 | GTGGGAGGCCTGAAAGGGTAAATG | CACTGGATGAATGAAAAGCCCTGC | 262 |
ATP10A | GGAGCCACTTGAAACCCACCTACC | GTTCGCTCACACTGCTGTGCATTT | 238 |
CDH15 | GGAGACTTAGACCTGCCCTGCTGT | TAAGGGTGCCTGGATCTTGCAGTC | 399 |
Gene and SNP | Mutation Location | Inheritance | Taiwan Biobank | ALFA | PROVEAN | SIFT | PolyPhen-2 | Mutation Taster |
---|---|---|---|---|---|---|---|---|
KLHL17 rs186429850 | chr1:898542:A > G c.1096A > G p.T366A | Maternal | 0.005137 | 0.000338 | Neutral | Tolerated | Benign | Disease causing |
TDO2 rs183229581 | chr4:156835551:T > A c.803T > A p.F268Y | Paternal | 0.01 | 0 | Neutral | Damaging | Probably damaging | Disease causing |
TRRAP rs55755466 | chr7:98574585:G > C c.8250G > C p.E2750D | Paternal | 0.007581 | 0.000317 | Neutral | Tolerated | Possibly damaging | Disease causing |
EIF3F rs367735033 | chr11:8008909:C > T c.10C > T p.P4S | Paternal | 0.003309 | 0.000066 | Neutral | Damaging | Damaging | Disease causing |
DICER1 rs772381832 | chr14:95599687:T > A c.109A > T p.I37F | Maternal | 0.000989 | 0.000008 | Neutral | Damaing | Probably damaging | Disease causing |
ATP10A rs184009994 | chr15:25947187:C > T c.2636G > A p.R879H | Paternal | 0.001648 | 0.000009 | Deleterious | Damaging | Possibly damaging | Disease causing |
CDH15 rs149963083 | chr16:89246698:G > A c.292G > A D98N | Paternal | 0.001649 | 0.000171 | Deleterious | Tolerated | Probably damaging | Disease causing |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Y.-S.; Fang, T.-H.; Kung, B.; Chen, C.-H. Two Genetic Mechanisms in Two Siblings with Intellectual Disability, Autism Spectrum Disorder, and Psychosis. J. Pers. Med. 2022, 12, 1013. https://doi.org/10.3390/jpm12061013
Huang Y-S, Fang T-H, Kung B, Chen C-H. Two Genetic Mechanisms in Two Siblings with Intellectual Disability, Autism Spectrum Disorder, and Psychosis. Journal of Personalized Medicine. 2022; 12(6):1013. https://doi.org/10.3390/jpm12061013
Chicago/Turabian StyleHuang, Yu-Shu, Ting-Hsuan Fang, Belle Kung, and Chia-Hsiang Chen. 2022. "Two Genetic Mechanisms in Two Siblings with Intellectual Disability, Autism Spectrum Disorder, and Psychosis" Journal of Personalized Medicine 12, no. 6: 1013. https://doi.org/10.3390/jpm12061013
APA StyleHuang, Y. -S., Fang, T. -H., Kung, B., & Chen, C. -H. (2022). Two Genetic Mechanisms in Two Siblings with Intellectual Disability, Autism Spectrum Disorder, and Psychosis. Journal of Personalized Medicine, 12(6), 1013. https://doi.org/10.3390/jpm12061013