Robotic Single-Site Plus Two-Port Myomectomy versus Conventional Robotic Multi-Port Myomectomy: A Propensity Score Matching Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Surgical Methods
2.1.1. RSTM
2.1.2. CRM
2.2. Statistical Analysis
3. Results
3.1. Baseline Characteristics
3.2. Surgical Outcomes
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Won, S.; Kim, M.K.; Seong, S.J. Robotic surgery in gynecology—Myomectomy. Gynecol. Robot. Surg. 2021, 2, 3–8. [Google Scholar] [CrossRef]
- Wilson, E.B. The evolution of robotic general surgery. Scand. J. Surg. 2009, 98, 125–129. [Google Scholar] [CrossRef] [PubMed]
- Advincula, A.P.; Song, A.; Burke, W.; Reynolds, R.K. Preliminary experience with robot-assisted laparoscopic myomectomy. J. Am. Assoc. Gynecol. Laparosc. 2004, 11, 511–518. [Google Scholar] [CrossRef]
- Barakat, E.E.; Bedaiwy, M.A.; Zimberg, S.; Nutter, B.; Nosseir, M.; Falcone, T. Robotic-assisted, laparoscopic, and abdominal myomectomy: A comparison of surgical outcomes. Obstet. Gynecol. 2011, 117 (Pt 1), 256–265. [Google Scholar] [CrossRef] [Green Version]
- Nash, K.; Feinglass, J.; Zei, C.; Lu, G.; Mengesha, B.; Lewicky-Gaupp, C.; Lin, A. Robotic-assisted laparoscopic myomectomy versus abdominal myomectomy: A comparative analysis of surgical outcomes and costs. Arch. Gynecol. Obstet. 2012, 285, 435–440. [Google Scholar] [CrossRef] [PubMed]
- Gargiulo, A.R.; Srouji, S.S.; Missmer, S.A.; Correia, K.F.; Vellinga, T.T.; Einarsson, J.I. Robot-assisted laparoscopic myomectomy compared with standard laparoscopic myomectomy. Obstet. Gynecol. 2012, 120 Pt 1, 284–291. [Google Scholar] [CrossRef] [PubMed]
- Won, S.; Lee, N.; Kim, M.; Kim, M.K.; Kim, M.L.; Jung, Y.W.; Yun, B.S.; Seong, S.J. Robotic single-site myomectomy: A hybrid technique reducing operative time and blood loss. Int. J. Med. Robot. 2019, 16, e2061. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.R.; Kim, J.H.; Lee, Y.J.; Lee, S.W.; Park, J.Y.; Suh, D.S.; Kim, D.Y.; Kim, S.H.; Kim, Y.M.; Kim, Y.T. Single-Incision versus Multiport Robotic Myomectomy: A Propensity Score Matched Analysis of Surgical Outcomes and Surgical Tips. J. Clin. Med. 2021, 10, 3957. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.R.; Lee, E.S.; Eum, H.L.; Lee, Y.J.; Lee, S.W.; Park, J.Y.; Suh, D.S.; Kim, D.Y.; Kim, S.H.; Kim, Y.M.; et al. New Surgical Technique for Robotic Myomectomy: Continuous Locking Suture on Myoma (LSOM) Technique. J. Clin. Med. 2021, 10, 654. [Google Scholar] [CrossRef] [PubMed]
- Moawad, G.N.; Tyan, P.; Awad, C. Technique for Tissue Containment and Extraction in the Complex Minimally Invasive Myomectomy Setting. J. Minim. Invasive Gynecol. 2019, 26, 809–810. [Google Scholar] [CrossRef] [PubMed]
- Marchand, G.; Masoud, A.; Christensen, A.; Ruther, S.; Brazil, G.; King, A.; Ulibarri, H.; Parise, J.; Arroyo, A.; Coriell, C.; et al. Contained and uncontained morcellation in hysterectomy and myomectomy: A systematic review and meta-analysis. Turk. J. Obstet. Gynecol. 2021, 18, 311–321. [Google Scholar] [CrossRef] [PubMed]
- Sanderson, D.J.; Sanderson, R.; Cleason, D.; Seaman, C.; Ghomi, A. Manual morcellation compared to power morcellation during robotic myomectomy. J. Robot. Surg. 2019, 13, 209–214. [Google Scholar] [CrossRef] [PubMed]
- Zullo, F.; Venturella, R.; Raffone, A.; Saccone, G. In-bag manual versus uncontained power morcellation for laparoscopic myomectomy. Cochrane Database Syst. Rev. 2020, 5, CD013352. [Google Scholar] [CrossRef] [PubMed]
- Connell, M.B.; Selvam, R.; Patel, S.V. Incidence of incisional hernias following single-incision versus traditional laparoscopic surgery: A meta-analysis. Hernia 2019, 23, 91–100. [Google Scholar] [CrossRef] [PubMed]
- U.S. Food and Drug Administration, Laparoscopic Uterine Power Morcellator in Hysterectomy and Myomecto-My: FDA Safety Communication. 2014. Available online: http://www.fda.gov/MedicalDevices/Safety/AlertsandNotices/ucm393576.htm (accessed on 2 April 2022).
Characteristics | RSTM (n = 146) | CRM (n = 173) | p |
---|---|---|---|
Age, years | 38.0 ± 5.3 | 38.4 ± 5.4 | 0.445 |
BMI, kg/m2 | 22.6 ±3.3 | 23.2 ± 3.3 | 0.126 |
Nulliparous | 0.746 | ||
No | 23 (15.8) | 25 (14.5) | |
Yes | 123 (84.2) | 148 (85.5) | |
Previous abdominal surgery | 0.014 | ||
No | 110 (75.3) | 149 (86.1) | |
Yes | 36 (24.7) | 24 (13.9) | |
Peritoneal adhesion | 0.030 | ||
No | 112 (76.7) | 149 (86.1) | |
Yes | 34 (23.3) | 24 (13.9) | |
Concurrent surgery | 0.983 | ||
No | 115 (78.8) | 134 (77.5) | |
Ovarian cystectomy | 20 (13.7) | 25 (14.5) | |
USO | 0 (0) | 2 (1.2) | |
Focal adenomyomectomy | 8 (5.5) | 11 (6.4) | |
Salpingectomy | 3 (2.1) | 1 (0.6) | |
Total myoma, n | 7.0 ± 5.5 | 7.1 ± 5.3 | 0.607 |
Largest myoma | |||
Size, cm | 6.8 ± 2.3 | 7.0 ± 2.5 | 0.270 |
Location | 0.423 | ||
Anterior | 53 (36.3) | 72 (41.6) | |
Posterior | 72 (49.3) | 63 (36.4) | |
Fundal | 13 (8.9) | 22 (12.7) | |
Anterior fundal | 6 (4.1) | 9 (5.2) | |
Posterior fundal | 2 (1.4) | 7 (4.0) | |
Type (FIGO classification) | 0.529 | ||
Submucosal (1–2) | 5 (3.4) | 9 (5.2) | |
Deep intramural (3–4) | 60 (41.1) | 66 (38.2) | |
Intramural (5) | 40 (27.4) | 44 (25.4) | |
Subserosal (6) | 32 (21.9) | 43 (24.9) | |
Pedunculated (7) | 3 (2.1) | 7 (4.0) | |
Intraligamentary (8) | 6 (4.1) | 4 (2.3) | |
Tumor weight, g | 172.5 ± 128.5 | 204.0 ± 147.2 | 0.044 |
Characteristics | RSTM (n = 125) | CRM (n = 169) | p |
---|---|---|---|
Age, years | 37.8 ± 5.4 | 38.5 ± 5.4 | 0.294 |
BMI, kg/m2 | 2276 ± 3.2 | 23.2 ± 3.4 | 0.172 |
Nulliparous | 0.925 | ||
No | 18 (14.4) | 25 (14.8) | |
Yes | 107 (85.6) | 144 (85.2) | |
Previous abdominal surgery | 0.264 | ||
No | 102 (81.6) | 146 (86.4) | |
Yes | 23 (18.4) | 23 (13.6) | |
Peritoneal adhesion | 0.962 | ||
No | 107 (85.6) | 145 (85.8) | |
Yes | 18 (14.4) | 24 (14.2) | |
Concurrent surgery | 0.819 | ||
No | 102 (81.6) | 132 (78.1) | |
Ovarian cystectomy | 14 (11.2) | 24 (14.2) | |
USO | 0 (0) | 2 (1.2) | |
Focal adenomyomectomy | 7 (5.6) | 10 (5.9) | |
Salpingectomy | 2 (1.6) | 1 (0.6) | |
Total myoma, n | 6.9 ± 5.2 | 7.1 ± 5.3 | 0.547 |
Largest myoma | |||
Size, cm | 7.0 ± 2.3 | 6.9 ± 2.3 | 0.856 |
Location | 0.463 | ||
Anterior | 45 (36.0) | 71 (42.0) | |
Posterior | 62 (49.6) | 62 (36.7) | |
Fundal | 12 (9.6) | 21 (12.4) | |
Anterior fundal | 5 (4.0) | 8 (4.7) | |
Posterior fundal | 1 (0.8) | 7 (4.1) | |
Type (FIGO classification) | 0.572 | ||
Submucosal (1–2) | 3 (2.4) | 9 (5.3) | |
Deep intramural (3–4) | 48 (38.4) | 64 (37.9) | |
Intramural (5) | 35 (28.0) | 44 (26.0) | |
Subserosal (6) | 30 (24.0) | 41 (24.3) | |
Pedunculated (7) | 3 (2.4) | 7 (4.1) | |
Intraligamentary (8) | 6 (4.8) | 4 (2.4) | |
Tumor weight, g | 177.7 ± 122.0 | 197.3 ± 137.0 | 0.204 |
Characteristics | Total Data | In PSM Data | ||||
---|---|---|---|---|---|---|
RSTM (n = 146) | CRM (n = 173) | p | RSTM (n = 125) | CRM (n = 169) | p | |
Operative time, mins | 150.0 ± 46.2 | 163.6 ± 48.5 | 0.011 | 148.3 ± 44.8 | 162.3 ± 47.4 | 0.011 |
EBL, mL | 216.8 ± 228.9 | 230.4 ± 184.5 | 0.558 | 213.2 ± 221.4 | 226.0 ± 182.7 | 0.587 |
Hemoglobin decrement, g/dL | 1.8 ± 0.9 | 2.3 ± 1.0 | <0.001 | 1.8 ± 0.9 | 2.3 ± 1.0 | <0.001 |
Transfusion | 0.096 | 0.091 | ||||
No | 136 (93.2) | 168 (97.1) | 116 (92.8) | 164 (97.0) | ||
Yes | 10 (6.8) | 5 (2.9) | 9 (7.2) | 5 (3.0) | ||
Hospital stay, days | 5.4 ± 0.7 | 5.8 ± 0.7 | <0.001 | 5.4 ± 0.7 | 5.8 ± 0.7 | <0.001 |
Laparotomy conversion | >0.999 | >0.999 | ||||
No | 146 (100.0) | 173 (100) | 125 (100.0) | 169 (100) | ||
Yes | 0 (0.0) | 0(0.0) | 0 (0.0) | 0 (0.0) | ||
Complications | 0.565 | 0.604 | ||||
None | 140 (97.2) | 171 (98.8) | 122 (97.6) | 167 (98.8) | ||
Ileus | 2 (1.4) | 0 | 1 (0.8) | 0 | ||
Fever >3 days | 1 (0.7) | 1 (0.6) | 1 (0.8) | 1 (0.6) | ||
Wound dehiscence | 1 (0.7) | 1 (0.6) | 1 (0.8) | 1 (0.6) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Won, S.; Choi, S.H.; Lee, N.; Shim, S.H.; Kim, M.K.; Kim, M.-L.; Jung, Y.W.; Yun, B.S.; Seong, S.J. Robotic Single-Site Plus Two-Port Myomectomy versus Conventional Robotic Multi-Port Myomectomy: A Propensity Score Matching Analysis. J. Pers. Med. 2022, 12, 928. https://doi.org/10.3390/jpm12060928
Won S, Choi SH, Lee N, Shim SH, Kim MK, Kim M-L, Jung YW, Yun BS, Seong SJ. Robotic Single-Site Plus Two-Port Myomectomy versus Conventional Robotic Multi-Port Myomectomy: A Propensity Score Matching Analysis. Journal of Personalized Medicine. 2022; 12(6):928. https://doi.org/10.3390/jpm12060928
Chicago/Turabian StyleWon, Seyeon, Su Hyeon Choi, Nara Lee, So Hyun Shim, Mi Kyoung Kim, Mi-La Kim, Yong Wook Jung, Bo Seong Yun, and Seok Ju Seong. 2022. "Robotic Single-Site Plus Two-Port Myomectomy versus Conventional Robotic Multi-Port Myomectomy: A Propensity Score Matching Analysis" Journal of Personalized Medicine 12, no. 6: 928. https://doi.org/10.3390/jpm12060928
APA StyleWon, S., Choi, S. H., Lee, N., Shim, S. H., Kim, M. K., Kim, M. -L., Jung, Y. W., Yun, B. S., & Seong, S. J. (2022). Robotic Single-Site Plus Two-Port Myomectomy versus Conventional Robotic Multi-Port Myomectomy: A Propensity Score Matching Analysis. Journal of Personalized Medicine, 12(6), 928. https://doi.org/10.3390/jpm12060928