Stem Cell Biomarkers and Tumorigenesis in Gastric Cancer
Abstract
:1. Introduction
2. Potential Biomarkers of Stem Cells in the Sub-Regions of the Stomach
2.1. Antrum Stem Cells
2.1.1. Lgr5
2.1.2. +4 Stem Cells (Cckbr, Mist1, Bmi1, eR1)
2.1.3. Axin2+ (a Wnt Target) Stem Cells
2.1.4. Cckbr+ Stem Cells
2.2. Corpus Stem Cells
2.2.1. Mist1 (bhlha15)
2.2.2. Isthmic Stmn1/Iqgap3-Positive Cells
2.2.3. Trefoil Factor 2 and Cckb-Receptor Positive Cells (Tff2+ and Cckbr+)
2.2.4. Claudin18 (Claudin18-IRES-CreERT2)
3. Stem Cell Niches
3.1. Antral Stem Cell Niches
- G cells and Cckbr+ stem cells, which have gastrin receptors near G cells, can secrete the gastrin. Gastrin deficiency causes the Cckbr+ stem cells to proliferate extensively and to undergo division symmetrically [42] suggesting that gastrin inhibits antral stem cells and/or maintains them in a quiescent state [42].
- Enhancement of the Notch signal in the antral glands causes the deletion of G cells and increases the cell growth of Cckbr+ stem cells, which is gastrin. Knockout of the mouse gastrin gene stimulates oncogenesis in the antrum, and then, the antral G cells can provide the critical niches to inhibit the expansion of GSCs for GC progression [42,43].
- Antral Lgr5+ stem cells express cholinergic neuron-dependent muscarinic acetylcholine receptors, and then tuft cells indeed produce choline acetyltransferase [43].
- Both basal- and isthmic-antral stem cells have the CXCR4 receptor, where their ligand CXCL12 is produced from endothelial vascular cells near GSCs [30].
- The stem cell niches and microenvironments can be proliferated and propagated during tumorigenesis, which promote stem cell division symmetrically [33].
3.2. Stem Cell Niches in Corpus
- Notch in the niches of corpus stem cells is critical because activated Notch can promote the proliferation of the isthmic cells and their tumorigenesis [46].
- The EGF receptor (EGFR) and its ligands, and Ras/Raf mutations, both lead to robust proliferation of isthmus cells [47,48,49,50]. If the expression of EGFR is restricted to the upper third of the corpus glands [38], EGFR is a key player that controls the function of the corpus isthmus stem cells, although the location of cells producing EGFR ligands is not known.
- The Noggin/bone morphogenetic protein (BMP) pathway might act to stimulate corpus stem cells because the unique Gremlin1-expressing stromal cells reside near the corpus isthmus stem cells [51].
- The noncanonical Wnt5a ligand supports corpus stem cell activation, although there is a strong dependence on the canonical Wnt. Noncanonical Wnt5-positive type 2 innate lymphoid cells (ILC2s) were present near the stem cell area and activated isthmus stem cells [53]. In regenerative conditions and inflammatory states, Wnt5a+ ILC2a cells accumulate near the stem cell zone, in response to interleukin-33 (IL-33) and CxCL12 produced from surface pit cells and endothelial cells, respectively, which contribute to activation of isthmus stem cells [33,54]. Frizzled-5, a putative Wnt5a receptor, exists in isthmus stem/progenitor cells, indicating that Wnt5a may play a role in activating stem cells via this receptor [34]. Further study of Wnt5a is required to demonstrate modulation of corpus progenitors. The Wnt/R-spondin axis performs the essential role in niche function in corpus stem cells.
4. Gastric Chief Cells Function to Serve as Potential Reserves
5. Cellular Origins of Antral Gastric Cancers
6. Oncogenic Transformation of Isthmic Stem Cells in Corpus
7. Gastric Stem Cells and Their Niches
8. Guidelines for Standardizing Novel Organoid Systems
9. Clinical Application of Organoids
10. Conclusions and Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Apc | Adenocarcinoma polyposis coli |
Aqp | Aquaporin |
Axin2 | Axis inhibition protein 2 |
Bmi1 | B lymphoma Mo-MLV insertion region 1 homolog |
BMPs | Bone morphogenetic proteins |
CSS | Cancer-specific survival |
Cckr2 | Cholecystokinin receptor 2 |
Cre-ERT | Cre recombinase-estrogen receptor T |
Cxcr4 | C-X-C motif chemokine receptor 4 |
DFS | Disease-free survival |
DSS | Disease-specific survival |
Egf | Epidermal growth factor |
eR1 | Estrogen receptor 1 |
GC | Gastric cancer |
GI | Gastrointestinal |
GCSCs | Gastric cancer stem cells |
IM | Intestinal metaplasia |
Iqgap | IQ motif containing GTPase activating protein |
GEO | Gene expression omnibus |
GSCs | Gastric stem cells |
HER2 | Human epidermal growth factor receptor 2 |
ILC2 cells | Innate lymphoid type 2 cells |
Lgr5 | Leucine-rich repeat-containing G-protein-coupled receptor 5 |
Lrig1 | Leucine-rich repeats and immunoglobulin-like domains 1 |
Mist1 | Muscle intestine and stomach expression 1 |
OCT4 | Octamer-binding transcription factor 4 |
OS | Overall survival |
PSCs | Pluripotent stem cells |
Shh | Sonic hedgehog |
SOX2 | SRY (sex determining region Y)-box 2 |
SPME | Spasmolytic polypeptide-expressing metaplasia |
TCGA | The Cancer Genome Atlas |
Stmn1 | Stathmin 1 |
Tff2 | Trefoil factor 2 |
TGF | Transforming growth factor |
3D | Three-dimensional |
References
- Ferlay, J.E.M.; Lam, F.; Colombet, M.; Mery, L.; Piñeros, M.; Znaor, A.; Soerjomataram, I.; Bray, F. GLOBOCAN Cancer Fact Sheet 2019. Available online: http://globocan.iarc.fr/Pages/fact_sheets_cancer.aspx (accessed on 13 January 2022).
- Tan, P.; Yeoh, K.-G. Genetics and Molecular Pathogenesis of Gastric Adenocarcinoma. Gastroenterology 2015, 149, 1153–1162.e3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goldenring, J.R.; Nam, K.T.; Wang, T.C.; Mills, J.C.; Wright, N. Spasmolytic Polypeptide-Expressing Metaplasia and Intestinal Metaplasia: Time for Reevaluation of Metaplasias and the Origins of Gastric Cancer. Gastroenterology 2010, 138, 2207–2210.e1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grabsch, H.I.; Tan, P. Gastric Cancer Pathology and Underlying Molecular Mechanisms. Dig. Surg. 2013, 30, 150–158. [Google Scholar] [CrossRef] [PubMed]
- Cancer Genome Atlas Research Network. Comprehensive Molecular Characterization of Gastric Adenocarcinoma. Nature 2014, 513, 202–209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wagner, P.D.; Srivastava, S. New Paradigms in Translational Science Research in Cancer Biomarkers. Transl. Res. 2012, 159, 343–353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hong, X.; Liu, F. Editorial: Molecular Biomarkers for Gastric Cancer. Front. Oncol. 2022, 12, 850373. [Google Scholar] [CrossRef]
- Bekaii-Saab, T.; El-Rayes, B. Identifying and Targeting Cancer Stem Cells in the Treatment of Gastric Cancer. Cancer 2017, 123, 1303–1312. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; Shi, P.; Zhao, G.; Xu, J.; Peng, W.; Zhang, J.; Zhang, G.; Wang, X.; Dong, Z.; Chen, F.; et al. Targeting Cancer Stem Cell Pathways for Cancer Therapy. Signal Transduct. Target. Ther. 2020, 5, 8. [Google Scholar] [CrossRef] [Green Version]
- Razmi, M.; Ghods, R.; Vafaei, S.; Sahlolbei, M.; Zanjani, L.S.; Madjd, Z. Clinical and Prognostic Significances of Cancer Stem Cell Markers in Gastric Cancer Patients: A Systematic Review and Meta-Analysis. Cancer Cell Int. 2021, 21, 139. [Google Scholar] [CrossRef]
- Kim, T.H.; Shivdasani, R.A. Stomach Development, Stem Cells and Disease. Development 2016, 143, 554–565. [Google Scholar] [CrossRef] [Green Version]
- Hayakawa, Y.; Nakagawa, H.; Rustgi, A.K.; Que, J.; Wang, T.C. Stem Cells and Origins of Cancer in the Upper Gastrointestinal Tract. Cell Stem Cell 2021, 28, 1343–1361. [Google Scholar] [CrossRef]
- Barker, N.; Huch, M.; Kujala, P.; Van De Wetering, M.; Snippert, H.J.; Van Es, J.H.; Sato, T.; Stange, D.E.; Begthel, H.; van den Born, M.; et al. Lgr5+ve Stem Cells Drive Self-Renewal in the Stomach and Build Long-Lived Gastric Units In Vitro. Cell Stem Cell 2010, 6, 25–36. [Google Scholar] [CrossRef] [Green Version]
- Katano, T.; Ootani, A.; Mizoshita, T.; Tanida, S.; Tsukamoto, H.; Ozeki, K.; Ebi, M.; Mori, Y.; Kataoka, H.; Kamiya, T.; et al. Establishment of a Long-Term Three-Dimensional Primary Culture of Mouse Glandular Stomach Epithelial Cells within the Stem Cell Niche. Biochem. Biophys. Res. Commun. 2013, 432, 558–563. [Google Scholar] [CrossRef]
- McCracken, K.W.; Catá, E.M.; Crawford, C.M.; Sinagoga, K.L.; Schumacher, M.; Rockich, B.E.; Tsai, Y.-H.; Mayhew, C.; Spence, J.R.; Zavros, Y.; et al. Modelling Human Development and Disease in Pluripotent Stem-Cell-Derived Gastric Organoids. Nature 2014, 516, 400–404. [Google Scholar] [CrossRef] [Green Version]
- Sato, T.; Vries, R.G.; Snippert, H.J.; Van De Wetering, M.; Barker, N.; Stange, D.E.; Van Es, J.H.; Abo, A.; Kujala, P.; Peters, P.J.; et al. Single Lgr5 Stem Cells Build Crypt-Villus Structures in Vitro without a Mesenchymal Niche. Nature 2009, 459, 262–265. [Google Scholar] [CrossRef]
- Kalabis, J.; Wong, G.S.; Vega, M.E.; Natsuizaka, M.; Robertson, E.S.; Herlyn, M.; Nakagawa, H.; Rustgi, A.K. Isolation and Characterization of Mouse and Human Esophageal Epithelial Cells in 3D Organotypic Culture. Nat. Protoc. 2012, 7, 235–246. [Google Scholar] [CrossRef] [Green Version]
- Broda, T.R.; McCracken, K.W.; Wells, J.M. Generation of Human Antral and Fundic Gastric Organoids from Pluripotent Stem Cells. Nat. Protoc. 2019, 14, 28–50. [Google Scholar] [CrossRef]
- Min, S.; Kim, S.; Cho, S.-W. Gastrointestinal Tract Modeling Using Organoids Engineered with Cellular and Microbiota Niches. Exp. Mol. Med. 2020, 52, 227–237. [Google Scholar] [CrossRef] [Green Version]
- Bartfeld, S.; Bayram, T.; van de Wetering, M.; Huch, M.; Begthel, H.; Kujala, P.; Vries, R.; Peters, P.J.; Clevers, H. In Vitro Expansion of Human Gastric Epithelial Stem Cells and Their Responses to Bacterial Infection. Gastroenterology 2015, 148, 126–136.e6. [Google Scholar] [CrossRef] [Green Version]
- Roman, A.K.S.; Shivdasani, R.A. Boundaries, Junctions and Transitions in the Gastrointestinal Tract. Exp. Cell Res. 2011, 317, 2711–2718. [Google Scholar] [CrossRef] [Green Version]
- Karam, S.M.; Leblond, C.P. Dynamics of Epithelial Cells in the Corpus of the Mouse Stomach. v. Behavior of Entero-Endocrine and Caveolated Cells: General Conclusions on Cell Kinetics in the Oxyntic Epithelium. Anat. Rec. 1993, 236, 333–340. [Google Scholar] [CrossRef]
- Lee, E.R.; Leblond, C.P. Dynamic Histology of the Antral Epithelium in the Mouse Stomach: IV. Ultrastructure and Renewal of Gland Cells. Am. J. Anat. 1985, 172, 241–259. [Google Scholar] [CrossRef]
- Mills, J.C.; Shivdasani, R.A. Gastric Epithelial Stem Cells. Gastroenterology 2011, 140, 412–424. [Google Scholar] [CrossRef] [Green Version]
- Bjerknes, M.; Cheng, H. Multipotential Stem Cells in Adult Mouse Gastric Epithelium. Am. J. Physiol. Liver Physiol. 2002, 283, G767–G777. [Google Scholar] [CrossRef] [Green Version]
- Leushacke, M.; Tan, S.H.; Wong, A.; Swathi, Y.; Hajamohideen, A.; Tan, L.T.; Goh, J.; Wong, E.; Denil, S.L.I.J.; Murakami, K.; et al. Lgr5-Expressing Chief Cells Drive Epithelial Regeneration and Cancer in the Oxyntic Stomach. Nat. Cell Biol. 2017, 19, 774–786. [Google Scholar] [CrossRef]
- Leushacke, M.; Ng, A.; Galle, J.; Loeffler, M.; Barker, N. Lgr5+ Gastric Stem Cells Divide Symmetrically to Effect Epithelial Homeostasis in the Pylorus. Cell Rep. 2013, 5, 349–356. [Google Scholar] [CrossRef] [Green Version]
- Sigal, M.; Logan, C.Y.; Kapalczynska, M.; Mollenkopf, H.-J.; Berger, H.; Wiedenmann, B.; Nusse, R.; Amieva, M.; Meyer, T.F. Stromal R-Spondin Orchestrates Gastric Epithelial Stem Cells and Gland Homeostasis. Nature 2017, 548, 451–455. [Google Scholar] [CrossRef]
- Arnold, K.; Sarkar, A.; Yram, M.A.; Polo, J.M.; Bronson, R.; Sengupta, S.; Seandel, M.; Geijsen, N.; Hochedlinger, K. Sox2+ Adult Stem and Progenitor Cells Are Important for Tissue Regeneration and Survival of Mice. Cell Stem Cell 2011, 9, 317–329. [Google Scholar] [CrossRef] [Green Version]
- Sakitani, K.; Hayakawa, Y.; Deng, H.; Ariyama, H.; Kinoshita, H.; Konishi, M.; Ono, S.; Suzuki, N.; Ihara, S.; Niu, Z.; et al. CXCR4-expressing Mist1+ Progenitors in the Gastric Antrum Contribute to Gastric Cancer Development. Oncotarget 2017, 8, 111012–111025. [Google Scholar] [CrossRef] [Green Version]
- Matsuo, J.; Kimura, S.; Yamamura, A.; Koh, C.P.; Hossain, Z.; Heng, D.L.; Kohu, K.; Voon, D.; Hiai, H.; Unno, M.; et al. Identification of Stem Cells in the Epithelium of the Stomach Corpus and Antrum of Mice. Gastroenterology 2017, 152, 218–231.e14. [Google Scholar] [CrossRef] [Green Version]
- Chang, W.; Wang, H.; Kim, W.; Liu, Y.; Deng, H.; Liu, H.; Jiang, Z.; Niu, Z.; Sheng, W.; Nápoles, O.C.; et al. Hormonal Suppression of Stem Cells Inhibits Symmetric Cell Division and Gastric Tumorigenesis. Cell Stem Cell 2020, 26, 739–754.E8. [Google Scholar] [CrossRef] [PubMed]
- Hayakawa, Y.; Ariyama, H.; Stancikova, J.; Sakitani, K.; Asfaha, S.; Renz, B.W.; Dubeykovskaya, Z.A.; Shibata, W.; Wang, H.; Westphalen, C.B.; et al. Mist1 Expressing Gastric Stem Cells Maintain the Normal and Neoplastic Gastric Epithelium and Are Supported by a Perivascular Stem Cell Niche. Cancer Cell 2015, 28, 800–814. [Google Scholar] [CrossRef] [Green Version]
- Nienhüser, H.; Kim, W.; Malagola, E.; Ruan, T.; Valenti, G.; Middelhoff, M.; Bass, A.; Der, C.J.; Hayakawa, Y.; Wang, T.C. Mist1+ Gastric Isthmus Stem Cells Are Regulated by Wnt5a and Expand in Response to Injury and Inflammation in Mice. Gut 2021, 70, 654–665. [Google Scholar] [CrossRef] [PubMed]
- Yoshioka, T.; Fukuda, A.; Araki, O.; Ogawa, S.; Hanyu, Y.; Matsumoto, Y.; Yamaga, Y.; Nakanishi, Y.; Kawada, K.; Sakai, Y.; et al. Bmi1 Marks Gastric Stem Cells Located in the Isthmus in Mice. J. Pathol. 2019, 248, 179–190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, S.; Fink, J.; Jörg, D.J.; Lee, E.; Yum, M.-K.; Chatzeli, L.; Merker, S.R.; Josserand, M.; Trendafilova, T.; Andersson-Rolf, A.; et al. Defining the Identity and Dynamics of Adult Gastric Isthmus Stem Cells. Cell Stem Cell 2019, 25, 342–356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matsuo, J.; Douchi, D.; Myint, K.; Mon, N.N.; Yamamura, A.; Kohu, K.; Heng, D.L.; Chen, S.; Mawan, N.A.; Nuttonmanit, N.; et al. Iqgap3-Ras Axis Drives Stem Cell Proliferation in the Stomach Corpus during Homoeostasis and Repair. Gut 2021, 70, 1833–1846. [Google Scholar] [CrossRef] [PubMed]
- Sheng, W.; Malagola, E.; Nienhüser, H.; Zhang, Z.; Kim, W.; Zamechek, L.; Sepulveda, A.; Hata, M.; Hayakawa, Y.; Zhao, C.-M.; et al. Hypergastrinemia Expands Gastric ECL Cells Through CCK2R+ Progenitor Cells via ERK Activation. Cell. Mol. Gastroenterol. Hepatol. 2020, 10, 434–449.e1. [Google Scholar] [CrossRef]
- Fatehullah, A.; Terakado, Y.; Sagiraju, S.; Tan, T.L.; Sheng, T.; Tan, S.H.; Murakami, K.; Swathi, Y.; Ang, N.; Rajarethinam, R.; et al. A Tumour-Resident Lgr5+ Stem-Cell-like Pool Drives the Establishment and Progression of Advanced Gastric Cancers. Nature 2021, 23, 1299–1313. [Google Scholar] [CrossRef]
- Flanagan, D.J.; Barker, N.; Nowell, C.; Clevers, H.; Ernst, M.; Phesse, T.J.; Vincan, E. Loss of the Wnt Receptor Frizzled 7 in the Mouse Gastric Epithelium Is Deleterious and Triggers Rapid Repopulation In Vivo. Dis. Models Mech. 2017, 10, 971–980. [Google Scholar]
- Tan, S.H.; Swathi, Y.; Tan, S.; Goh, J.; Seishima, R.; Murakami, K.; Oshima, M.; Tsuji, T.; Phuah, P.; Tan, L.T.; et al. AQP5 Enriches for Stem Cells and Cancer Origins in the Distal Stomach. Nature 2020, 578, 437–443. [Google Scholar] [CrossRef]
- Lee, Y.; Urbanska, A.M.; Hayakawa, Y.; Wang, H.; Au, A.S.; Luna, A.M.; Chang, W.; Jin, G.; Bhagat, G.; Abrams, J.A.; et al. Gastrin Stimulates a Cholecystokinin-2-Receptor-Expressing Cardia Progenitor Cell and Promotes Progression of Barrett’s-like Esophagus. Oncotarget 2017, 8, 203–214. [Google Scholar] [CrossRef] [Green Version]
- Hayakawa, Y.; Sakitani, K.; Konishi, M.; Asfaha, S.; Niikura, R.; Tomita, H.; Renz, B.W.; Tailor, Y.; Macchini, M.; Middelhoff, M.; et al. Nerve Growth Factor Promotes Gastric Tumorigenesis through Aberrant Cholinergic Signaling. Cancer Cell 2017, 31, 21–34. [Google Scholar] [CrossRef] [Green Version]
- Middelhoff, M.; Westphalen, C.B.; Hayakawa, Y.; Yan, K.S.; Gershon, M.D.; Wang, T.C.; Quante, M. Dclk1-Expressing Tuft Cells: Critical Modulators of the Intestinal Niche? Am. J. Physiol. 2017, 313, G285–G299. [Google Scholar] [CrossRef] [Green Version]
- Schütz, B.; Ruppert, A.-L.; Strobel, O.; Lazarus, M.; Urade, Y.; Büchler, M.W.; Weihe, E. Distribution Pattern and Molecular Signature of Cholinergic Tuft Cells in Human Gastro-Intestinal and Pancreatic-Biliary Tract. Sci. Rep. 2019, 9, 17466. [Google Scholar] [CrossRef]
- Demitrack, E.S.; Gifford, G.B.; Keeley, T.M.; Horita, N.; Todisco, A.; Turgeon, D.K.; Siebel, C.W.; Samuelson, L.C. NOTCH1 and NOTCH2 Regulate Epithelial Cell Proliferation in Mouse and Human Gastric Corpus. Am. J. Physiol. Liver Physiol. 2017, 312, G133–G144. [Google Scholar] [CrossRef]
- Kinoshita, H.; Hayakawa, Y.; Konishi, M.; Hata, M.; Tsuboi, M.; Hayata, Y.; Hikiba, Y.; Ihara, S.; Nakagawa, H.; Ikenoue, T.; et al. Three Types of Metaplasia Model through Kras Activation, Pten Deletion, or CDH1 Deletion in the Gastric Epithelium. J. Pathol. 2019, 247, 35–47. [Google Scholar] [CrossRef]
- Nomura, S.; Settle, S.H.; Leys, C.M.; Means, A.L.; Peek, R.M., Jr.; Leach, S.D.; Wright, C.V.; Coffey, R.J.; Goldenring, J.R. Evidence for Repatterning of the Gastric Fundic Epithelium Associated with Menetrier’s Disease and TGFalpha Overexpression. Gastroenterology 2005, 128, 1292–1305. [Google Scholar] [CrossRef]
- Okumura, T.; Ericksen, R.E.; Takaishi, S.; Wang, S.S.W.; Dubeykovskiy, Z.; Shibata, W.; Betz, K.S.; Muthupalani, S.; Rogers, A.B.; Fox, J.G.; et al. K-ras Mutation Targeted to Gastric Tissue Progenitor Cells Results in Chronic Inflammation, an Altered Microenvironment, and Progression to Intraepithelial Neoplasia. Cancer Res. 2010, 70, 8435–8445. [Google Scholar] [CrossRef] [Green Version]
- Thiem, S.; Eissmann, M.F.; Elzer, J.; Jonas, A.; Putoczki, T.L.; Poh, A.; Nguyen, P.; Preaudet, A.; Flanagan, D.; Vincan, E.; et al. Stomach-Specific Activation of Oncogenic KRAS and STAT3-Dependent Inflammation Cooperatively Promote Gastric Tumorigenesis in a Preclinical Model. Cancer Res. 2016, 76, 2277–2287. [Google Scholar] [CrossRef] [Green Version]
- Worthley, D.L.; Churchill, M.; Compton, J.T.; Tailor, Y.; Rao, M.; Si, Y.; Levin, D.; Schwartz, M.G.; Uygur, A.; Hayakawa, Y.; et al. Gremlin 1 Identifies a Skeletal Stem Cell with Bone, Cartilage, and Reticular Stromal Potential. Cell 2015, 160, 269–284. [Google Scholar] [CrossRef] [Green Version]
- Sigal, M.; Reines, M.D.M.; Mullerke, S.; Fischer, C.; Kapalczynska, M.; Berger, H.; Bakker, E.R.M.; Mollenkopf, H.J.; Rothenberg, M.E.; Wiedenmann, B.; et al. R-spondin-3 Induces Secretory, Antimicrobial Lgr5+ Cells in the Stomach. Nat. Cell Biol. 2019, 21, 812–823. [Google Scholar] [CrossRef]
- Stange, D.E.; Koo, B.-K.; Huch, M.; Sibbel, G.; Basak, O.; Lyubimova, A.; Kujala, P.; Bartfeld, S.; Koster, J.; Geahlen, J.H.; et al. Differentiated Troy+ Chief Cells Act as Reserve Stem Cells to Generate All Lineages of the Stomach Epithelium. Cell 2013, 155, 357–368. [Google Scholar] [CrossRef] [Green Version]
- Satoh-Takayama, N.; Kato, T.; Motomura, Y.; Kageyama, T.; Taguchi-Atarashi, N.; Kinoshita-Daitoku, R.; Kuroda, E.; Di Santo, J.P.; Mimuro, H.; Moro, K.; et al. Bacteria-Induced Group 2 Innate Lymphoid Cells in the Stomach Provide Immune Protection through Induction of IgA. Immunity 2020, 52, 635–649.e4. [Google Scholar] [CrossRef]
- Han, L.; Chaturvedi, P.; Kishimoto, K.; Koike, H.; Nasr, T.; Iwasawa, K.; Giesbrecht, K.; Witcher, P.C.; Eicher, A.; Haines, L.; et al. Single Cell Transcriptomics Identifies a Signaling Network Coordinating Endoderm and Mesoderm Diversification during Foregut Organogenesis. Nat. Commun. 2020, 11, 4158. [Google Scholar] [CrossRef]
- Hata, M.; Kinoshita, H.; Hayakawa, Y.; Konishi, M.; Tsuboi, M.; Oya, Y.; Kurokawa, K.; Hayata, Y.; Nakagawa, H.; Tateishi, K.; et al. GPR30-Expressing Gastric Chief Cells Do Not Dedifferentiate but Are Eliminated via PDK-Dependent Cell Competition During Development of Metaplasia. Gastroenterology 2020, 158, 1650–1666. [Google Scholar] [CrossRef]
- Nam, K.T.; Lee, H.J.; Sousa, J.F.; Weis, V.G.; O’Neal, R.L.; Finke, P.E.; Romero-Gallo, J.; Shi, G.; Mills, J.C.; Peek, L.M.; et al. Mature Chef Cells Are Cryptic Progenitors for Metaplasia in the Stomach. Gastroenterology 2010, 139, 2028–2037.e9. [Google Scholar] [CrossRef] [Green Version]
- Kinoshita, H.; Hayakawa, Y.; Niu, Z.; Konishi, M.; Hata, M.; Tsuboi, M.; Hayata, Y.; Hikiba, Y.; Ihara, S.; Nakagawa, H.; et al. Mature Gastric Chief Cells Are Not Required for the Development of Metaplasia. Am. J. Physiol. Liver Physiol. 2018, 314, G583–G596. [Google Scholar] [CrossRef]
- Burclaff, J.; Willet, S.G.; Sáenz, J.B.; Mills, J.C. Proliferation and Differentiation of Gastric Mucous Neck and Chief Cells During Homeostasis and Injury-induced Metaplasia. Gastroenterology 2020, 158, 598–609.e5. [Google Scholar] [CrossRef]
- Sarkar, A.; Huebner, A.J.; Sulahian, R.; Anselmo, A.; Xu, X.; Flattery, K.; Desai, N.; Sebastian, C.; Yram, M.A.; Arnold, K.; et al. Sox2 Suppresses Gastric Tumorigenesis in Mice. Cell Rep. 2016, 16, 1929–1941. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.B.; Yang, G.; Zhu, L.; Tang, Y.L.; Zhang, C.; Ju, Z.; Yang, X.; Teng, Y. Gastric Lgr5+ Stem Cells Are the Cellular Origin of Invasive Intestinal-Type Gastric Cancer in Mice. Cell Res. 2016, 26, 838–849. [Google Scholar] [CrossRef] [PubMed]
- Sigal, M.; Rothenberg, M.E.; Logan, C.Y.; Lee, J.Y.; Honaker, R.W.; Cooper, R.L.; Passarelli, B.; Camorlinga, M.; Bouley, D.M.; Alvarez, G.; et al. Helicobacter pylori Activates and Expands Lgr5+ Stem Cells Through Direct Colonization of the Gastric Glands. Gastroenterology 2015, 148, 1392–1404.e21. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.M.; Hayakawa, Y.; Kodama, Y.; Muthupalani, S.; Westphalen, C.B.; Andersen, G.T.; Flatberg, A.; Johannessen, H.; Friedman, R.A.; Renz, B.W.; et al. Denervation Suppresses Gastric Tumorigenesis. Sci. Transl. Med. 2014, 6, 250ra115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van den Brink, G.R.; Hardwick, J.C.; Tytgat, G.N.; Brink, M.A.; Ten Kate, F.J.; Van Deventer, S.J.; Peppelenbosch, M.P. Sonic Hedgehog Regulates Gastric Gland Morphogenesis in Man and Mouse. Gastroenterology 2001, 121, 317–328. [Google Scholar] [CrossRef] [Green Version]
- van den Brink, G.R.; Hardwick, J.C.; Nielsen, C.; Xu, C.; ten Kate, F.J.; Glickman, J.; van Deventer, S.J.; Roberts, D.J.; Peppelenbosch, M.P. Sonic Hedgehog Expression Correlates with Fundic Gland Differentiation in the Adult Gastrointestinal Tract. Gut 2002, 51, 628–633. [Google Scholar] [CrossRef]
- Todisco, A. Regulation of Gastric Metaplasia, Dysplasia, and Neoplasia by Bone Morphogenetic Protein Signaling. Cell. Mol. Gastroenterol. Hepatol. 2017, 3, 339–347. [Google Scholar] [CrossRef] [Green Version]
- Gifford, G.B.; Demitrack, E.S.; Keeley, T.M.; Tam, A.; La Cunza, N.; Dedhia, P.; Spence, J.R.; Simeone, D.M.; Saotome, I.; Louvi, A.; et al. Notch1 and Notch2 Receptors Regulate Mouse and Human Gastric Antral Epithelial Cell Homoeostasis. Gut 2016, 66, 1001–1011. [Google Scholar] [CrossRef]
- Demitrack, E.S.; Samuelson, L.C. Notch Regulation of Gastrointestinal Stem Cells. J. Physiol. 2016, 594, 4791–4803. [Google Scholar] [CrossRef] [Green Version]
- Lv, Y.Q.; Wu, J.; Li, X.K.; Zhang, J.S.; Bellusci, S. Role of FGF10/FGFR2b Signaling in Mouse Digestive Tract Development, Repair and Regeneration Following Injury. Front. Cell Dev. Biol. 2019, 7, 326. [Google Scholar] [CrossRef]
- Oshima, H.; Matsunaga, A.; Fujimura, T.; Tsukamoto, T.; Taketo, M.M.; Oshima, M. Carcinogenesis in Mouse Stomach by Simultaneous Activation of the Wnt Signaling and Prostaglandin E2 Pathway. Gastroenterology 2006, 131, 1086–1095. [Google Scholar] [CrossRef] [Green Version]
- Radulescu, S.; Ridgway, R.A.; Cordero, J.; Athineos, D.; Salgueiro, P.; Poulsom, R.; Neumann, J.; Jung, A.; Patel, S.; Woodgett, J.; et al. Acute WNT Signalling Activation Perturbs Differentiation within the Adult Stomach and Rapidly Leads to Tumour Formation. Oncogene 2013, 32, 2048–2057. [Google Scholar] [CrossRef] [Green Version]
- Hayakawa, Y.; Jin, G.; Wang, H.; Chen, X.; Westphalen, C.B.; Asfaha, S.; Renz, B.W.; Ariyama, H.; Dubeykovskaya, Z.A.; Takemoto, Y.; et al. CCK2R Identifies and Regulates Gastric Antral Stem Cell States and Carcinogenesis. Gut 2015, 64, 544–553. [Google Scholar] [CrossRef] [Green Version]
- HUMAN CELL ATLAS. Available online: https://hca-organoid.eu/ (accessed on 13 January 2022).
- Bock, C.; Boutros, M.; Camp, J.G.; Clarke, L.; Clevers, H.; Knoblich, J.A.; Liberali, P.; Regev, A.; Rios, A.C.; Stegle, O.; et al. The Organoid Cell Atlas. Nat. Biotechnol. 2021, 39, 13–17. [Google Scholar] [CrossRef]
- Giancola, R.; Bonfini, T.; Iacone, A. Cell Therapy: cGMP Facilities and Manufacturing. Muscles Ligaments Tendons J. 2012, 2, 243–247. [Google Scholar]
- Miyoshi, N.; Ishii, H.; Nagai, K.; Hoshino, H.; Mimori, K.; Tanaka, F.; Nagano, H.; Sekimoto, M.; Doki, Y.; Mori, M. Defined Factors Induce Reprogramming of Gastrointestinal Cancer Cells. Proc. Natl. Acad. Sci. USA 2010, 107, 40–45. [Google Scholar] [CrossRef] [Green Version]
- Hoshino, H.; Nagano, H.; Haraguchi, N.; Nishikawa, S.; Tomokuni, A.; Kano, Y.; Fukusumi, T.; Saito, T.; Ozaki, M.; Sakai, D.; et al. Hypoxia and TP53 Deficiency for Induced Pluripotent Stem Cell-like Properties in Gastrointestinal Cancer. Int. J. Oncol. 2012, 40, 1423–1430. [Google Scholar]
- Oshima, N.; Yamada, Y.; Nagayama, S.; Kawada, K.; Hasegawa, S.; Okabe, H.; Sakai, Y.; Aoi, T. Induction of Cancer Stem Cell Properties in Colon Cancer Cells by Defined Factors. PLoS ONE 2014, 9, e101735. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Z.; Xu, J.; Li, L.; Ye, W.; Xu, G.; Chen, B.; Zeng, J.; Li, J.; Huang, Z. Effect of Gastric Cancer Stem Cell on Gastric Cancer Invasion, Migration and Angiogenesis. Int. J. Med. Sci. 2020, 17, 2040–2051. [Google Scholar] [CrossRef]
- Xue, Z.; Yan, H.; Li, J.; Liang, S.; Cai, X.; Chen, X.; Wu, Q.; Gao, L.; Wu, K.; Nie, Y.; et al. Identification of Cancer Stem Cells in Vincristine Preconditioned SGC7901 Gastric Cell Line. J. Cell Biochem. 2012, 113, 302–312. [Google Scholar] [CrossRef] [PubMed]
- RIKEN BRC Cell Engineering Division. Available online: https://cell.brc.riken.jp/en/ (accessed on 13 January 2022).
- Tabernero, J.; Hoff, P.M.; Shen, L.; Ohtsu, A.; Shah, M.A.; Cheng, K.; Song, C.; Wu, H.; Eng-Wong, J.; Kim, K.; et al. Pertuzumab Plus Trastuzumab and Chemotherapy for HER2-Positive Metastatic Gastric or Gastro-Oesophageal Junction Cancer (JACOB): Final Analysis of a Double-Blind, Randomised, Placebo-Controlled Phase 3 Study. Lancet Oncol. 2018, 19, 1372–1384. [Google Scholar] [CrossRef]
- Bang, Y.J.; Van Cutsem, E.; Feyereislova, A.; Chung, H.C.; Shen, L.; Sawaki, A.; Lordick, F.; Ohtsu, A.; Omuro, Y.; Satoh, T. ToGA Trial Investigators.; et al. Trastuzumab in Combination with Chemotherapy versus Chemotherapy Alone for Treatment of HER2-Positive Advanced Gastric or Gastro-Oesophageal Junction Cancer (ToGA): A Phase 3, Open-Label, Randomised Controlled Trial. Lancet 2010, 376, 687–697. [Google Scholar] [CrossRef]
- Hecht, J.R.; Bang, Y.J.; Qin, S.K.; Chung, H.C.; Xu, J.M.; Park, J.O.; Jeziorski, K.; Shparyk, Y.; Hoff, P.M.; Sobrero, A.; et al. Lapatinib in Combination with Capecitabine Plus Oxaliplatin in Human Epidermal Growth Factor Receptor 2-Positive Advanced or Gastric, Esophageal, or Gastroesophageal Adenocarcinoma: TRIO-013/LOGiC—A Randomized Phase III Trial. J. Clin. Oncol. 2016, 34, 443–451. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stang, A. Critical Evaluation of the Newcastle-Ottawa Scale for the Assessment of the Quality of Nonrandomized Studies in Meta-Analyses. Eur. J. Epidemiol. 2010, 25, 603–605. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Levine, A. P53, the Cellular Gatekeeper for Growth and Division. Cell 1997, 88, 323–331. [Google Scholar] [CrossRef] [Green Version]
- Jaenisch, R.; Young, R. Stem Cells, the Molecular Circuitry of Pluripotency and Nuclear Reprogramming. Cell 2008, 132, 567–582. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.; Lu, H.; Sun, Y.; Liu, L.; Wang, H. Prognostic Value of Octmer Binding Transcription Factor 4 for Patients with Solid Tumors. A Meta-Analysis. Medicine 2020, 99, 42. [Google Scholar]
- Guo, F.; Yang, T.; Wang, Y. The Clinical and Prognostic Significnce of LGR5 in GC: A Meta-analysis of IHC Assay and Bioinformatics Analsysis. Neoplasdia 2021, 68, 842–851. [Google Scholar] [CrossRef]
- Jiang, W.L.; Zhang, P.F.; Li, G.F.; Dong, J.H.; Wang, X.S.; Wang, Y.Y. Oct-4 is Associated with Gastric Cancer Progression and Prognosis. Onco. Targets Ther. 2016, 9, 517–522. [Google Scholar]
- Javanbakht, M.; Akhavanmoghadam, J.; Talaei, A.J.; Aghyani, M.; Mozafari, M.; Khedmat, L.; Mohebbi, M. Differential Expression of Two Genes Oct-4 and MUC5AC Associates with Poor Outcome in Patients with Gastric Cancer. Clin. Exp. Pharmacol. Physiol. 2017, 44, 1099–1105. [Google Scholar] [CrossRef]
- El-Guindy, D.M.; Wasfy, R.E.; Abdel Ghafar, M.T.; Ali, D.A.; Elkady, A.M. Oct4 Expression in Gastric Carcinoma: Association with Tumor Proliferation, Angiogenesis, and Survival. J. Egypt Natl. Canc. Inst. 2019, 31, 3. [Google Scholar] [CrossRef] [Green Version]
- Kong, D.; Su, G.; Zha, L.; Zhang, H.; Xiang, J.; Xu, W.; Tang, Y.; Wang, Z. Coexpression of HMGA2 and Oct4 Predicts an Unfavorable Prognosis in Human Gastric Cancer. Med. Oncol. 2014, 31, 130. [Google Scholar] [CrossRef]
- Matsuoka, J.; Yashiro, M.; Sakurai, K.; Kubo, N.; Tanaka, H.; Muguruma, K.; Sawada, T.; Ohira, M.; Hirakawa, K. Role of the Stemness Factors sox2, oct3/4, and Nanog in Gastric Carcinoma. J. Surg. Res. 2012, 174, 130–135. [Google Scholar] [CrossRef]
- Li, N.; Deng, W.; Ma, J.; Wei, B.; Guo, K.; Shen, W.; Zhang, Y.; Luo, S. Prognostic Evaluation of Nanog, Oct4, Sox2, PCNA, Ki67 and E-cadherin Expression in Gastric Cancer. Med. Oncol. 2015, 32, 433. [Google Scholar] [CrossRef]
- Yang, L.; Xu, J.F.; Kang, Q.; Li, A.Q.; Lin, P.; Wang, X.; He, Y.Q.; Li, N.; Cheng, T.; Sheng, J.Q. Predictive Value of Stemness Factor Sox2 in Gastric Cancer Is Associated with Tumor Location and Stage. PLoS ONE 2017, 12, e0169124. [Google Scholar] [CrossRef]
- Zhang, X.; Yu, H.; Yang, Y.; Zhu, R.; Bai, J.; Peng, Z.; He, Y.; Chen, L.; Chen, W.; Fang, D.; et al. SOX2 in Gastric Carcinoma, but Not Hath1, Is Related to Patients’ Clinicopathological Features and Prognosis. J. Gastrointest. Surg. 2010, 14, 1220–1226. [Google Scholar] [CrossRef]
- Camilo, V.; Barros, R.; Celestino, R.; Castro, P.; Vieira, J.; Teixeira, M.R.; Carneiro, F.; Pinto-de-Sousa, J.; David, L.; Almeida, R. Immunohistochemical Molecular Phenotypes of Gastric Cancer Based on SOX2 and CDX2 Predict Patient Outcome. BMC Cancer 2014, 14, 753. [Google Scholar] [CrossRef] [Green Version]
- Simon, E.; Petke, D.; Böger, C.; Behrens, H.M.; Warneke, V.; Ebert, M.; Röcken, C. The Spatial Distribution of LGR5+ Cells Correlates with Gastric Cancer Progression. PLoS ONE 2012, 7, e35486. [Google Scholar] [CrossRef] [Green Version]
- Bu, Z.; Zheng, Z.; Zhang, L.; Li, Z.; Sun, Y.; Dong, B.; Wu, A.; Wu, X.; Wang, X.; Cheng, X.; et al. LGR5 is a Promising Biomarker for Patients with Stage I and II Gastric Cancer. J. Chin. J. Cancer Res. 2013, 25, 79–89. [Google Scholar]
- Xi, H.Q.; Cai, A.Z.; Wu, X.S.; Cui, J.X.; Shen, W.S.; Bian, S.B.; Wang, N.; Li, J.Y.; Lu, C.R.; Song, Z.; et al. Leucine-Rich Repeat-Containing G-Protein-Coupled Receptor 5 is Associated with Invasion, Metastasis, and Could be a Potential Therapeutic Target in Human Gastric Cancer. Br. J. Cancer 2014, 110, 2011–2020. [Google Scholar] [CrossRef] [Green Version]
- Choi, Y.; Park, J.; Ko, Y.S.; Kim, Y.; Pyo, J.S.; Jang, B.G.; Kim, M.A.; Lee, J.S.; Chang, M.S.; Lee, B.L. FOXO1 Reduces Tumorsphere Formation Capacity and Has Crosstalk with LGR5 Signaling in Gastric Cancer Cells. Biochem. Biophys. Res. Commun. 2017, 493, 1349–1355. [Google Scholar] [CrossRef]
- Liu, X.S.; Lin, X.K.; Mei, Y.; Ahmad, S.; Yan, C.X.; Jin, H.L.; Yu, H.; Chen, C.; Lin, C.Z.; Yu, J.R. Regulatory T Cells Promote Overexpression of Lgr5 on Gastric Cancer Cells via TGF-beta1 and Confer Poor Prognosis in Gastric Cancer. Front. Immunol. 2019, 10, 1741. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.H.; Song, L.B.; Zhang, X.; Guo, B.H.; Feng, Y.; Li, X.X.; Liao, W.T.; Zeng, M.S.; Huang, K.H. Bmi-1 Expression Predicts Prognosis for Patients with Gastric Carcinoma. J. Surg. Oncol. 2008, 97, 267–272. [Google Scholar] [CrossRef]
- Zhang, X.W.; Sheng, Y.P.; Li, Q.; Qin, W.; Lu, Y.W.; Cheng, Y.F.; Liu, B.Y.; Zhang, F.C.; Li, J.; Dimri, G.P.; et al. BMI1 and Mel-18 Oppositely Regulate Carcinogenesis and Progression of Gastric Cancer. Mol. Cancer 2010, 9, 40. [Google Scholar] [CrossRef] [Green Version]
- Yang, D.D.; Cui, B.B.; Sun, L.Y.; Zheng, H.Q.; Huang, Q.; Tong, J.X.; Zhang, Q.F. The Co-expression of USP22 and BMI-1 may Promote Cancer Progression and Predict Therapy Failure in Gastric Carcinoma. Cell Biochem. Biophys. 2011, 61, 703–710. [Google Scholar] [CrossRef]
- Wu, C.; Zheng, X.; Li, X.; Fesler, A.; Hu, W.; Chen, L.; Xu, B.; Wang, Q.; Tong, A.; Burke, S.; et al. Reduction of Gastric Cancer Proliferation and Invasion by miR-15a Mediated Suppression of Bmi-1 Translation. Oncotarget 2016, 7, 14522–14536. [Google Scholar] [CrossRef] [Green Version]
- Lu, H.; Sun, H.Z.; Li, H.; Cong, M. The Clinicopathological Significance of Bmi-1 Expression in Pathogenesis and Progression of Gastric Carcinomas. Asian Pac. J. Cancer Prev. 2012, 13, 3437–3441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, T.; Ding, Y.Q.; Li, J.M. Overexpression of Nanog Protein Is Associated with Poor Prognosis in Gastric Adenocarcinoma. Med. Oncol. 2012, 29, 878–885. [Google Scholar] [CrossRef] [PubMed]
Region | Stem Cell | Driver Mutations/Cancers |
---|---|---|
[Antrum] | 1. LGR5 basal stem cells 2. +4 stem cells 3. Tumor-resident LGR5 (CLAUDIN18) | • SMAD, PTEN → Invasive cancer ↑κRAS/TP53 • APC → Adenoma Intramucosal dysplasia • WNT → Invasive cancer, Advance GC RAS TP53 |
[Fundus/corpus] | 1. MIST1 isthmus stem cells | • κRAS → Metaplasia → APC → intestinal-type cancer • CDH1 → + inflammation → Intramucosal signet-ring cancer → RHOA, TP53 → Invasive diffuse-type cancer |
References | Original Cells | Methodology | Teratoma Tumor Formation | Features |
---|---|---|---|---|
Miyoshi et al. [76] Proc Natl Acad Sci USA 107(1): 40–45. (2010) | Human gastrointestinal cells | Lentivirus Retrovirus + Lipofectamine OSLM, Nanog, LIN 28, BCL2, κRAS, and tumor suppressor shRNA | Yes | To 5-Fu and differentiation inducing resistance |
Hoshino et al. [77] Int J Oncol 40(5):1423–30. (2012) | HCT116 or HCT116 (TP53−/−) | Lentivirus OSLN+ hypoxia | Yes | Highly aggressive |
Oshima et al. [78] PLoS ONE 9(7): e101735. (2014) | Colorectal cancer SW480 DLD-1 | Retrovirus OSK | Yes | CSCs features enhanced tumorgenicity |
Zhu et al. [79] Int J Med Sci 17(13):2040–2051. (2020) | Human gastric cancer cell line SGC7901 Xue et al. [80] (J Cell Biochem 113:302-312, 2012) | Selection of SOX2, OCT4, CD44, CD133 | Yes | CSC-G clone |
RIKEN BRC Cell Engineering Division [81] https://cell.brc.riken.jp/en/ (accessed on 13 January 2022) | Gastric cancer patents | iPS methodology | Yes | HPS3574~3585 HPS3558~3573 |
CSC Markers | Country Year | Patients Age (Year) | Sample Size (Number) | TMM Stage | Outcome | NOS * Score | Reference |
---|---|---|---|---|---|---|---|
1. OCT4 | China ~2010 | 62 | 412 | I–IV | OS | 7 | [90] |
2. OCT4 | Iran ~2014 | 59.3 | 40 | I–IV | OS | 6 | [91] |
3. OCT4 | Egypt ~2016 | 44 | 45 | I–III | OS, DFS | 6 | [92] |
4. OCT4 | China ~2014 | NR | 158 | I–IV | OS | 8 | [93] |
5. OCT4 | Japan ~2012 | NR | 290 | I–IV | OS | 8 | [94] |
6. OCT4 | China, Korea, Slovenia, Iran Denmark, Japan ~2020 | NR | 5198 | I–IV | OS | 6-8 | [88] |
7. SOX2 OCT4 NANOG | Japan ~2012 | NR | 290 | I–IV | OS | 6 | [94] |
8. SOX2 OCT4 NANOG | China ~2009 | 55 | 69 | I–III | OS, DFS | 8 | [95] |
9. SOX2 ALDH | China ~2013 | 63 | 122 | I–IV | OS | 8 | [96] |
10. SOX2 | China ~2004 | 58 | 50 | I–IV | OS | 7 | [97] |
11. SOX2 | Portugal ~2010 | 66.5 | 201 | I–IV | OS | 8 | [98] |
12. LGR5 | Germany ~2009 | 68 | 487 | I–IV | OS | 6 | [99] |
13. LGR5 | China ~2009 | 61 | 257 | I–IV | OS | 8 | [100] |
14. LGR5 | China ~2004 | 60 | 318 | I–IV | OS | 7 | [101] |
15. LGR5 | Korea ~2006 | 60 | 456 | I–IV | CSS | 6 | [102] |
16. LGR5 | China ~2014 | 60 | 100 | I–III | OS | 8 | [89,103] |
17. BMI1 | China ~2002 | 60 | 146 | I–IV | OS | 7 | [104] |
18. BMI1 | China ~2004 | 60 | 75 | I–IV | OS | 7 | [105] |
19. BMI1 | China ~2005 | 60 | 219 | I–IV | DSS | 7 | [106] |
20. BMI1 | China NR | 60 | 352 | I–IV | OS | 6 | [107] |
21. BMI1 | China ~2001 | 55 | 309 | NR | OS | 7 | [108] |
22.NANOG | China NR | 50 | 105 | I–IV | OS | 7 | [109] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wuputra, K.; Ku, C.-C.; Pan, J.-B.; Liu, C.-J.; Liu, Y.-C.; Saito, S.; Kato, K.; Lin, Y.-C.; Kuo, K.-K.; Chan, T.-F.; et al. Stem Cell Biomarkers and Tumorigenesis in Gastric Cancer. J. Pers. Med. 2022, 12, 929. https://doi.org/10.3390/jpm12060929
Wuputra K, Ku C-C, Pan J-B, Liu C-J, Liu Y-C, Saito S, Kato K, Lin Y-C, Kuo K-K, Chan T-F, et al. Stem Cell Biomarkers and Tumorigenesis in Gastric Cancer. Journal of Personalized Medicine. 2022; 12(6):929. https://doi.org/10.3390/jpm12060929
Chicago/Turabian StyleWuputra, Kenly, Chia-Chen Ku, Jia-Bin Pan, Chung-Jung Liu, Yi-Chang Liu, Shigeo Saito, Kohsuke Kato, Ying-Chu Lin, Kung-Kai Kuo, Te-Fu Chan, and et al. 2022. "Stem Cell Biomarkers and Tumorigenesis in Gastric Cancer" Journal of Personalized Medicine 12, no. 6: 929. https://doi.org/10.3390/jpm12060929
APA StyleWuputra, K., Ku, C. -C., Pan, J. -B., Liu, C. -J., Liu, Y. -C., Saito, S., Kato, K., Lin, Y. -C., Kuo, K. -K., Chan, T. -F., Chong, I. -W., Lin, C. -S., Wu, D. -C., & Yokoyama, K. K. (2022). Stem Cell Biomarkers and Tumorigenesis in Gastric Cancer. Journal of Personalized Medicine, 12(6), 929. https://doi.org/10.3390/jpm12060929