Recent Advances in the Management of Relapsed and Refractory Peripheral T-Cell Lymphomas
Abstract
:1. Introduction
2. Current Standard of Care for Relapsed/Refractory PTCL
2.1. Romidepsin
2.2. Belinostat
2.3. Pralatrexate
2.4. Bendamustine
2.5. Gemcitabine
2.6. ICE: Ifosfamide + Carboplatin + Etoposide
2.7. Brentuximab Vedotin
3. Emerging Novel Agents for Relapsed/Refractory PTCL
3.1. Duvelisib
3.2. Valemetostat
3.3. MEDI-570
4. Combination Therapies in Relapsed/Refractory PTCL
4.1. Bendamustine Combination Treatments
4.1.1. BCD: Bendamustine + Carboplatin + Dexamethasone
4.1.2. Bendamustine + Brentuximab Vedotin
4.2. Romidepsin Combinations
4.2.1. Romidepsin + 5-Azacytidine
4.2.2. Romidepsin + Pralatrexate
4.2.3. Romidepsin + Duvelisib
5. Additional Approaches
5.1. CD47 Inhibition
5.2. Ruxolitinib
5.3. ITK Inhibitors
5.4. Nanatinostat
6. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Swerdlow, S.H.; Campo, E.; Pileri, S.A.; Harris, N.L.; Stein, H.; Siebert, R.; Advani, R.; Ghielmini, M.; Salles, G.A.; Zelenetz, A.D.; et al. The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood 2016, 127, 2375–2390. [Google Scholar] [CrossRef] [Green Version]
- Vose, J.; Armitage, J.; Weisenburger, D.; Project, I.T.-C.L. International peripheral T-cell and natural killer/T-cell lymphoma study: Pathology findings and clinical outcomes. J. Clin. Oncol. 2008, 26, 4124–4130. [Google Scholar] [CrossRef]
- Anderson, J.R.; Armitage, J.O.; Weisenburger, D.D. Epidemiology of the non-Hodgkin’s lymphomas: Distributions of the major subtypes differ by geographic locations. Non-Hodgkin’s Lymphoma Classification Project. Ann. Oncol. 1998, 9, 717–720. [Google Scholar] [CrossRef]
- Moskowitz, A.J.; Lunning, M.A.; Horwitz, S.M. How I treat the peripheral T-cell lymphomas. Blood 2014, 123, 2636–2644. [Google Scholar] [CrossRef] [Green Version]
- Zain, J.M. Aggressive T-cell lymphomas: 2019 updates on diagnosis, risk stratification, and management. Am. J. Hematol. 2019, 94, 929–946. [Google Scholar] [CrossRef] [Green Version]
- Ellin, F.; Landström, J.; Jerkeman, M.; Relander, T. Real-world data on prognostic factors and treatment in peripheral T-cell lymphomas: A study from the Swedish Lymphoma Registry. Blood 2014, 124, 1570–1577. [Google Scholar] [CrossRef] [Green Version]
- Savage, K.J.; Chhanabhai, M.; Gascoyne, R.D.; Connors, J.M. Characterization of peripheral T-cell lymphomas in a single North American institution by the WHO classification. Ann. Oncol. 2004, 15, 1467–1475. [Google Scholar] [CrossRef]
- Carson, K.R.; Horwitz, S.M.; Pinter-Brown, L.C.; Rosen, S.T.; Pro, B.; Hsi, E.D.; Federico, M.; Gisselbrecht, C.; Schwartz, M.; Bellm, L.A.; et al. A prospective cohort study of patients with peripheral T-cell lymphoma in the United States. Cancer 2017, 123, 1174–1183. [Google Scholar] [CrossRef]
- Horwitz, S.; O’Connor, O.A.; Pro, B.; Illidge, T.; Fanale, M.; Advani, R.; Bartlett, N.L.; Christensen, J.H.; Morschhauser, F.; Domingo-Domenech, E.; et al. Brentuximab vedotin with chemotherapy for CD30-positive peripheral T-cell lymphoma (ECHELON-2): A global, double-blind, randomised, phase 3 trial. Lancet 2019, 393, 229–240. [Google Scholar] [CrossRef] [Green Version]
- Rogers, A.M.; Brammer, J.E. Hematopoietic Cell Transplantation and Adoptive Cell Therapy in Peripheral T Cell Lymphoma. Curr. Hematol. Malig. Rep. 2020, 15, 316–332. [Google Scholar] [CrossRef]
- Reimer, P.; Rüdiger, T.; Geissinger, E.; Weissinger, F.; Nerl, C.; Schmitz, N.; Engert, A.; Einsele, H.; Müller-Hermelink, H.K.; Wilhelm, M. Autologous stem-cell transplantation as first-line therapy in peripheral T-cell lymphomas: Results of a prospective multicenter study. J. Clin. Oncol. 2009, 27, 106–113. [Google Scholar] [CrossRef] [PubMed]
- Elstrom, R.L.; Martin, P.; Hurtado Rua, S.; Shore, T.B.; Furman, R.R.; Ruan, J.; Pearse, R.N.; Coleman, M.; Mark, T.; Leonard, J.P.; et al. Autologous stem cell transplant is feasible in very elderly patients with lymphoma and limited comorbidity. Am. J. Hematol. 2012, 87, 433–435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Network NCC (Ed.) T-Cell Lymphomas. In NCCN Clinical Practice Guidelines; National Comprehensive Cancer Network: Plymouth Meeting, PA, USA, 2020; Volume 2021. [Google Scholar]
- Corradini, P.; Dodero, A.; Farina, L.; Fanin, R.; Patriarca, F.; Miceli, R.; Matteucci, P.; Bregni, M.; Scimè, R.; Narni, F.; et al. Allogeneic stem cell transplantation following reduced-intensity conditioning can induce durable clinical and molecular remissions in relapsed lymphomas: Pre-transplant disease status and histotype heavily influence outcome. Leukemia 2007, 21, 2316–2323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- D’Amore, F.; Relander, T.; Lauritzsen, G.F.; Jantunen, E.; Hagberg, H.; Anderson, H.; Holte, H.; Österborg, A.; Merup, M.; Brown, P.; et al. Up-front autologous stem-cell transplantation in peripheral T-cell lymphoma: NLG-T-01. J. Clin. Oncol. 2012, 30, 3093–3099. [Google Scholar] [CrossRef] [PubMed]
- Mak, V.; Hamm, J.; Chhanabhai, M.; Shenkier, T.; Klasa, R.; Sehn, L.H.; Villa, D.; Gascoyne, R.D.; Connors, J.M.; Savage, K.J. Survival of patients with peripheral T-cell lymphoma after first relapse or progression: Spectrum of disease and rare long-term survivors. J. Clin. Oncol. 2013, 31, 1970–1976. [Google Scholar] [CrossRef]
- Chihara, D.; Fanale, M.A.; Miranda, R.N.; Noorani, M.; Westin, J.R.; Nastoupil, L.J.; Hagemeister, F.B.; Fayad, L.E.; Romaguera, J.E.; Samaniego, F.; et al. The survival outcome of patients with relapsed/refractory peripheral T-cell lymphoma-not otherwise specified and angioimmunoblastic T-cell lymphoma. Br. J. Haematol. 2017, 176, 750–758. [Google Scholar] [CrossRef] [Green Version]
- Zinzani, P.L.; Venturini, F.; Stefoni, V.; Fina, M.; Pellegrini, C.; Derenzini, E.; Gandolfi, L.; Broccoli, A.; Argnani, L.; Quirini, F.; et al. Gemcitabine as single agent in pretreated T-cell lymphoma patients: Evaluation of the long-term outcome. Ann. Oncol. 2010, 21, 860–863. [Google Scholar] [CrossRef]
- Piekarz, R.L.; Frye, R.; Prince, H.M.; Kirschbaum, M.H.; Zain, J.; Allen, S.L.; Jaffe, E.S.; Ling, A.; Turner, M.; Peer, C.J.; et al. Phase 2 trial of romidepsin in patients with peripheral T-cell lymphoma. Blood 2011, 117, 5827–5834. [Google Scholar] [CrossRef] [Green Version]
- O’Connor, O.A.; Pro, B.; Pinter-Brown, L.; Bartlett, N.; Popplewell, L.; Coiffier, B.; Lechowicz, M.J.; Savage, K.J.; Shustov, A.R.; Gisselbrecht, C.; et al. Pralatrexate in patients with relapsed or refractory peripheral T-cell lymphoma: Results from the pivotal PROPEL study. J. Clin. Oncol. 2011, 29, 1182–1189. [Google Scholar] [CrossRef]
- Damaj, G.; Gressin, R.; Bouabdallah, K.; Cartron, G.; Choufi, B.; Gyan, E.; Banos, A.; Jaccard, A.; Park, S.; Tournilhac, O.; et al. Results from a prospective, open-label, phase II trial of bendamustine in refractory or relapsed T-cell lymphomas: The BENTLY trial. J. Clin. Oncol. 2013, 31, 104–110. [Google Scholar] [CrossRef]
- Mikesch, J.H.; Kuhlmann, M.; Demant, A.; Krug, U.; Thoennissen, G.B.; Schmidt, E.; Kessler, T.; Schliemann, C.; Pohlen, M.; Mohr, M.; et al. DexaBEAM versus ICE salvage regimen prior to autologous transplantation for relapsed or refractory aggressive peripheral T cell lymphoma: A retrospective evaluation of parallel patient cohorts of one center. Ann. Hematol. 2013, 92, 1041–1048. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Zhang, M. Epigenetic alterations and advancement of treatment in peripheral T-cell lymphoma. Clin. Epigenet. 2020, 12, 169. [Google Scholar] [CrossRef]
- Ma, H.; O’Connor, O.A.; Marchi, E. New directions in treating peripheral T-cell lymphomas (PTCL): Leveraging epigenetic modifiers alone and in combination. Expert Rev. Hematol. 2019, 12, 137–146. [Google Scholar] [CrossRef] [PubMed]
- Ye, Y.; Ding, N.; Mi, L.; Shi, Y.; Liu, W.; Song, Y.; Shu, S.; Zhu, J. Correlation of mutational landscape and survival outcome of peripheral T-cell lymphomas. Exp. Hematol. Oncol. 2021, 10, 9. [Google Scholar] [CrossRef] [PubMed]
- Moskowitz, A.J.; Horwitz, S.M. Targeting histone deacetylases in T-cell lymphoma. Leuk Lymphoma 2017, 58, 1306–1319. [Google Scholar] [CrossRef]
- Kim, H.J.; Bae, S.C. Histone deacetylase inhibitors: Molecular mechanisms of action and clinical trials as anti-cancer drugs. Am. J. Transl. Res. 2011, 3, 166–179. [Google Scholar]
- Sanaei, M.; Kavoosi, F. Histone Deacetylases and Histone Deacetylase Inhibitors: Molecular Mechanisms of Action in Various Cancers. Adv. Biomed. Res. 2019, 8, 63. [Google Scholar] [CrossRef]
- Xu, W.S.; Parmigiani, R.B.; Marks, P.A. Histone deacetylase inhibitors: Molecular mechanisms of action. Oncogene 2007, 26, 5541–5552. [Google Scholar] [CrossRef] [Green Version]
- Mrakovcic, M.; Kleinheinz, J.; Fröhlich, L.F. p53 at the Crossroads between Different Types of HDAC Inhibitor-Mediated Cancer Cell Death. Int. J. Mol. Sci. 2019, 20, 2415. [Google Scholar] [CrossRef] [Green Version]
- Yan, W.; Liu, S.; Xu, E.; Zhang, J.; Zhang, Y.; Chen, X. Histone deacetylase inhibitors suppress mutant p53 transcription via histone deacetylase 8. Oncogene 2013, 32, 599–609. [Google Scholar] [CrossRef] [Green Version]
- Piekarz, R.L.; Robey, R.; Sandor, V.; Bakke, S.; Wilson, W.H.; Dahmoush, L.; Kingma, D.M.; Turner, M.L.; Altemus, R.; Bates, S.E. Inhibitor of histone deacetylation, depsipeptide (FR901228), in the treatment of peripheral and cutaneous T-cell lymphoma: A case report. Blood 2001, 98, 2865–2868. [Google Scholar] [CrossRef] [PubMed]
- Coiffier, B.; Pro, B.; Prince, H.M.; Foss, F.; Sokol, L.; Greenwood, M.; Caballero, D.; Borchmann, P.; Morschhauser, F.; Wilhelm, M.; et al. Results from a pivotal, open-label, phase II study of romidepsin in relapsed or refractory peripheral T-cell lymphoma after prior systemic therapy. J. Clin. Oncol. 2012, 30, 631–636. [Google Scholar] [CrossRef] [PubMed]
- Coiffier, B.; Pro, B.; Prince, H.M.; Foss, F.; Sokol, L.; Greenwood, M.; Caballero, D.; Morschhauser, F.; Wilhelm, M.; Pinter-Brown, L.; et al. Romidepsin for the treatment of relapsed/refractory peripheral T-cell lymphoma: Pivotal study update demonstrates durable responses. J. Hematol. Oncol. 2014, 7, 11. [Google Scholar] [CrossRef] [PubMed]
- O’Connor, O.A.; Horwitz, S.; Masszi, T.; Van Hoof, A.; Brown, P.; Doorduijn, J.; Hess, G.; Jurczak, W.; Knoblauch, P.; Chawla, S.; et al. Belinostat in Patients With Relapsed or Refractory Peripheral T-Cell Lymphoma: Results of the Pivotal Phase II BELIEF (CLN-19) Study. J. Clin. Oncol. 2015, 33, 2492–2499. [Google Scholar] [CrossRef] [Green Version]
- Johnston, P.B.; Cashen, A.F.; Nikolinakos, P.G.; Beaven, A.W.; Barta, S.K.; Bhat, G.; Hasal, S.J.; De Vos, S.; Oki, Y.; Deng, C.; et al. Belinostat in combination with standard cyclophosphamide, doxorubicin, vincristine and prednisone as first-line treatment for patients with newly diagnosed peripheral T-cell lymphoma. Exp. Hematol. Oncol. 2021, 10, 15. [Google Scholar] [CrossRef]
- Bachy, E.; Camus, V.; Thieblemont, C.; Sibon, D.; Casasnovas, R.O.; Ysebaert, L.; Damaj, G.; Guidez, S.; Pica, G.M.; Kim, W.S.; et al. Romidepsin Plus CHOP Versus CHOP in Patients With Previously Untreated Peripheral T-Cell Lymphoma: Results of the Ro-CHOP Phase III Study (Conducted by LYSA). J. Clin. Oncol. 2022, 40, 242–251. [Google Scholar] [CrossRef]
- O’Connor, O.A.; Horwitz, S.; Hamlin, P.; Portlock, C.; Moskowitz, C.H.; Sarasohn, D.; Neylon, E.; Mastrella, J.; Hamelers, R.; Macgregor-Cortelli, B.; et al. Phase II-I-II study of two different doses and schedules of pralatrexate, a high-affinity substrate for the reduced folate carrier, in patients with relapsed or refractory lymphoma reveals marked activity in T-cell malignancies. J. Clin. Oncol. 2009, 27, 4357–4364. [Google Scholar] [CrossRef]
- Hong, J.Y.; Yoon, D.H.; Yoon, S.E.; Kim, S.J.; Lee, H.S.; Eom, H.S.; Lee, H.W.; Shin, D.Y.; Koh, Y.; Yoon, S.S.; et al. Pralatrexate in patients with recurrent or refractory peripheral T-cell lymphomas: A multicenter retrospective analysis. Sci. Rep. 2019, 9, 20302. [Google Scholar] [CrossRef] [Green Version]
- Zhu, J.; Yeoh, E.M.; Maeda, Y.; Tobinai, K. Efficacy and safety of single-agent pralatrexate for treatment of angioimmunoblastic T-cell lymphoma after failure of first line therapy: A pooled analysis. Leuk. Lymphoma 2020, 61, 2145–2152. [Google Scholar] [CrossRef]
- Shustov, A.R.; Mehta, A.; Sokol, L.; Carvajal, L.A.; Guerlavais, V.; Samant, M.; Narasimhan, N.; Sutton, D.; Annis, D.A.; Pinchasik, D.; et al. Pseudoprogression (PsP) in Patients with Peripheral T-Cell Lymphoma (PTCL) Treated with the Novel Stapled Peptide ALRN-6924, a Dual Inhibitor of MDMX and MDM2. Blood 2018, 132 (Suppl. S1), 5348. [Google Scholar] [CrossRef]
- Zinzani, P.L.; Magagnoli, M.; Bendandi, M.; Orcioni, G.F.; Gherlinzoni, F.; Albertini, P.; Pileri, S.A.; Tura, S. Therapy with gemcitabine in pretreated peripheral T-cell lymphoma patients. Ann. Oncol. 1998, 9, 1351–1353. [Google Scholar] [CrossRef] [PubMed]
- Dong, M.; He, X.H.; Liu, P.; Qin, Y.; Yang, J.L.; Zhou, S.Y.; Yang, S.; Zhang, C.G.; Gui, L.; Zhou, L.Q.; et al. Gemcitabine-based combination regimen in patients with peripheral T-cell lymphoma. Med. Oncol. 2013, 30, 351. [Google Scholar] [CrossRef] [PubMed]
- Arkenau, H.T.; Chong, G.; Cunningham, D.; Watkins, D.; Sirohi, B.; Chau, I.; Wotherspoon, A.; Norman, A.; Horwich, A.; Matutes, E. Gemcitabine, cisplatin and methylprednisolone for the treatment of patients with peripheral T-cell lymphoma: The Royal Marsden Hospital experience. Haematologica 2007, 92, 271–272. [Google Scholar] [CrossRef] [Green Version]
- Van de Wyngaert, Z.; Coppo, P.; Cervera, P.; Fabiani, B.; Lemonnier, M.P.; Corre, E.; Marjanovic, Z.; Aoudjhane, M.; Mohty, M.; Duléry, R. Combination of brentuximab-vedotin and ifosfamide, carboplatin, etoposide in relapsed/refractory peripheral T-cell lymphoma. Eur. J. Haematol. 2021, 106, 467–472. [Google Scholar] [CrossRef] [PubMed]
- Horwitz, S.M.; Ansell, S.; Ai, W.Z.; Barnes, J.; Barta, S.K.; Clemens, M.W.; Dogan, A.; Goodman, A.M.; Goyal, G.; Guitart, J.; et al. NCCN Guidelines Insights: T-Cell Lymphomas, Version 1.2021. J. Natl. Compr. Cancer Netw. 2020, 18, 1460–1467. [Google Scholar] [CrossRef]
- Sabattini, E.; Pizzi, M.; Tabanelli, V.; Baldin, P.; Sacchetti, C.S.; Agostinelli, C.; Zinzani, P.L.; Pileri, S.A. CD30 expression in peripheral T-cell lymphomas. Haematologica 2013, 98, e81–e82. [Google Scholar] [CrossRef]
- Karube, K.; Kakimoto, Y.; Tonozuka, Y.; Ohshima, K. The expression of CD30 and its clinico-pathologic significance in peripheral T-cell lymphomas. Expert Rev. Hematol. 2021, 14, 777–787. [Google Scholar] [CrossRef]
- Savage, K.J.; Harris, N.L.; Vose, J.M.; Ullrich, F.; Jaffe, E.S.; Connors, J.M.; Rimsza, L.; Pileri, S.A.; Chhanabhai, M.; Gascoyne, R.D.; et al. ALK-anaplastic large-cell lymphoma is clinically and immunophenotypically different from both ALK+ ALCL and peripheral T-cell lymphoma, not otherwise specified: Report from the International Peripheral T-Cell Lymphoma Project. Blood 2008, 111, 5496–5504. [Google Scholar] [CrossRef]
- Bisig, B.; de Reyniès, A.; Bonnet, C.; Sujobert, P.; Rickman, D.S.; Marafioti, T.; Delsol, G.; Lamant, L.; Gaulard, P.; de Leval, L. CD30-positive peripheral T-cell lymphomas share molecular and phenotypic features. Haematologica 2013, 98, 1250–1258. [Google Scholar] [CrossRef]
- Pro, B.; Advani, R.; Brice, P.; Bartlett, N.L.; Rosenblatt, J.D.; Illidge, T.; Matous, J.; Ramchandren, R.; Fanale, M.; Connors, J.M.; et al. Brentuximab vedotin (SGN-35) in patients with relapsed or refractory systemic anaplastic large-cell lymphoma: Results of a phase II study. J. Clin. Oncol. 2012, 30, 2190–2196. [Google Scholar] [CrossRef] [Green Version]
- Pro, B.; Advani, R.; Brice, P.; Bartlett, N.L.; Rosenblatt, J.D.; Illidge, T.; Matous, J.; Ramchandren, R.; Fanale, M.; Connors, J.M.; et al. Five-year results of brentuximab vedotin in patients with relapsed or refractory systemic anaplastic large cell lymphoma. Blood 2017, 130, 2709–2717. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Horwitz, S.M.; Advani, R.H.; Bartlett, N.L.; Jacobsen, E.D.; Sharman, J.P.; O’Connor, O.A.; Siddiqi, T.; Kennedy, D.A.; Oki, Y. Objective responses in relapsed T-cell lymphomas with single-agent brentuximab vedotin. Blood 2014, 123, 3095–3100. [Google Scholar] [CrossRef] [Green Version]
- Barta, S.K.; Gong, J.Z.; Porcu, P. Brentuximab vedotin in the treatment of CD30+ PTCL. Blood 2019, 134, 2339–2345. [Google Scholar] [CrossRef] [PubMed]
- Stefoni, V.; Corradini, P.; Orsucci, L.; Volpetti, S.; Argnani, L.; Dodero, A.; Pellegrini, C.; Zinzani, P.L. Brentuximab Vedotin As Single Agent in the Treatment of Relapsed/Refractory CD30 Positive Peripheral T-Cell Lymphoma Patients: A Phase 2 Study of the Fondazione Italiana Linfomi. Blood 2020, 136 (Suppl. S1), 21. [Google Scholar] [CrossRef]
- Horwitz, S.M.; Koch, R.; Porcu, P.; Oki, Y.; Moskowitz, A.; Perez, M.; Myskowski, P.; Officer, A.; Jaffe, J.D.; Morrow, S.N.; et al. Activity of the PI3K-delta,gamma inhibitor duvelisib in a phase 1 trial and preclinical models of T-cell lymphoma. Blood 2018, 131, 888–898. [Google Scholar] [CrossRef]
- Brammer, J.E. Dual PI3K blockade: PTCL’s Achilles heel? Blood 2018, 131, 839–840. [Google Scholar] [CrossRef] [Green Version]
- Brammer, J.E.; Zinzani, P.L.; Zain, J.; Mead, M.; Casulo, C.; Jacobsen, E.D.; Gritti, G.; Litwak, D.; Cohan, D.; Katz, D.J.; et al. Duvelisib in Patients with Relapsed/Refractory Peripheral T-Cell Lymphoma from the Phase 2 Primo Trial: Results of an Interim Analysis. Blood 2021, 138, 2456. [Google Scholar] [CrossRef]
- Yoshimitsu, M.; Izutsu, K.; Makita, S.; Nosaka, K.; Utsunomiya, A.; Kusumoto, S.; Morishima, S.; Tsukasaki, K.; Kawamata, T.; Ono, T.; et al. Pivotal Phase 2 Study of the EZH1 and EZH2 Inhibitor Valemetostat Tosylate (ds-3201B) in Patients with Relapsed or Refractory Adult T-Cell Leukemia/Lymphoma. Blood 2021, 138, 303. [Google Scholar] [CrossRef]
- Ishitsuka, K.; Izutsu, K.; Maruyama, D.; Makita, S.; Jacobsen, E.D.; Horwitz, S.; Kusumoto, S.; Allen, P.; Porcu, P.; Imaizumi, Y.; et al. First-in-human study of the ezh1 and ezh2 dual inhibitor valemetostat tosylate (ds-3201b) in patients with relapsed or refractory non-hodgkin lymphomas. Hematol. Oncol. 2021, 39 (Suppl. S2). [Google Scholar] [CrossRef]
- Foss, F.M.; Porcu, P.; Horwitz, S.M.; Izutsu, K.; Ishitsuka, K.; Kato, K.; Jin, J.; Du, Y.; Inoue, A. A Global Phase 2 Study of Valemetostat Tosylate (Valemetostat) in Patients with Relapsed or Refractory (R/R) Peripheral T-Cell Lymphoma (PTCL), Including R/R Afult T-cell Leukemia/Lymphoma (ATL)-Valentine-PTCL01. Blood 2021, 138, 2533. [Google Scholar] [CrossRef]
- Chavez, J.C.; Foss, F.M.; William, B.M.; Brammer, J.E.; Smith, S.M.; Prica, A.; Zain, J.M.; Tuscano, J.M.; Glenn, M.; Mehta-Shah, N.; et al. A Phase I Study of Anti-ICOS Antibody MEDI-570 for Relapsed/refractory (R/R) Peripheral T-Cell Lymphoma (PTCL) and Angioimmunoblastic T-Cell Lymphoma (AITL) (NCI-9930). Blood 2021, 136, 5–6. [Google Scholar] [CrossRef]
- Nicholson, S.M.; Carlesso, G.; Cheng, L.I.; Cook, H.; DaCosta, K.; Leininger, J.; McKeever, K.; Scott, S.W.; Taylor, D.; Streicher, K.; et al. Effects of ICOS+ T cell depletion via afucosylated monoclonal antibody MEDI-570 on pregnant cynomolgus monkeys and the developing offspring. Reprod. Toxicol. 2017, 74, 116–133. [Google Scholar] [CrossRef] [PubMed]
- Ansell, S.M.; Maris, M.B.; Lesokhin, A.M.; Chen, R.W.; Flinn, I.W.; Sawas, A.; Minden, M.D.; Villa, D.; Percival, M.M.; Advani, A.S.; et al. Phase I Study of the CD47 Blocker TTI-621 in Patients with Relapsed or Refractory Hematologic Malignancies. Clin. Cancer Res. 2021, 27, 2190–2199. [Google Scholar] [CrossRef] [PubMed]
- Khodadoust, M.S.; Feldman, T.A.; Yoon, D.H.; Yannakou, C.K.; Radeski, D.; Kim, Y.H.; Mehta-Shah, N.; Khot, A.; Wilcox, R.A.; Kim, W.S.; et al. Cpi-818, an Oral Interleukin-2-Inducible T-Cell Kinase Inhibitor, Is Well-Tolerated and Active in Patients with T-Cell Lymphoma. Blood 2020, 136 (Suppl. S1), 19–20. [Google Scholar] [CrossRef]
- Moskowitz, A.J.; Ghione, P.; Jacobsen, E.; Ruan, J.; Schatz, J.H.; Noor, S.; Myskowski, P.; Vardhana, S.; Ganesan, N.; Hancock, H.; et al. A phase 2 biomarker-driven study of ruxolitinib demonstrates effectiveness of JAK/STAT targeting in T-cell lymphomas. Blood 2021, 138, 2828–2837. [Google Scholar] [CrossRef]
- Pinter-Brown, L.C. JAK/STAT: A pathway through the maze of PTCL? Blood 2021, 138, 2747–2748. [Google Scholar] [CrossRef]
- Haverkos, B.M.; Alpdogan, O.; Baiocchi, R.; Brammer, J.E.; Feldman, T.A.; Capra, M.; Brem, E.A.; Nair, S.M.; Scheinberg, P.; Pereira, J.; et al. Nanatinostat (Nstat) and Valganciclovir (VGCV) in Relapsed/Refractory (R/R) Epstein-Barr Virus-Positive (EBV +) Lymphomas: Final Results from the Phase 1b/2 VT3996-201 Study. Blood 2021, 138 (Suppl. S1), 623. [Google Scholar] [CrossRef]
- Bouabdallah, K.; Aubrais, R.; Chartier, L.; Herbaux, C.; Banos, A.; Brice, P.; Ochmann, M.; Sibon, D.; Schiano De Colella, J.M.; Cluzeau, T.; et al. Salvage Therapy with Brentuximab-Vedotin and Bendamustine for Patients with Relapsed/Refractory T Cell Lymphoma. a Multicenter and Retrospective Study. Blood 2021, 138 (Suppl. S1), 620. [Google Scholar] [CrossRef]
- Falchi, L.; Ma, H.; Klein, S.; Lue, J.K.; Montanari, F.; Marchi, E.; Deng, C.; Kim, H.A.; Rada, A.; Jacob, A.T.; et al. Combined oral 5-azacytidine and romidepsin are highly effective in patients with PTCL: A multicenter phase 2 study. Blood 2021, 137, 2161–2170. [Google Scholar] [CrossRef]
- Amengual, J.E.; Lichtenstein, R.; Lue, J.; Sawas, A.; Deng, C.; Lichtenstein, E.; Khan, K.; Atkins, L.; Rada, A.; Kim, H.A.; et al. A phase 1 study of romidepsin and pralatrexate reveals marked activity in relapsed and refractory T-cell lymphoma. Blood 2018, 131, 397–407. [Google Scholar] [CrossRef] [Green Version]
- Iyer, S.P.; Huen, A.; Ai, W.Z.; Jagadeesh, D.; Lechowicz, M.J.; Okada, C.; Feldman, T.A.; Sundaram, S.; Alderuccio, J.P.; Reddy, N.; et al. Safety and Efficacy of Tenalisib Given in Combination with Romidepsin in Patients with Relapsed/Refractory T-Cell Lymphoma: Final Results from a Phase I/II Open Label Multi-Center Study. Blood 2021, 138 (Suppl. S1), 1365. [Google Scholar] [CrossRef]
- Park, B.B.; Kim, W.S.; Suh, C.; Hong, J.Y.; Yang, D.H.; Lee, W.S.; Do, Y.R.; Koh, Y.I.; Won, J.H.; Kim, M.K.; et al. A phase II trial of bendamustine, carboplatin, and dexamethasone for refractory or relapsed peripheral T-cell lymphoma (BENCART trial). Leuk. Lymphoma 2019, 60, 3251–3257. [Google Scholar] [CrossRef] [PubMed]
- Rozati, S.; Cheng, P.F.; Widmer, D.S.; Fujii, K.; Levesque, M.P.; Dummer, R. Romidepsin and Azacitidine Synergize in their Epigenetic Modulatory Effects to Induce Apoptosis in CTCL. Clin. Cancer Res. 2016, 22, 2020–2031. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Connor, O.A.; Falchi, L.; Lue, J.K.; Marchi, E.; Kinahan, C.; Sawas, A.; Deng, C.; Montanari, F.; Amengual, J.E.; Kim, H.A.; et al. Oral 5-azacytidine and romidepsin exhibit marked activity in patients with PTCL: A multicenter phase 1 study. Blood 2019, 134, 1395–1405. [Google Scholar] [CrossRef] [PubMed]
- McCracken, M.N.; Cha, A.C.; Weissman, I.L. Molecular Pathways: Activating T Cells after Cancer Cell Phagocytosis from Blockade of CD47 “Don’t Eat Me” Signals. Clin. Cancer Res. 2015, 21, 3597–3601. [Google Scholar] [CrossRef] [Green Version]
- Gholamin, S.; Mitra, S.S.; Feroze, A.H.; Liu, J.; Kahn, S.A.; Zhang, M.; Esparza, R.; Richard, C.; Ramaswamy, V.; Remke, M.; et al. Disrupting the CD47-SIRPα anti-phagocytic axis by a humanized anti-CD47 antibody is an efficacious treatment for malignant pediatric brain tumors. Sci. Transl. Med. 2017, 9, eaaf2968. [Google Scholar] [CrossRef] [Green Version]
- Tseng, D.; Volkmer, J.P.; Willingham, S.B.; Contreras-Trujillo, H.; Fathman, J.W.; Fernhoff, N.B.; Seita, J.; Inlay, M.A.; Weiskopf, K.; Miyanishi, M.; et al. Anti-CD47 antibody-mediated phagocytosis of cancer by macrophages primes an effective antitumor T-cell response. Proc. Natl. Acad. Sci. USA 2013, 110, 11103–11108. [Google Scholar] [CrossRef] [Green Version]
- Jain, S.; Van Scoyk, A.; Morgan, E.A.; Matthews, A.; Stevenson, K.; Newton, G.; Powers, F.; Autio, A.; Louissaint, A.; Pontini, G.; et al. Targeted inhibition of CD47-SIRPα requires Fc-FcγR interactions to maximize activity in T-cell lymphomas. Blood 2019, 134, 1430–1440. [Google Scholar] [CrossRef]
- Chao, M.P.; Alizadeh, A.A.; Tang, C.; Myklebust, J.H.; Varghese, B.; Gill, S.; Jan, M.; Cha, A.C.; Chan, C.K.; Tan, B.T.; et al. Anti-CD47 antibody synergizes with rituximab to promote phagocytosis and eradicate non-Hodgkin lymphoma. Cell 2010, 142, 699–713. [Google Scholar] [CrossRef] [Green Version]
- Manso, R.; Sánchez-Beato, M.; González-Rincón, J.; Gómez, S.; Rojo, F.; Mollejo, M.; García-Cosio, M.; Menárguez, J.; Piris, M.A.; Rodríguez-Pinilla, S.M. Mutations in the JAK/STAT pathway genes and activation of the pathway, a relevant finding in nodal Peripheral T-cell lymphoma. Br. J. Haematol. 2018, 183, 497–501. [Google Scholar] [CrossRef] [Green Version]
- Andreotti, A.H.; Schwartzberg, P.L.; Joseph, R.E.; Berg, L.J. T-cell signaling regulated by the Tec family kinase, Itk. Cold Spring Harb. Perspect. Biol. 2010, 2, a002287. [Google Scholar] [CrossRef] [Green Version]
- Attygalle, A.D.; Feldman, A.L.; Dogan, A. ITK/SYK translocation in angioimmunoblastic T-cell lymphoma. Am. J. Surg. Pathol. 2013, 37, 1456–1457. [Google Scholar] [CrossRef] [PubMed]
- Agostinelli, C.; Rizvi, H.; Paterson, J.; Shende, V.; Akarca, A.U.; Agostini, E.; Fuligni, F.; Righi, S.; Spagnolo, S.; Piccaluga, P.P.; et al. Intracellular TCR-signaling pathway: Novel markers for lymphoma diagnosis and potential therapeutic targets. Am. J. Surg. Pathol. 2014, 38, 1349–1359. [Google Scholar] [CrossRef] [PubMed]
- Pechloff, K.; Holch, J.; Ferch, U.; Schweneker, M.; Brunner, K.; Kremer, M.; Sparwasser, T.; Quintanilla-Martinez, L.; Zimber-Strobl, U.; Streubel, B.; et al. The fusion kinase ITK-SYK mimics a T cell receptor signal and drives oncogenesis in conditional mouse models of peripheral T cell lymphoma. J. Exp. Med. 2010, 207, 1031–1044. [Google Scholar] [CrossRef] [PubMed]
- Mamand, S.; Allchin, R.L.; Ahearne, M.J.; Wagner, S.D. Comparison of interleukin-2-inducible kinase (ITK) inhibitors and potential for combination therapies for T-cell lymphoma. Sci. Rep. 2018, 8, 14216. [Google Scholar] [CrossRef] [PubMed]
- Hsi, E.D.; Said, J.; Macon, W.R.; Rodig, S.J.; Ondrejka, S.L.; Gascoyne, R.D.; Morgan, E.A.; Dorfman, D.M.; Maurer, M.J.; Dogan, A. Diagnostic accuracy of a defined immunophenotypic and molecular genetic approach for peripheral T/NK-cell lymphomas. A North American PTCL study group project. Am. J. Surg. Pathol. 2014, 38, 768–775. [Google Scholar] [CrossRef] [Green Version]
- Hsi, E.D.; Horwitz, S.M.; Carson, K.R.; Pinter-Brown, L.C.; Rosen, S.T.; Pro, B.; Federico, M.; Gisselbrecht, C.; Schwartz, M.; Bellm, L.A.; et al. Analysis of Peripheral T-cell Lymphoma Diagnostic Workup in the United States. Clin. Lymphoma Myeloma Leuk. 2017, 17, 193–200. [Google Scholar] [CrossRef]
- Zhao, D.; Hu, S.; Zhou, D.; Zhang, Y.; Wang, W.; Zhang, W. Clinical Significance of Plasma Epstein-Barr Virus DNA in Peripheral T-Cell Lymphomas. Acta Haematol. 2022, 145, 132–143. [Google Scholar] [CrossRef]
- Kim, T.Y.; Min, G.J.; Jeon, Y.W.; Park, S.S.; Park, S.; Shin, S.H.; Yahng, S.A.; Yoon, J.H.; Lee, S.E.; Cho, B.S.; et al. Impact of Epstein-Barr Virus on Peripheral T-Cell Lymphoma Not Otherwise Specified and Angioimmunoblastic T-Cell Lymphoma. Front. Oncol. 2021, 11, 797028. [Google Scholar] [CrossRef]
- Ghosh, S.K.; Perrine, S.P.; Williams, R.M.; Faller, D.V. Histone deacetylase inhibitors are potent inducers of gene expression in latent EBV and sensitize lymphoma cells to nucleoside antiviral agents. Blood 2012, 119, 1008–1017. [Google Scholar] [CrossRef] [Green Version]
- Meng, Q.; Hagemeier, S.R.; Fingeroth, J.D.; Gershburg, E.; Pagano, J.S.; Kenney, S.C. The Epstein-Barr virus (EBV)-encoded protein kinase, EBV-PK, but not the thymidine kinase (EBV-TK), is required for ganciclovir and acyclovir inhibition of lytic viral production. J. Virol. 2010, 84, 4534–4542. [Google Scholar] [CrossRef] [Green Version]
PTCL Subtype | Median Age at Diagnosis (Y) | Worldwide Distribution (%) | North American Distribution (%) | European Distribution (%) | Asian Distribution (%) |
---|---|---|---|---|---|
PTCL-NOS | 60 | 25.6 | 34.4 | 34.3 | 22.4 |
AITL | 65 | 19.5 | 16.0 | 28.7 | 17.9 |
ALK − ALCL | 58 | 5.5 | 16.0 | 9.4 | 2.6 |
ALK + ALCL | 34 | 6.6 | 7.8 | 6.4 | 3.2 |
NKTCL | 52 | 10.4 | 5.1 | 4.3 | 22.4 |
ATLL | 62 | 9.6 | 2.0 | 1.0 | 25.0 |
Drug | Regimen | Median PFS | ORR/CR (%) | Most Common Adverse Effects (%) | Patient Considerations | Evidence |
---|---|---|---|---|---|---|
Gemcitabine | 1200 mg/m2 on days 1, 8, and 15 of a 28 day cycle for 3–6 cycles | Unknown | 50–70/23 | Thrombocytopenia (46) Neutropenia (38.5) Transaminitis (36) | None | Zinzani et al. [18] |
Romidepsin | 14 mg/m2 on days 1, 8, and 15 of 28 day cycles | 4 months | 25–38/15–18 | Nausea (51) Leukopenia (47) Thrombocytopenia (47) Granulocytopenia (45) | Patients with significant cardiac abnormalities were excluded | Piekarz et al. [19] Coiffier et al. [19] |
Pralatrexate | 30 mg/m2/week for 6 weeks followed by 1 week of rest (7-week cycle). Continued until | 3.5 months | 29/11 | Mucositis (79) Nausea (46) Thrombocytopenia (45) Anemia (38) | Administration of folic acid, B12, and leucovorin needed to prevent AEs | O’Connor et al. [20] |
Bendamustine | 90–120 mg/m2 D1-2 of 21 day cycles, for up to six cycles, | 3.6 months | 50/28 | Neutropenia (56) * Thrombocytopenia (38) * Infection (20) * | None | Damaj et al. [21] |
ICE | Every 15–22 days for 2–3 cycles. Ifosfamide 5 g/m2 on day 2, carboplatin administered on day 2, and dosed to AUC5, and etoposide 100 mg/m2 on days 1 to 3 | 2 months | 20/7 | Thrombocytopenia (100) Anemia (100) Leukopenia (100) Nausea (28) | Used for salvage therapy to proceed to HDT/ASCT | Mikesch et al. [22] |
Brentuximab Vedotin | 120 mg/m2 on days 1 and 2 every 3 weeks for 6 cycles | 3.6 months | 50/28 | Neutropenia (30) * Thrombocytopenia (24) * Infections (20) * | Damaj et al. [21] |
Drug | Regimen | Median PFS | ORR/CR (%) | Most Common Adverse Effects (%) | Patient Considerations | Evidence |
---|---|---|---|---|---|---|
MEDI-570 | 3 + 3 study design; IV infusion every 3 weeks for 12 cycles | Unknown | 24/0 | Decreased CD4 T-Cell count (12) Hypophosphatemia (6) Infusion Reaction (6) Thrombocytopenia (6) | Patients were heavily pre-treated with median 7.5 prior treatments; Study is continuing enrollment in the expansion phase | Chavez et al. [62] |
Duvelisib | 75 mg BID for 2 months followed by 25 mg BID | Currently unknown | 50/32 | Neutropenia (39) * Transaminitis (22–24) * Rash (8) * Lymphopenia (8) * | None | Brammer et al. [58] |
Valemetostat | 200 mg daily on 28 day cycles | 13 months | 48–55/20–24 | Thrombocytopenia (59) Dysgeusia (51) Anemia (37) Neutropenia (35) Alopecia (32) | None | Yoshimitsu et al. [59] Ishitsuka et al. [60] |
Romidepsin | 14 mg/m2 on days 1, 8, and 15 of 28 day cycle for 6 cycles | 29 Months | 25/15 | Nausea (59) Infection (55) Fatigue (55) Thrombocytopenia (41) | Patients with significant cardiac abnormalities require close monitoring | Coiffier et al. [34] Coiffier et al. [33] |
Belinostat | 1 g/m2 on days 1–5 of 21 day cycle for as long as tolerated | 1.6 months | 25.8/10.8 | Nausea (42) Fatigue (37) Pyrexia (35) Thrombocytopenia (16) | Dose reduce in patients homozygous for UGT1A1*28 allele | O’Connor et al. [35] |
TTI-621 | 3 + 3 dose escalation schema | Unknown | 22/0 | Infusion reaction (43) Thrombocytopenia (26) Chills (18) Anemia (13) | Can potentially be combined with Rituximab or Nivolumab | Ansell et al. [64] |
Cpi-818 | Dose escalation of 100, 200, 400, 600 mg BID for up to 16 21-day cycles | Unknown | 14/14 | Fatigue (16) Nausea (11) Rash (11) | None | Khodadoust et al. [65] |
Ruxolitinib | 20 mg BID on 28 day cycles until progression or toxicity | 2.8 months | 25/6 | Anemia (28) Neutropenia (19) Thrombocytopenia (17) Diarrhea (13%) | None | Moskowitz et al. [66] Pinter-Brown [67] |
Nanatinostat with Valganciclovir | Nstat 20mg daily 4 days/week and VGCV 900mg daily in 28-day cycles until progression or toxicity | Unknown | 40/19 | Nausea (38) Neutropenia (34) Thrombocytopenia (34) Constipation (31) | For patients that are EBV+ | Haverkos et al. [68] |
Drug | Regimen | Median PFS | ORR/CR (%) | Most Common Adverse Effects (%) | Patient Considerations | Evidence |
---|---|---|---|---|---|---|
Bendamustine and Brentuximab Vedotin | Bendamustine 70 mg/m2 on day 1 and 2 of and BV 1.8 mg/kg on day 1 of 21 day cycle | 8.3 months | 71/51 | Unknown | Significant neutropenia; recommend q28 day cycles | Bouabdallah et al. [69] |
Romidepsin and 5-Azacytadine | Romidepsin 14 mg/m2 days 8, 15, 22 and 5-Azacytadine 300 mg days 1–14 of a 35 day cycle | 2.3 months | 61/42 | Thrombocytopenia (72) Neutropenia (68) Nausea (68) Hyperglycemia (60) | Improved responses in patients with tTFH phenotypes. | Falchi et al. [70] |
Romidepsin and Pralatrexate | Romidepsin 12 mg/m2 and Pralatrexate 25 mg/m2 every other week | 3.7 months | 71/28 | Nausea (66) Fatigue (52) Thrombocytopenia (35) Oral Mucositis (33) | none | Amengual et al. [71] |
Romidepsin and Duvelisib | Romidepsin 10 mg/m2 and Duvelisib 75 mg BID | 6.9 months | 58/42 | Nausea (73) Thrombocytopenia (57) Fatigue (54) Transaminitis (27–33) | None | Iyer et al. [72] |
Nanatinostat with Valganciclovir | Nstat 20 mg daily 4 days/week and VGCV 900mg daily in 28-day cycles until progression or toxicity | Unknown | 40/19 | Nausea (38) Neutropenia (34) Thrombocytopenia (34) Constipation (31) | For patients that are EBV+ | Haverkos et al. [68] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Braunstein, Z.; Ruiz, M.; Hanel, W.; Shindiapina, P.; Reneau, J.C.; Brammer, J.E. Recent Advances in the Management of Relapsed and Refractory Peripheral T-Cell Lymphomas. J. Pers. Med. 2022, 12, 964. https://doi.org/10.3390/jpm12060964
Braunstein Z, Ruiz M, Hanel W, Shindiapina P, Reneau JC, Brammer JE. Recent Advances in the Management of Relapsed and Refractory Peripheral T-Cell Lymphomas. Journal of Personalized Medicine. 2022; 12(6):964. https://doi.org/10.3390/jpm12060964
Chicago/Turabian StyleBraunstein, Zachary, Miguel Ruiz, Walter Hanel, Polina Shindiapina, John C. Reneau, and Jonathan E. Brammer. 2022. "Recent Advances in the Management of Relapsed and Refractory Peripheral T-Cell Lymphomas" Journal of Personalized Medicine 12, no. 6: 964. https://doi.org/10.3390/jpm12060964
APA StyleBraunstein, Z., Ruiz, M., Hanel, W., Shindiapina, P., Reneau, J. C., & Brammer, J. E. (2022). Recent Advances in the Management of Relapsed and Refractory Peripheral T-Cell Lymphomas. Journal of Personalized Medicine, 12(6), 964. https://doi.org/10.3390/jpm12060964