Pharmacogenomics of Leukotriene Modifiers: A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. ALOX5
3.2. LTA4H (rs2660845)
3.3. LTC4S-444A/C (rs730012)
3.4. SLCO2B1 (rs12422149)
3.5. Others
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Global Initiative for Asthma. Global Strategy for Asthma Management and Prevention. 2020. Available online: www.ginasthma.org (accessed on 27 March 2021).
- Aaron, S.D.; Boulet, L.P.; Reddel, H.; Gershon, A.S. Underdiagnosis and Overdiagnosis of Asthma. Am. J. Respir. Crit. Care Med. 2018, 198, 1012–1020. [Google Scholar] [CrossRef] [PubMed]
- Croisant, S. Epidemiology of Asthma: Prevalence and Burden of Disease. Adv. Exp. Med. Biol. 2013, 795, 17–29. [Google Scholar] [CrossRef]
- Pratt, V.M.; Scott, S.A.; Pirmohamed, M.; Esquivel, B.; Kane, M.S.; Kattman, B.L.; Malheiro, A.J. (Eds.) Medical Genetics Summaries [Internet]; National Center for Biotechnology Information (US): Bethesda, MD, USA, 2012.
- Drazen, J.M.; Silverman, E.K.; Lee, T. Heterogeneity of therapeutic responses in asthma. Br. Med. Bull. 2000, 56, 1054–1070. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, B.; Wu, L.; Chen, J.; Dong, L.; Chen, C.; Wen, Z.; Hu, J.; Fleming, I.; Wang, D.W. Metabolism pathways of arachidonic acids: Mechanisms and potential therapeutic targets. Signal Transduct. Target. Ther. 2021, 6, 94. [Google Scholar] [CrossRef] [PubMed]
- Barnes, P.J.; Chung, K.F.; Page, C.P. Inflammatory mediators of asthma: An update. Pharmacol. Rev. 1998, 50, 515–596. [Google Scholar]
- Trinh, H.K.T.; Lee, S.-H.; Cao, T.B.T.; Park, H.-S. Asthma pharmacotherapy: An update on leukotriene treatments. Expert Rev. Respir. Med. 2019, 13, 1169–1178. [Google Scholar] [CrossRef]
- Lipworth, B.J. Leukotriene-receptor antagonists. Lancet 1999, 353, 57–62. [Google Scholar] [CrossRef]
- MedlinePlus [Internet]. Bethesda (MD): National Library of Medicine (US); [updated 2020 Jun 24]. What is Phar-Macogenomics? [updated 2022 Mar 27; reviewed 2022 Mar 22; cited 2022 Mar 27]. Available online: https://medlineplus.gov/genetics/understanding/genomicresearch/pharmacogenomics/ (accessed on 27 March 2022).
- Zhao, Y.; Li, S.; Nie, X. Pharmacogenomics of Leukotriene Modifiers: A Systematic Review and Meta-Analysis. PROSPERO 2021 CRD42021258332. Available online: https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42021258332 (accessed on 27 March 2022).
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Lima, J.J.; Zhang, S.; Grant, A.; Shao, L.; Tantisira, K.G.; Allayee, H.; Wang, J.; Sylvester, J.; Holbrook, J.; Wise, R.; et al. Influence of Leukotriene Pathway Polymorphisms on Response to Montelukast in Asthma. Am. J. Respir. Crit. Care Med. 2006, 173, 379–385. [Google Scholar] [CrossRef] [Green Version]
- Nwokoro, C.; Pandya, H.; Turner, S.; Eldridge, S.; Griffiths, C.J.; Vulliamy, T.; Price, D.; Sanak, M.; Holloway, J.; Brugha, R.; et al. Intermittent montelukast in children aged 10 months to 5 years with wheeze (WAIT trial): A multicentre, randomised, placebo-controlled trial. Lancet Respir. Med. 2014, 2, 796–803. [Google Scholar] [CrossRef] [Green Version]
- Telleria, J.J.; Blanco-Quiros, A.; Varillas, D.; Armentia, A.; Fernandez-Carvajal, I.; Alonso, M.J.; Diez, I. ALOX5 promoter genotype and response to montelukast in moderate persistent asthma. Respir. Med. 2008, 102, 857–861. [Google Scholar] [CrossRef] [PubMed]
- Fowler, S.; Hall, I.; Wilson, A.M.; Wheatley, A.P.; Lipworth, B.J. 5-Lipoxygenase polymorphism and in-vivo response to leukotriene receptor antagonists. Eur. J. Clin. Pharmacol. 2002, 58, 187–190. [Google Scholar] [CrossRef] [PubMed]
- Drazen, J.M.; Yandava, C.N.; Dubé, L.; Szczerback, N.; Hippensteel, R.; Pillari, A.; Israel, E.; Schork, N.; Silverman, E.S.; Katz, D.A.; et al. Pharmacogenetic association between ALOX5 promoter genotype and the response to anti-asthma treatment. Nat. Genet. 1999, 22, 168–170. [Google Scholar] [CrossRef] [PubMed]
- Tantisira, K.G.; Lima, J.; Sylvia, J.; Klanderman, B.; Weiss, S.T. 5-Lipoxygenase pharmacogenetics in asthma: Overlap with Cys-leukotriene receptor antagonist loci. Pharm. Genom. 2009, 19, 244–247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kotani, H.; Kishi, R.; Mouri, A.; Sashio, T.; Shindo, J.; Shiraki, A.; Hiramatsu, T.; Iwata, S.; Taniguchi, H.; Nishiyama, O.; et al. Influence of leukotriene pathway polymorphisms on clinical responses to montelukast in Japanese patients with asthma. J. Clin. Pharm. Ther. 2012, 37, 112–116. [Google Scholar] [CrossRef] [PubMed]
- Klotsman, M.; York, T.P.; Pillai, S.G.; Vargas-Irwin, C.; Sharma, S.S.; Oord, E.J.V.D.; Anderson, W.H. Pharmacogenetics of the 5-lipoxygenase biosynthetic pathway and variable clinical response to montelukast. Pharm. Genom. 2007, 17, 189–196. [Google Scholar] [CrossRef]
- Maroteau, C.; Espuela-Ortiz, A.; Herrera-Luis, E.; Srinivasan, S.; Carr, F.; Tavendale, R.; Wilson, K.; Hernandez-Pacheco, N.; Chalmers, J.D.; Turner, S.; et al. LTA4H rs2660845 association with montelukast response in early and late-onset asthma. PLoS ONE 2021, 16, e0257396. [Google Scholar] [CrossRef]
- Asano, K.; Shiomi, T.; Hasegawa, N.; Nakamura, H.; Kudo, H.; Matsuzaki, T.; Hakuno, H.; Fukunaga, K.; Suzuki, Y.; Kanazawa, M.; et al. Leukotriene C4 synthase gene A(-444)C polymorphism and clinical response to a CYS-LT1 antagonist, pranlukast, in Japanese patients with moderate asthma. Pharmacogenetics 2002, 12, 565–570. [Google Scholar] [CrossRef]
- Cai, C.; Zhou, M.-X.; Li, Y.-P.; Chen, C.-S. Association of leukotriene gene polymorphisms with response to antileukotriene treatment in patients with asthma. Zhonghua Jie He He Hu Xi Za Zhi 2011, 34, 362–366. [Google Scholar]
- Pan, M.-M.; Sun, T.-Y.; Zhang, H.-S. Association between leukotriene C4 synthase A-444C polymorphism and asthma in Chinese Han population in Beijing. Chin. Med. J. 2006, 119, 1834–1838. [Google Scholar] [CrossRef]
- Sampson, A.P.; Siddiqui, S.; Buchanan, D.; Howarth, P.H.; Holgate, S.T.; Holloway, J.W.; Sayers, I. Variant LTC4 synthase allele modifies cysteinyl leukotriene synthesis in eosinophils and predicts clinical response to zafirlukast. Thorax 2000, 55, S28–S31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, Y.-H.; Liu, C.-T.; Wang, K.; Geng, Y.-M. The relevance of leukotriene C(4) synthase gene A (-444) C polymorphism to clinical responsiveness to montelukast in patients with asthma. Zhonghua Jie He He Hu Xi Za Zhi 2008, 31, 806–810. [Google Scholar] [PubMed]
- Asano, K.; Nakade, S.; Shiomi, T.; Nakajima, T.; Suzuki, Y.; Fukunaga, K.; Oguma, T.; Sayama, K.; Fujita, H.; Tanigawara, Y.; et al. Impact of pharmacokinetics and pharmacogenetics on the efficacy of pranlukast in Japanese asthmatics. Respirology 2009, 14, 822–827. [Google Scholar] [CrossRef] [PubMed]
- Kang, M.-J.; Kwon, J.-W.; Kim, B.-J.; Yu, J.; Choi, W.-A.; Shin, Y.J.; Hong, S.-J. Polymorphisms of the PTGDR and LTC4S influence responsiveness to leukotriene receptor antagonists in Korean children with asthma. J. Hum. Genet. 2011, 56, 284–289. [Google Scholar] [CrossRef] [Green Version]
- Whelan, G.J.; Blake, K.; Kissoon, N.; Duckworth, L.J.; Wang, J.; Sylvester, J.E.; Lima, J.J. Effect of montelukast on time-course of exhaled nitric oxide in asthma: Influence of LTC4 synthase A?444C polymorphism. Pediatr. Pulmonol. 2003, 36, 413–420. [Google Scholar] [CrossRef] [PubMed]
- Currie, G.P.; Lima, J.J.; Sylvester, J.E.; Lee, D.K.C.; Cockburn, W.J.R.; Lipworth, B.J. Leukotriene C4 synthase polymorphisms and responsiveness to leukotriene antagonists in asthma. Br. J. Clin. Pharmacol. 2003, 56, 422–426. [Google Scholar] [CrossRef] [Green Version]
- Kazani, S.; Sadeh, J.; Bunga, S.; Wechsler, M.E.; Israel, E. Cysteinyl leukotriene antagonism inhibits bronchoconstriction in response to hypertonic saline inhalation in asthma. Respir. Med. 2011, 105, 667–673. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.-Y.; Kim, H.-B.; Kim, J.-H.; Kim, B.-S.; Kang, M.-J.; Jang, S.-O.; Seo, H.-J.; Hong, S.-J. Responsiveness to montelukast is associated with bronchial hyperresponsiveness and total immunoglobulin E but not polymorphisms in the leukotriene C4 synthase and cysteinyl leukotriene receptor 1 genes in Korean children with exercise-induced asthma (EIA) (responsiveness to montelukast on EIA in children). Clin. Exp. Allergy 2007, 37, 1487–1493. [Google Scholar] [CrossRef]
- Kim, S.-H.; Ye, Y.-M.; Hur, G.Y.; Lee, S.-K.; Sampson, A.P.; Lee, H.-Y.; Park, H.-S. CysLTR1 promoter polymorphism and requirement for leukotriene receptor antagonist in aspirin-intolerant asthma patients. Pharmacogenomics 2007, 8, 1143–1150. [Google Scholar] [CrossRef] [Green Version]
- Mougey, E.B.; Feng, H.; Castro, M.; Irvin, C.G.; Lima, J.J. Absorption of montelukast is transporter mediated: A common variant of OATP2B1 is associated with reduced plasma concentrations and poor response. Pharm. Genom. 2009, 19, 129–138. [Google Scholar] [CrossRef] [Green Version]
- Mougey, E.B.; Lang, J.E.; Wen, X.; Lima, J.J.; Mph, M.M.X.W. Effect of Citrus Juice and SLCO2B1 Genotype on the Pharmacokinetics of Montelukast. J. Clin. Pharmacol. 2011, 51, 751–760. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Wang, K.; Shi, H.-Y.; Wu, Y.-E.; Zhou, Y.; Kan, M.; Zheng, Y.; Hao, G.-X.; Yang, X.-M.; Yang, Y.-L.; et al. Developmental Pharmacogenetics of SLCO2B1 on Montelukast Pharmacokinetics in Chinese Children. Drug Des. Dev. Ther. 2019, 13, 4405–4411. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.-H.; Lee, S.-Y.; Kim, H.-B.; Jin, H.-S.; Yu, J.-H.; Kim, B.-J.; Kang, M.-J.; Jang, S.-O.; Hong, S.-J.; Kim, B.-S. TBXA2R gene polymorphism and responsiveness to leukotriene receptor antagonist in children with asthma. Clin. Exp. Allergy 2007, 38, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Guo, Q.; Shen, Z.B.; Sun, X.M.; Chen, D.; Kang, P. Association of cytoplasmic phospholipase A2 gene polymorphism with bron-chial asthma and response to montelukast in children. Zhongguo Dang Dai Er Ke Za Zhi 2019, 21, 155–160. (In Chinese) [Google Scholar] [CrossRef] [PubMed]
- Kang, M.-J.; Lee, S.-Y.; Kim, H.-B.; Yu, J.; Kim, B.-J.; Choi, W.-A.; Jang, S.-O.; Hong, S.-J. Association of IL-13 polymorphisms with leukotriene receptor antagonist drug responsiveness in Korean children with exercise-induced bronchoconstriction. Pharm. Genom. 2008, 18, 551–558. [Google Scholar] [CrossRef]
- Mosteller, M.; Condreay, L.D.; Harris, E.C.; Ambery, C.; Beerahee, M.; Ghosh, S. Exploring the roles of UGT1A1 and UGT1A3 in oral clearance of GSK2190915, a 5-lipoxygenase-activating protein inhibitor. Pharm. Genom. 2014, 24, 618–621. [Google Scholar] [CrossRef]
- Pasaje, C.F.A.; Kim, J.-H.; Park, B.-L.; Cheong, H.S.; Park, T.-J.; Lee, J.-S.; Kim, Y.; Bae, J.S.; Kim, J.M.; Park, J.S.; et al. Association of the variants in AGT gene with modified drug response in Korean aspirin-intolerant asthma patients. Pulm. Pharmacol. Ther. 2011, 24, 595–601. [Google Scholar] [CrossRef]
- Dahlin, A.; Litonjua, A.; Lima, J.J.; Tamari, M.; Kubo, M.; Irvin, C.G.; Peters, S.P.; Tantisira, K.G. Genome-Wide Association Study Identifies Novel Pharmacogenomic Loci for Therapeutic Response to Montelukast in Asthma. PLoS ONE 2015, 10, e0129385. [Google Scholar] [CrossRef] [Green Version]
- Dahlin, A.; Litonjua, A.; Irvin, C.G.; Peters, S.P.; Lima, J.J.; Kubo, M.; Tamari, M.; Tantisira, K.G. Genome-wide association study of leukotriene modifier response in asthma. Pharm. J. 2015, 16, 151–157. [Google Scholar] [CrossRef] [Green Version]
- Higham, A.; Cadden, P.; Southworth, T.; Rossall, M.; Kolsum, U.; Lea, S.; Knowles, R.; Singh, D. Leukotriene B4 levels in sputum from asthma patients. ERJ Open Res. 2016, 2, 00088–02015. [Google Scholar] [CrossRef] [Green Version]
- Zaitsu, M.; Hamasaki, Y.; Matsuo, M.; Ichimaru, T.; Fujita, I.; Ishii, E. Leukotriene Synthesis Is Increased by Transcriptional Up-Regulation of 5-Lipoxygenase, Leukotriene A4Hydrolase, and Leukotriene C4Synthase in Asthmatic Children. J. Asthma 2003, 40, 147–154. [Google Scholar] [CrossRef] [PubMed]
- Penrose, J.F. LTC4 synthase. Clin. Rev. Allergy Immunol. 1999, 17, 133–152. [Google Scholar] [CrossRef] [PubMed]
- Penrose, J.F.; Austen, K.F. The Biochemical, Molecular, and Genomic Aspects of Leukotriene C4 Synthase. Proc. Assoc. Am. Physicians 1999, 111, 537–546. [Google Scholar] [CrossRef] [PubMed]
- The UniProt Consortium. UniProt: The universal protein knowledgebase in 2021. Nucleic Acids Res. 2021, 49, D480–D489. [Google Scholar] [CrossRef]
- Tapaninen, T.; Karonen, T.; Backman, J.T.; Neuvonen, P.J.; Niemi, M. SLCO2B1 c.935G>A single nucleotide polymorphism has no effect on the pharmacokinetics of montelukast and aliskiren. Pharm. Genom. 2013, 23, 19–24. [Google Scholar] [CrossRef]
- Kim, K.-A.; Lee, H.-M.; Joo, H.-J.; Park, I.-B.; Park, J.-Y. Effects of polymorphisms of theSLCO2B1transporter gene on the pharmacokinetics of montelukast in humans. J. Clin. Pharmacol. 2013, 53, 1186–1193. [Google Scholar] [CrossRef]
- Hirvensalo, P.; Tornio, A.; Neuvonen, M.; Tapaninen, T.; Paile-Hyvärinen, M.; Kärjä, V.; Männistö, V.T.; Pihlajamäki, J.; Backman, J.T.; Niemi, M. Comprehensive Pharmacogenomic Study Reveals an Important Role of UGT1A3 in Montelukast Pharmacokinetics. Clin. Pharmacol. Ther. 2018, 104, 158–168. [Google Scholar] [CrossRef]
- Tornhamre, S.; Ehnhage, A.; Kölbeck, K.G.; Edenius, C.; Lindgren, J. Uncoupled regulation of leukotriene C4synthase in platelets from aspirin-intolerant asthmatics and healthy volunteers after aspirin treatment. Clin. Exp. Allergy 2002, 32, 1566–1573. [Google Scholar] [CrossRef]
- Tornhamre, S.; Edenius, C.; Lindgren, J.A. Receptor-Mediated Regulation of Leukotriene C4 Synthase Activity in Human Platelets. JBIC J. Biol. Inorg. Chem. 1995, 234, 513–520. [Google Scholar] [CrossRef]
- Rava, M.; Ahmed, I.; Kogevinas, M.; Le Moual, N.; Bouzigon, E.; Curjuric, I.; Dizier, M.-H.; Dumas, O.; Gonzalez, J.R.; Imboden, M.; et al. Genes Interacting with Occupational Exposures to Low Molecular Weight Agents and Irritants on Adult-Onset Asthma in Three European Studies. Environ. Health Perspect. 2017, 125, 207–214. [Google Scholar] [CrossRef] [Green Version]
- Boie, Y.; Sawyer, N.; Slipetz, D.M.; Metters, K.M.; Abramovitz, M. Molecular Cloning and Characterization of the Human Prostanoid DP Receptor. J. Biol. Chem. 1995, 270, 18910–18916. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsai, Y.; Choudhry, S.; Kho, J.; Beckman, K.; Tsai, H.; Navarro, D.; Matallana, H.; Castro, R.; Lilly, C.; Nazario, S. The PTGDR gene is not associated with asthma in 3 ethnically diverse populations. J. Allergy Clin. Immunol. 2006, 118, 1242–1248. [Google Scholar] [CrossRef] [PubMed]
- Sanz, C.; Isidoro-García, M.; Dávila, I.; Moreno, E.; Laffond, E.; Avila, C.; Lorente, F. Promoter genetic variants of prostanoid DP receptor (PTGDR) gene in patients with asthma. Allergy 2006, 61, 543–548. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Liu, Q.; Wang, P.; Li, H.; Wei, C.; Guo, C.; Gong, Y. Lack of association between three promoter polymorphisms of PTGDR gene and asthma in a Chinese Han population. Int. J. Immunogenet. 2007, 34, 353–357. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Li, J.; Zhang, Y.; Zhang, L. Arachidonic Acid 15-Lipoxygenase: Effects of Its Expression, Metabolites, and Genetic and Epigenetic Variations on Airway Inflammation. Allergy Asthma Immunol. Res. 2021, 13, 684–696. [Google Scholar] [CrossRef]
- Walter, D.M.; McIntire, J.J.; Berry, G.; McKenzie, A.N.J.; Donaldson, D.D.; DeKruyff, R.H.; Umetsu, D.T. Critical Role for IL-13 in the Development of Allergen-Induced Airway Hyperreactivity. J. Immunol. 2001, 167, 4668–4675. [Google Scholar] [CrossRef] [Green Version]
- Cardoso, J.D.O.; Oliveira, R.; Lu, J.B.L.; Desta, Z. In Vitro Metabolism of Montelukast by Cytochrome P450s and UDP-Glucuronosyltransferases. Drug Metab. Dispos. 2015, 43, 1905–1916. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mueller, C.F.H.; Becher, M.U.; Zimmer, S.; Wassmann, S.; Keuler, B.; Nickenig, G. Angiotensin II triggers release of leukotriene C4 in vascular smooth muscle cells via the multidrug resistance-related protein 1. Mol. Cell. Biochem. 2009, 333, 261–267. [Google Scholar] [CrossRef]
- Ramsay, S.; Dagg, K.; McKay, I.; Lipworth, B.; McSharry, C.; Thomson, N. Investigations on the renin-angiotensin system in acute severe asthma. Eur. Respir. J. 1997, 10, 2766–2771. [Google Scholar] [CrossRef] [Green Version]
- Millar, E.A.; Angus, R.M.; Hulks, G.; Morton, J.J.; Connell, J.M.; Thomson, N.C. Activity of the renin-angiotensin system in acute severe asthma and the effect of angiotensin II on lung function. Thorax 1994, 49, 492–495. [Google Scholar] [CrossRef] [Green Version]
- Tantisira, K.G.; Lake, S.; Silverman, E.S.; Palmer, L.; Lazarus, R.; Silverman, E.K.; Liggett, S.B.; Gelfand, E.W.; Rosenwasser, L.J.; Richter, B.; et al. Corticosteroid pharmacogenetics: Association of sequence variants in CRHR1 with improved lung function in asthmatics treated with inhaled corticosteroids. Hum. Mol. Genet. 2004, 13, 1353–1359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mougey, E.B.; Chen, C.; Tantisira, K.G.; Blake, K.V.; Peters, S.P.; Wise, R.A.; Weiss, S.T.; Lima, J.J. Pharmacogenetics of asthma controller treatment. Pharm. J. 2013, 13, 242–250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dijkstra, A.; Koppelman, G.H.; Vonk, J.M.; Bruinenberg, M.; Schouten, J.P.; Postma, D.S. Pharmacogenomics and outcome of asthma: No clinical application for long-term steroid effects by CRHR1 polymorphisms. J. Allergy Clin. Immunol. 2008, 121, 1510–1513. [Google Scholar] [CrossRef] [PubMed]
- Rogers, A.J.; Tantisira, K.G.; Fuhlbrigge, A.L.; Litonjua, A.A.; Lasky-Su, J.A.; Szefler, S.J.; Strunk, R.C.; Zeiger, R.S.; Weiss, S.T. Predictors of poor response during asthma therapy differ with definition of outcome. Pharmacogenomics 2009, 10, 1231–1242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Izuhara, Y.; Matsumoto, H.; Kanemitsu, Y.; Tohda, Y.; Horiguchi, T.; Kita, H.; Kuwabara, K.; Tomii, K.; Otsuka, K.; Fujimura, M.; et al. GLCCI1 variant accelerates pulmonary function decline in patients with asthma receiving inhaled corticosteroids. Allergy 2014, 69, 668–673. [Google Scholar] [CrossRef] [Green Version]
- Tantisira, K.G.; Lasky-Su, J.; Harada, M.; Murphy, A.; Litonjua, A.A.; Himes, B.E.; Lange, C.; Lazarus, R.; Sylvia, J.; Klanderman, B.; et al. Genomewide Association between GLCCI1 and Response to Glucocorticoid Therapy in Asthma. N. Engl. J. Med. 2011, 365, 1173–1183. [Google Scholar] [CrossRef] [Green Version]
- Tantisira, K.G.; Silverman, E.S.; Mariani, T.J.; Xu, J.; Richter, B.G.; Klanderman, B.J.; Litonjua, A.; Lazarus, R.; Rosenwasser, L.J.; Fuhlbrigge, A.L.; et al. FCER2: A pharmacogenetic basis for severe exacerbations in children with asthma. J. Allergy Clin. Immunol. 2007, 120, 1285–1291. [Google Scholar] [CrossRef]
- Tantisira, K.G.; Hwang, E.S.; Raby, B.A.; Silverman, E.S.; Lake, S.L.; Richter, B.G.; Peng, S.L.; Drazen, J.M.; Glimcher, L.H.; Weiss, S.T. TBX21: A functional variant predicts improvement in asthma with the use of inhaled corticosteroids. Proc. Natl. Acad. Sci. USA 2004, 101, 18099–18104. [Google Scholar] [CrossRef] [Green Version]
- Bleecker, E.R.; Postma, D.S.; Lawrance, R.M.; Meyers, D.A.; Ambrose, H.J.; Goldman, M. Effect of ADRB2 polymorphisms on response to longacting β2-agonist therapy: A pharmacogenetic analysis of two randomised studies. Lancet 2007, 370, 2118–2125. [Google Scholar] [CrossRef]
- Konno, S.; Hizawa, N.; Makita, H.; Shimizu, K.; Sakamoto, T.; Kokubu, F.; Saito, T.; Endo, T.; Ninomiya, H.; Iijima, H.; et al. The effects of a Gly16Arg ADRB2 polymorphism on responses to salmeterol or montelukast in Japanese patients with mild persistent asthma. Pharm. Genom. 2014, 24, 246–255. [Google Scholar] [CrossRef]
- Kim, S.H.; Ye, Y.M.; Lee, H.Y.; Sin, H.J.; Park, H.-S. Combined pharmacogenetic effect of ADCY9 and ADRB2 gene polymorphisms on the bronchodilator response to inhaled combination therapy. J. Clin. Pharm. Ther. 2010, 36, 399–405. [Google Scholar] [CrossRef] [PubMed]
- Rebordosa, C.; Kogevinas, M.; Guerra, S.; Castro-Giner, F.; Jarvis, D.; Cazzoletti, L.; Pin, I.; Siroux, V.; Wjst, M.; Anto, J.M.; et al. ADRB2 Gly16Arg polymorphism, asthma control and lung function decline. Eur. Respir. J. 2011, 38, 1029–1035. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zuurhout, M.J.; Vijverberg, S.J.; Raaijmakers, J.A.; Koenderman, L.; Postma, D.S.; Koppelman, G.H.; der Zee, A.H.M.-V. Arg16 ADRB2 genotype increases the risk of asthma exacerbation in children with a reported use of long-acting β2-agonists: Results of the pacman cohort. Pharmacogenomics 2013, 14, 1965–1971. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, M.; Shimizu, T. Leukotriene Receptors. Chem. Rev. 2011, 111, 6231–6298. [Google Scholar] [CrossRef] [PubMed]
- Capra, V.; Carnini, C.; Accomazzo, M.R.; Di Gennaro, A.; Fiumicelli, M.; Borroni, E.; Brivio, I.; Buccellati, C.; Mangano, P.; Carnevali, S.; et al. Autocrine activity of cysteinyl leukotrienes in human vascular endothelial cells: Signaling through the CysLT2 receptor. Prostaglandins Other Lipid Mediat. 2015, 120, 115–125. [Google Scholar] [CrossRef]
- Sanak, M.; Pierzchalska, M.; Bazan-Socha, S.; Szczeklik, A. Enhanced Expression of the Leukotriene C4Synthase Due to Overactive Transcription of an Allelic Variant Associated with Aspirin-Intolerant Asthma. Am. J. Respir. Cell Mol. Biol. 2000, 23, 290–296. [Google Scholar] [CrossRef]
- Sayers, I.; Sampson, A.P.; Ye, S.; Holgate, S.T. Promoter polymorphism influences the effect of dexamethasone on transcriptional activation of the LTC4 synthase gene. Eur. J. Hum. Genet. 2003, 11, 619–622. [Google Scholar] [CrossRef]
- Sayers, I.; Hall, I.P. Pharmacogenetic approaches in the treatment of asthma. Curr. Allergy Asthma Rep. 2005, 5, 101–108. [Google Scholar] [CrossRef]
- Farzan, N.; Vijverberg, S.J.; Andiappan, A.K.; Arianto, L.; Berce, V.; Blanca-López, N.; Bisgaard, H.; Bønnelykke, K.; Burchard, E.G.; Campo, P.; et al. Rationale and design of the multiethnic Pharmacogenomics in Childhood Asthma consortium. Pharmacogenomics 2017, 18, 931–943. [Google Scholar] [CrossRef] [Green Version]
- King, C.; McKenna, A.; Farzan, N.; Vijverberg, S.J.; Van Der Schee, M.P.; Der Zee, A.H.M.-V.; Arianto, L.; Bisgaard, H.; Bønnelykke, K.; Berce, V.; et al. Pharmacogenomic associations of adverse drug reactions in asthma: Systematic review and research prioritisation. Pharm. J. 2020, 20, 621–628. [Google Scholar] [CrossRef]
Ref. | Main Gene and SNPs | Population | Sample Size | Outcome |
---|---|---|---|---|
[13] | ALOX5 (tandem repeats of the Sp1-binding domain), ALOX5 (rs2115819), LTA4H (rs2660845), LTC4S-444A/C (rs730012), MRP1 (rs119774) | Adults | 61 | Asthma exacerbation rate. Changes in FEV1% pred. |
[14] | ALOX5 (tandem repeats of the Sp1-binding domain) | Children | 1297 | USMA. Urinary leukotriene E4. |
[15] | ALOX5 (tandem repeats of the Sp1-binding domain) | Children and adults | 61 | FEV1 in % of predicted. Need of rescue medication. Number of exacerbations. |
[16] | ALOX5 (tandem repeats of the Sp1-binding domain) | Adults | 52 | FEV1. FEF25–75. PEFR. AMP PC20. |
[17] | ALOX5 (tandem repeats of the Sp1-binding domain) | Adults | 114 | FEV1. |
[18] | ALOX5 (rs2115819) | Children and adults | 478 | Changes in FEV1. |
[19] | ALOX5 (rs2115819), LTA4H (rs2660845) | Adults | 21 | Changes in PEF#. Changes in FEV1. The subjective symptom scores. |
[20] | ALOX5 (rs4987105 and rs4986832), LTC4S-444A/C (rs730012), CysLTR2 (rs912277 and rs912278) | Children and adults | 166 | Change in AM PEF. Changes in FEV1% pred. |
[21] | LTA4H (rs2660845) | Children and adults | 3594 | At least one exacerbation event. |
[22] | LTC4S-444A/C (rs730012) | Adults | 47 | Changes in FEV1% pred. |
[23] | LTC4S-444A/C (rs730012), LTA4H (rs2660845), ALOX5 (rs2115819, rs4986832, rs4987105) | Adults | 22 | The distribution of genotypes in asthma group and control group. FEV1. FEV1/FVC (%). Urinary excretion of LTE4. |
[24] | LTC4S-444A/C (rs730012) | Adults | 16 | FEV1 improvement. |
[25] | LTC4S-444A/C (rs730012) | Adults | 23 | Changes in FEV1. Changes in FVC. Changes in PEF. |
[26] | LTC4S-444A/C (rs730012) | Adults | 80 | FEV1% pred. ACQ. Urinary excretion of LTE4. |
[27] | LTC4S-444A/C (rs730012) | Adults | 50 | FEV1 improvement. |
[28] | LTC4S-444A/C (rs730012), PTGD2-441T/C | Children | 92 | Drug response rate. |
[29] | LTC4S-444A/C (rs730012) | Children | 12 | %change in FENO * |
[30] | LTC4S-444A/C (rs730012) | Children and adults | 78 | BHR to AMP or methacholine. Changes in FEV1. Exhaled NO. Peripheral blood eosinophils. |
[31] | LTC4S-444A/C (rs730012) | Adults | 37 | Response to hypertonic saline inhalation. |
[32] | LTC4S-444A/C (rs730012), CysLTR1 927T>C | Children | 100 | Drug response rate. |
[33] | LTC4S-444A/C (rs730012), CysLTR1 927T>C, CysLTR1-634C>T | Adults | 89 | Drug response rate. |
[34] | SLCO2B1(rs12422149) | Adults | 80 | Montelukast plasma concentration. ASTM ASUI. |
[35] | SLCO2B1(rs12422149) | Adolescents and young adults | 24 | AUC0→∞ and Cmax of montelukast. |
[36] | SLCO2B1(rs12422149) | Children | 50 | Montelukast clearance. |
[37] | TBXA2R +795T>C and TBXA2R +924T>C | Children | 100 | Drug response rate. |
[38] | PLA2G4 (rs932476) | Children | 128 | Drug response rate. |
[39] | IL-13–1112C/T, IL-13–1512A/C and IL-13 +2044G/ A | Children | 53 | Drug response rate. |
[40] | UGT1A1*28 and UGT1A3*2 | Children and adults | 444 | Oral clearance of GSK2190915. |
[41] | AGT (+2401C>G and +2476C>T) | Adults | 56 | Drug response rate. |
[42] | MLLT3 (rs6475448), WBSCR17 (rs7794356), rs953977 and rs1364805 | Children and adults | 133 | Mean ΔFEV1 from baseline |
[43] | MRPP3 (rs12436663) and GLT1D1 (rs517020) | Adults | 526 | Mean ΔFEV1 from baseline. |
Gene and SNPs | Study (Author, Year of Publication, and Study Design) | Population (Sample Size, Race, Age Range, and Asthma Severity) | Follow-Up Time | Medication (Type, Dosage, Regimen, and Drug Combination) | Outcome | Result |
---|---|---|---|---|---|---|
ALOX5 (tandem repeats of the Sp1-binding domain) | Lima et al. (2006) [13] Clinical trial | 61 White patients (age 40 ± 15 years). Mild to moderately severe persistent asthma that was not well controlled. | 6 months | Montelukast 10 mg daily as add-on therapy, with/without ICS | Asthma exacerbation rate. | Patients carrying a variant number (either 2, 3, 4, 6, or 7) of repeats of the ALOX5 promoter on one allele had a 73% reduction in the risk of having at least one asthma exacerbation compared with homozygotes for the five repeat alleles (p = 0.045). |
Nwokoro et al. (2014) [14] Clinical trial | 1297 children in England and Scotland (range 10-month from 5-year). Mild asthma ǂ. | 12 months | Montelukast with/without ICS | USMA. Urinary leukotriene E4. | Comparing with placebo group, patients with 5/5 genotype had a reduction of USMA risk (IRR: 0.80, 95%CI: 0.68 to 0.95; p = 0.01) in montelukast group, while no difference was found in patients with 5/x + x/x genotypes. Patients with x/x genotype had higher urinary leukotriene E4 than 5/5 genotype (p = 0.02). However, there was no significant difference between 5/5 and 5/x genotypes, or 5/5 and 5/x + x/x genotypes. | |
Telleria et al. (2008) [15] Clinical trial | 61 patients (mean age 24.9 years, range 14–52). Moderate persistent asthma that was not well controlled. | 6 months | Montelukast as add-on therapy, budesonide (500 mg/12 h) and β2 agonist used on demand | FEV1 in % of predicted. Need of rescue medication. Number of exacerbations. | Patients with at least one five repeat allele had lower exacerbations rate(4/5 + 5/5: 0.4 ± 0.21 with a mean reduction of 4.41 ± 2.76; 4/4: 1.88 ± 0.92 with a reduction of 1.33 ±1.22, p = 0.001), better FEV1 response (4/5 + 5/5: 93% ± 7.0 with an increase of 8.6% ± 7.61; 4/4: 80% with a reduction of 1.4% ± 8.04; p = 0.0006), and less β2 rescue medication (4/5 + 5/5: 2.9 ± 2.77 with a reduction of 4.3 ± 3.42; 4/4: 5.1 ± 2.84 with a reduction of 0.55 ± 1.66; p = 0.0011) than patients with 4/4 repeats allele. | |
Fowler et al. (2002) [16] Retrospective analysis | 52 patients (mean age 32–39 years). Mild to moderate atopic asthma. | 1–2 weeks | Montelukast or zafirlukast, with/without ICS or oral anti-histamine | FEV1. FEF25–75. PEFR. AMP PC20. | In terms of FEV1, FEF25–75, PEFR, and AMP PC20, patients with LTMs or placebo had no significant difference in wild-type homozygotes and heterozygotes. However, it showed a non-significant trend of a greater increase in PEFR response in heterozygotes than wild-types (heterozygotes: 20 ± 9.2, wild-type: 10 ± 4.8; 95% CI: −38 to 1). | |
Drazen et al. (1999) [17] Clinical trial | 114 adults across the United States. Mild asthma ƚ. | 2 weeks | ABT-761 300 mg/d with albuterol used on demand | FEV1. | Patients with the wild-type or heterozygous genotype had a significantly greater change in FEV1 than patients harboring the mutant genotype (18.8 ± 3.6%, 23.3 ± 6.0%, −1.2 ± 2.9%; p < 0.0001 and p = 0.0006). | |
ALOX5 (rs2115819) | Lima et al. (2006) [13] Clinical trial | 61 White patients (age 40 ± 15 years). Mild to moderately severe persistent asthma that was not well controlled. | 6 months | Montelukast 10 mg daily as add-on therapy with/without ICS | Changes in FEV1 % pred. | Patients with GG genotype had a significantly higher FEV1 response to montelukast compared with AA and AG genotypes (GG: 30%, 95%CI: −0.017 to 1.21; AA: 4.4%, 95%CI: −0.025 to 0.66; AG: 2.0%, 95%CI: 0.013 to 0.075). |
Tantisira et al. (2009) [18] Clinical trial | 478 Caucasian (age 12-year or older). Moderate asthma. | 12 weeks | zileuton CR, 1200 mg twice daily or zileuton IR, 600 mg 4 times daily with albuterol used on demand | Changes in FEV1. | Patients carrying G allele had higher changes in FEV1 than AA homozygous (p = 0.01). | |
Kotani et al. (2012) [19] Clinical trial | 21 Japanese adults. Mild to moderate persistent asthma *. | 4–8 weeks | Montelukast 10 mg daily | Changes in PEF. Changes in FEV1 #. The subjective symptom scores. | Patients with GG homozygous had higher FEV1-0 than those carrying A allele before montelukast therapy (p < 0.05). There was no significant difference in change in PEF and FEV1 between GG homozygous and A allele carriers (p = 0.13 and 0.90). The subjective symptom score tended to be lower in GG homozygous (p = 0.052). | |
ALOX5 (rs4987105 and rs4986832) | Klotsman et al. (2007) [20] Retrospective analysis | 166 patients (include Caucasian, Hispanic, African Americans, and others; age > 15 years) Moderate to severe persistent asthma ƚ | 12 weeks | Montelukast 10 mg daily | Change in AM PEF | Patients with T,A haplotype had better improvement in AM PEF than patients with C,G haplotype of CysLTR2 (p = 0.003). |
Study/Ref. | Ethnicity | Participants (Number, Age) | Sex Ratio (Male/Total; %Male) | Asthma Severity | Medication | Dose of LTMs | Concomitant Medication | Asthma Subtype | Follow-Up Time |
---|---|---|---|---|---|---|---|---|---|
Asano 2002 [22] | Japanese | 47 26–75 years ƚ | 31/19 62% ƚ | Moderate asthma # | Pranlukast | 225 mg twice daily | Salbutamol | One with aspirin sensitivity, others n/a | 4 w |
Cai 2011 [23] | Chinese Han | 22 18–61 years ǂ | 22/38 36.7% ǂ | Mild to moderate stable asthma ǂ | Montelukast | 10 mg daily | With/without ICS, with/without Theophylline, and so on | None of allergic disease | 4 w |
Pan 2006 [24] | Chinese Han | 16 54 ± 10.9 years | 8/8 50% | Not specified Ƭ | Montelukast | 10 mg daily | ICS with/without bronchodilators | No one had an aspirin sensitivity history | 2 w |
Sampson 2000 [25] | Patients in UK | 23 25–76 years | 6/17 26.1% | Severe asthma | Zafirlukast | 20 mg twice daily | ICS and β2-agonists as required | Three with aspirin sensitivity | 2 w |
Wu 2008 [26] | Chinese Han | 80 48.5 ± 8.9 years * | 92/58 61.3% * | Mild to severe asthma * | Montelukast | 10 mg daily | β2-agonists | n/a | 4 w |
Study/Ref. | Genotyping Method | HWE (p-Value of χ2 Test) | NOS Scores | Definition of Outcome | AA | AC (or AC + CC) | ||||
---|---|---|---|---|---|---|---|---|---|---|
Mean | Sd | Total | Mean | Sd | Total | |||||
Asano 2002 [22] | PCR-RFLP | 0.984 | 8 | % Improvement of FEV1 ƚ | 0.031 | 0.024 | 31 | 0.143 | 0.053 | 16 |
Cai 2011 [23] | MALDI-TOF | 0.926 | 8 | Change in FEV1/FVC (%) | 0.010 # | 0.128 ǂ | 11 | 0.010 # | 0.106 ǂ | 11 |
Pan 2006 [24] | PCR-RFLP | 0.534 | 7 | % Improvement of FEV1 ƚ | 0.068 | 0.136 | 9 | −0.075 | 0.167 | 7 |
Sampson 2000 [25] | PCR-RFLP | 0.489~0.895 | 5 | % Improvement of FEV1 ƚ | −0.120 | 0.180 | 13 | 0.090 | 0.120 | 10 |
Wu 2008 [26] | PCR-RFLP | 0.288 | 9 | Change in FEV1% | −0.039 Ƭ | 5.000 ǂ | 56 | −0.008 Ƭ | 4.001 ǂ | 24 |
Gene and SNPs | Study (Author, Year of Publication, and Study Design) | Population (Sample Size, Race, Age Range, and Asthma Severity) | Follow-Up Time | Medication (Type, Dosage, Regimen, and Drug Combination) | Outcome | Result |
---|---|---|---|---|---|---|
SLCO2B1 (rs12422149) | Mougey et al. (2009) [34] Retrospective analysis | 80 adult patients (including African Americans, Caucasian, and Hispanic) Moderate asthma. | 1 month and 6 months | Montelukast 10 mg daily | Montelukast plasma concentration. ASTM ASUI. * | Patients with AG genotype had lower montelukast plasma concentration than patients with GG genotype at both 1 month and 6 months (p = 0.019 and 0.025). ASTM ASUI was significantly improved in subjects with GG genotype at both 1 month and 6 months in montelukast (p < 0.0001). Subjects with AG genotype showed no significant improvement in ASTM ASUI in the whole follow-time (p = 0.84). |
Mougey et al. (2011) [35] Clinical trial | 24 adolescents and young adults (including African Americans and European Americans; aged 15–18 years) Mild asthma. | 12 h | Montelukast 10 mg daily, with/without SABA, with/without LABA, with/without ICS | AUC0→∞ and Cmax of montelukast. | Compared with GG genotype, AG genotype was significantly associated with lower AUC0→∞ and Cmax of montelukast (AUC0→∞, AG vs. GG, 1460 ± 340 ng·h·mL−1 vs. 2310 ± 820 ng·h·mL−1, p = 2.0 × 10−5). | |
Li et al. (2019) [36] Clinical trial | 50 Chinese children (age 6 months to 12 years) Asthma. | 24.8 h | Montelukast 4 mg (0.5–5 years) and 5 mg (6–12 years) daily, with/without loratadine. | Montelukast clearance. | Montelukast clearance was higher in patients with GA and AA genotype compared with GG genotype (0.94 ± 0.26 versus 0.77 ±0.21, p = 0.020). The significant relationship still existed under multiple linear regression adjustment (p = 0.045). |
Gene and SNPs. | Study (Author, Year of Publication, and Study Design) | Population (Sample Size, Race, Age Range, and Asthma Severity) | Follow-Up Time | Medication (Type, Dosage, Regimen, and Drug Combination) | Outcome | Result |
---|---|---|---|---|---|---|
CysLTR1 927T>C | Lee et al. (2007) [32] Clinical trial | 100 Korean children. Asthma with EIB. | 8 weeks | Montelukast 5 mg daily with SABA used on demand | Drug response rate * | No significant difference in genotype distribution was found between groups that were divided by drug response rate (p = 0.192). |
Kim et al. (2007) [33] Clinical trial | 89 Korean adults. Mild to moderate persistent asthma with AIA. | 2 months or 1 year | Montelukast 10 mg daily, ICS, with SABA used on demand | Drug response rate * | There is no significant difference in genotype distribution between patients uncontrolled under montelukast 2 months intake and montelukast-dependent patients during 1-year follow-up (p = 0.060). An obvious difference between patients controlled well after 6-month montelukast withdrawal and montelukast-dependent patients was observed (p = 0.016). | |
CysLTR1-634C>T | Kim et al. (2007) [33] Clinical trial | 89 Korean adults. Mild to moderate persistent asthma with AIA. | 2 months or 1 year | Montelukast 10 mg daily, ICS, with SABA used on demand | Drug response rate * | A significant difference in genotype distribution between patients uncontrolled under montelukast 2 months intake and montelukast-dependent patients during 1-year follow-up was observed (p = 0.017) and between patients controlled well after 6-month montelukast withdrawal and montelukast-dependent patients (p = 0.007). |
CysLTR2 (rs912277 and rs912278) | Klotsman et al. (2007) [20] Retrospective analysis | 166 patients (include Caucasian, Hispanic, African Americans, and others; age > 15 years) Moderate to severe persistent asthma ƚ | 12 weeks | Montelukast 10 mg daily | Change in AM PEF | Patients with C,C haplotype had better improvement in AM PEF than patients with common T,T and T,C haplotypes (p = 0.02). |
TBXA2R +795T>C and TBXA2R +924T>C | Kim et al. (2008) [37] Clinical trial | 100 Korean children. Atopic asthma and non-atopic asthma with EIB. | 8 weeks | Montelukast 5 mg daily, with SABA occasionally | Drug response rate * | There is no significant difference in the genotype distribution of both TBXA2R +795T>C and TBXA2R +924T>C between responder and non-responder groups (p = 0.063 and 0.831). Patients with CT+CC/TT (+795/+924) had worse treatment response (OR: 3.67, 95%CI: 1.15 to 11.15, p = 0.041). |
PLA2G4 (rs932476) | Guo et al. (2019) [38] Clinical trial | 128 Chinese children (age 2–5 years) Mild to severe asthma. | 2 months | Montelukast 4 mg daily, with SABA, used on-demand and other symptomatic treatments | Drug response rate * | Patients with the AA genotype tended to respond better than those with the GG genotype, but statistical significance was not reached (p = 0.222). |
PTGD2-441T/C | Kang et al. (2011) [28] Clinical trial | 92 Korean children Asthma. | 8 weeks | Montelukast 5 mg daily | Drug response rate * | Patients with C allele heterozygous or homozygous of the PTGDR-441T/C polymorphism were higher in number in non-responder groups (p = 0.038). |
IL-13–1112C/T, IL-13–1512A/C and IL-13 +2044G/ A | Kang et al. (2008) [39] Clinical trial | 53 Korean children Asthma with EIB | 8 weeks | Montelukast 5 mg daily | Drug response rate * | A significant difference in the genotype distribution of IL-13–1112C/T between responder and non-responder groups (p = 0.024), though this result was not for IL-13–1512A/C and +2044G/A (p = 0.139 and 0.346). |
UGT1A1*28 and UGT1A3*2 | Mosteller et al. (2014) [40] Clinical trial of cross-over design | 444 patients (78% were non-Hispanic whites); 403 patients (non-Hispanic white) | n/a | GSK2190915 Ƭ | Oral clearance of GSK2190915 | In 41 patients, UGT1A1*28 and UGT1A3*2 allele, which are in linkage disequilibrium, were significantly associated with oral clearance of GSK2190915 (p = 3.8 × 10–4 and 1.2 × 10–5). This result was not replicated in 403 non-Hispanic white patients. |
AGT (+2401C>G and +2476C>T) | Pasaje et al. (2011) [41] Clinical trial | 56 patients AIA | 12 weeks | Montelukast 10 mg daily | Drug response rate * | The MAF frequency of AGT (+2401C>G and +2476C>T) is higher in non-responder groups after corrections for multiple testing (p = 0.0008–0.02). |
MLLT3 (rs6475448), WBSCR17 (rs7794356), rs953977 and rs1364805 | Dahlin et al. (2015) [42] GWAS (discovery and replication) | 133 patients (including white and non-white) | 8 weeks | LOCCCS: montelukast 10 mg daily; LODO: montelukast 5 or 10 mg daily; CLIC: montelukast 5–10 mg nightly depending on age; PACT: montelukast 5 mg daily ǂ | Mean ΔFEV1 from baseline | MLLT3 (rs6475448), WBSCR17 (rs7794356), rs953977 and rs1364805 met criteria (multiple testing, combined p < 0.0002) for replication cohorts. MLLT3 (rs6475448), WBSCR17 (rs7794356), and rs953977 also achieved (or approached) genome-wide significance (p = 4.95 × 10−8). Patients with homozygous for rs6475448 had significantly increased ΔFEV1 in discovery and replication cohorts. |
MRPP3 (rs12436663) and GLT1D1 (rs517020) | Dahlin et al. (2016) [43] GWAS (discovery and replication) | 526 adults (including white and non-white). Moderate persistent asthma | 12 weeks | Abbott trial 1: zileuton CR 1200 mg twice daily or zileuton immediate-release 600 mg four times daily; Abbott trial 2: zileuton CR 1200 mg twice daily; LOCCCS: montelukast 10 mg daily; LODO: montelukast 5 or 10 mg daily # | Mean ΔFEV1 from baseline | Patients with AA homozygous of MRPP3 (rs12436663) had poor response to zileuton than patients with AG or GG genotype (p < 10−8; achieved genome-wide significance). GLT1D1 (rs517020) from the replicated zileuton GWAS results was replicated in LOCCS (combined p-value = 1.25 × 10−7). Patients with GLT1D1 (rs517020) had worsening responses to both zileuton and montelukast. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Y.; Zhang, X.; Han, C.; Cai, Y.; Li, S.; Hu, X.; Wu, C.; Guan, X.; Lu, C.; Nie, X. Pharmacogenomics of Leukotriene Modifiers: A Systematic Review and Meta-Analysis. J. Pers. Med. 2022, 12, 1068. https://doi.org/10.3390/jpm12071068
Zhao Y, Zhang X, Han C, Cai Y, Li S, Hu X, Wu C, Guan X, Lu C, Nie X. Pharmacogenomics of Leukotriene Modifiers: A Systematic Review and Meta-Analysis. Journal of Personalized Medicine. 2022; 12(7):1068. https://doi.org/10.3390/jpm12071068
Chicago/Turabian StyleZhao, Yuxuan, Xinyi Zhang, Congxiao Han, Yuchun Cai, Sicong Li, Xiaowen Hu, Caiying Wu, Xiaodong Guan, Christine Lu, and Xiaoyan Nie. 2022. "Pharmacogenomics of Leukotriene Modifiers: A Systematic Review and Meta-Analysis" Journal of Personalized Medicine 12, no. 7: 1068. https://doi.org/10.3390/jpm12071068
APA StyleZhao, Y., Zhang, X., Han, C., Cai, Y., Li, S., Hu, X., Wu, C., Guan, X., Lu, C., & Nie, X. (2022). Pharmacogenomics of Leukotriene Modifiers: A Systematic Review and Meta-Analysis. Journal of Personalized Medicine, 12(7), 1068. https://doi.org/10.3390/jpm12071068