Bowel Preparation and Subsequent Colonoscopy Is Associated with the Risk of Atrial Fibrillation: A Population-Based Case-Crossover Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Source and Ethical Considerations
2.2. Study Design
2.3. Study Population and Definitions of Variables
2.4. Hazard and Control Periods
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zawaly, K.; Rumbolt, C.; Abou-Setta, A.M.; Neilson, C.; Rabbani, R.; Zarychanski, R.; Singh, H. The Efficacy of Split-Dose Bowel Preparations for Polyp Detection: A Systematic Review and Meta-Analysis. Am. J. Gastroenterol. 2019, 114, 884–892. [Google Scholar] [CrossRef] [PubMed]
- Shaukat, A.; Kahi, C.J.; Burke, C.A.; Rabeneck, L.; Sauer, B.G.; Rex, D.K. ACG Clinical Guidelines: Colorectal Cancer Screening 2021. Am. J. Gastroenterol. 2021, 116, 458–479. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.Y.; Kim, H.S.; Park, H.J. Adverse events related to colonoscopy: Global trends and future challenges. World J. Gastroenterol. 2019, 25, 190–204. [Google Scholar] [CrossRef]
- Ashraf, S.; Singh, M.; Singh, M.; Afonso, L. Polyethylene Glycol Preparation for Colonoscopy Associated with Heart Failure Exacerbation. Am. J. Ther. 2018, 25, e495–e496. [Google Scholar] [CrossRef] [PubMed]
- Parikh, K.; Weitz, H. Can a bowel preparation exacerbate heart failure? Cleve. Clin. J. Med. 2011, 78, 157–160. [Google Scholar] [CrossRef]
- Granberry, M.C.; White, L.M.; Gardner, S.F. Exacerbation of congestive heart failure after administration of polyethylene glycol-electrolyte lavage solution. Ann. Pharmacother. 1995, 29, 1232–1235. [Google Scholar] [CrossRef]
- Kajy, M.; Ramappa, P. Atrial Fibrillation after Bowel Preparation for Colonoscopy. Am. J. Ther. 2018, 25, e781–e783. [Google Scholar] [CrossRef]
- Warner, L.; Macaluso, M.; Austin, H.D.; Kleinbaum, D.K.; Artz, L.; Fleenor, M.E.; Brill, I.; Newman, D.R.; Hook, E.W., 3rd. Application of the case-crossover design to reduce unmeasured confounding in studies of condom effectiveness. Am. J. Epidemiol. 2005, 161, 765–773. [Google Scholar] [CrossRef] [Green Version]
- Maclure, M.; Mittleman, M.A. Should we use a case-crossover design? Ann. Rev. Public Health 2000, 21, 193–221. [Google Scholar] [CrossRef]
- Bahk, J.; Kim, Y.Y.; Kang, H.Y.; Lee, J.; Kim, I.; Lee, J.; Yun, S.C.; Park, J.H.; Shin, S.A.; Khang, Y.H. Using the National Health Information Database of the National Health Insurance Service in Korea for Monitoring Mortality and Life Expectancy at National and Local Levels. J. Korean Med. Sci. 2017, 32, 1764–1770. [Google Scholar] [CrossRef]
- Choi, N.K.; Chang, Y.; Choi, Y.K.; Hahn, S.; Park, B.J. Signal detection of rosuvastatin compared to other statins: Data-mining study using national health insurance claims database. Pharmacoepidemiol. Drug Saf. 2010, 19, 238–246. [Google Scholar] [CrossRef] [PubMed]
- Han, M.; Jung, Y.S.; Cheon, J.H.; Park, S. Similar Clinical Outcomes of Early and Late Anti-TNF Initiation for Ulcerative Colitis: A Nationwide Population-Based Study. Yonsei Med. J. 2020, 61, 382–390. [Google Scholar] [CrossRef] [PubMed]
- Jung, Y.S.; Han, M.; Park, S.; Cheon, J.H. Impact of early anti-TNF use on clinical outcomes in Crohn’s disease: A nationwide population-based study. Korean J. Intern. Med. 2020, 35, 1104–1113. [Google Scholar] [CrossRef] [PubMed]
- Maclure, M. The case-crossover design: A method for studying transient effects on the risk of acute events. Am. J. Epidemiol. 1991, 133, 144–153. [Google Scholar] [CrossRef]
- Delaney, J.A.; Suissa, S. The case-crossover study design in pharmacoepidemiology. Stat. Methods Med. Res. 2009, 18, 53–65. [Google Scholar] [CrossRef]
- Choi, N.K.; Lee, J.; Chang, Y.; Jung, S.Y.; Kim, Y.J.; Lee, S.M.; Lee, J.H.; Kim, J.Y.; Song, H.J.; Park, B.J. Polyethylene glycol bowel preparation does not eliminate the risk of acute renal failure: A population-based case-crossover study. Endoscopy 2013, 45, 208–213. [Google Scholar] [CrossRef]
- Choi, N.K.; Lee, J.; Chang, Y.; Kim, Y.J.; Kim, J.Y.; Song, H.J.; Shin, J.Y.; Jung, S.Y.; Choi, Y.; Lee, J.H.; et al. Acute renal failure following oral sodium phosphate bowel preparation: A nationwide case-crossover study. Endoscopy 2014, 46, 465–470. [Google Scholar] [CrossRef]
- Lee, S.S.; Ae Kong, K.; Kim, D.; Lim, Y.M.; Yang, P.S.; Yi, J.E.; Kim, M.; Kwon, K.; Bum Pyun, W.; Joung, B.; et al. Clinical implication of an impaired fasting glucose and prehypertension related to new onset atrial fibrillation in a healthy Asian population without underlying disease: A nationwide cohort study in Korea. Eur. Heart J. 2017, 38, 2599–2607. [Google Scholar] [CrossRef]
- DiPalma, J.A.; Brady, C.E., 3rd. Colon cleansing for diagnostic and surgical procedures: Polyethylene glycol-electrolyte lavage solution. Am. J. Gastroenterol. 1989, 84, 1008–1016. [Google Scholar]
- Jung, Y.S.; Lee, C.K.; Eun, C.S.; Park, D.I.; Han, D.S.; Kim, H.J. Low-Volume Polyethylene Glycol with Ascorbic Acid for Colonoscopy Preparation in Elderly Patients: A Randomized Multicenter Study. Digestion 2016, 94, 82–91. [Google Scholar] [CrossRef]
- Ho, J.M.; Cavalcanti, R.B. A shocking bowel preparation: Severe electrolyte disturbances after polyethylene glycol-based bowel preparation. J. Am. Geriatr. Soc. 2009, 57, 1729–1730. [Google Scholar] [CrossRef] [PubMed]
- Garg, L.; Gupta, M.; Sabzwari, S.R.A.; Agrawal, S.; Agarwal, M.; Nazir, T.; Gordon, J.; Bozorgnia, B.; Martinez, M.W. Atrial fibrillation in hypertrophic cardiomyopathy: Prevalence, clinical impact, and management. Heart Fail Rev. 2019, 24, 189–197. [Google Scholar] [CrossRef] [PubMed]
- Lau, D.H.; Nattel, S.; Kalman, J.M.; Sanders, P. Modifiable Risk Factors and Atrial Fibrillation. Circulation 2017, 136, 583–596. [Google Scholar] [CrossRef]
- Clerx, M.; Mirams, G.R.; Rogers, A.J.; Narayan, S.M.; Giles, W.R. Immediate and Delayed Response of Simulated Human Atrial Myocytes to Clinically-Relevant Hypokalemia. Front. Physiol. 2021, 12, 651162. [Google Scholar] [CrossRef] [PubMed]
- Qin, M.; Zeng, C.; Liu, X. The cardiac autonomic nervous system: A target for modulation of atrial fibrillation. Clin. Cardiol. 2019, 42, 644–652. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harvey, R.D.; Belevych, A.E. Muscarinic regulation of cardiac ion channels. Br. J. Pharmacol. 2003, 139, 1074–1084. [Google Scholar] [CrossRef] [Green Version]
- Yang, C.; Sriranjan, V.; Abou-Setta, A.M.; Poluha, W.; Walker, J.R.; Singh, H. Anxiety Associated with Colonoscopy and Flexible Sigmoidoscopy: A Systematic Review. Am. J. Gastroenterol. 2018, 113, 1810–1818. [Google Scholar] [CrossRef]
- Kusayama, T.; Wan, J.; Yuan, Y.; Chen, P.S. Neural Mechanisms and Therapeutic Opportunities for Atrial Fibrillation. Methodist Debakey Cardiovasc. J. 2021, 17, 43–47. [Google Scholar] [CrossRef]
- Severino, P.; Mariani, M.V.; Maraone, A.; Piro, A.; Ceccacci, A.; Tarsitani, L.; Maestrini, V.; Mancone, M.; Lavalle, C.; Pasquini, M.; et al. Triggers for Atrial Fibrillation: The Role of Anxiety. Cardiol. Res. Pract. 2019, 2019, 1208505. [Google Scholar] [CrossRef]
- Takahashi, N.; Kume, O.; Wakisaka, O.; Fukunaga, N.; Teshima, Y.; Hara, M.; Saikawa, T. Novel strategy to prevent atrial fibrosis and fibrillation. Circ. J. 2012, 76, 2318–2326. [Google Scholar] [CrossRef] [Green Version]
Variable | Value |
---|---|
Sex, n (%) | |
Male | 53 (63.1) |
Female | 31 (36.9) |
Age, mean ± standard deviation, years | 72.4 ± 9.1 |
Age, years, n (%) | |
50–59 | 10 (11.9) |
60–69 | 17 (20.2) |
70–79 | 37 (44.0) |
≥80 | 20 (23.8) |
Comorbidities, n (%) | |
Hypertension (I10–I15) | 75 (89.3) |
Diabetes mellitus (E10–E14) | 57 (67.9) |
Ischemic heart disease (I20–I25) | 46 (54.8) |
Heart failure (I50) | 21 (25.0) |
Year of cohort entry, n (%) | |
2014 | 7 (8.3) |
2015 | 33 (39.3) |
2016 | 25 (29.8) |
2017 | 12 (14.3) |
2018 | 4 (4.8) |
2019 | 3 (3.6) |
Types of purgatives, n (%) | |
PEG 2 L + ascorbic acid | 56 (66.7) |
PEG 4 L | 21 (25.0) |
OSS | 4 (4.8) |
SPMC | 2 (2.4) |
SPS | 1 (1.2) |
NaP | 0 |
Time Window | Hazard Period | Control Period | |
---|---|---|---|
Non-Exposed | Exposed | ||
1 week | Non-exposed | 292 | 4 |
Exposed | 30 | 10 | |
2 weeks | Non-exposed | 287 | 5 |
Exposed | 33 | 11 | |
4 weeks | Non-exposed | 273 | 7 |
Exposed | 42 | 14 | |
8 weeks | Non-exposed | 224 | 16 |
Exposed | 72 | 24 | |
12 weeks | Non-exposed | 214 | 22 |
Exposed | 75 | 25 |
Time Window | Exposed to Purgatives in 84 Hazard Periods, n (%) | Exposed to Purgatives in 336 Control Periods, n (%) | OR (95% CI) | p-Value |
---|---|---|---|---|
1 week | 10 (11.9) | 14 (4.2) | 3.11 (1.33–7.27) | 0.009 |
2 weeks | 11 (13.1) | 16 (4.8) | 3.01 (1.34–6.77) | 0.008 |
4 weeks | 14 (16.7) | 21 (6.3) | 3.00 (1.45–6.19) | 0.003 |
8 weeks | 24 (28.6) | 40 (11.9) | 2.96 (1.66–5.27) | 0.001 |
12 weeks | 25 (29.8) | 47 (14.0) | 2.61 (1.49–4.56) | 0.001 |
Without Comorbidities | 1 Week | 2 Weeks | 4 Weeks | 8 Weeks | 12 Weeks | |||||
---|---|---|---|---|---|---|---|---|---|---|
OR (95% CI) | p-Value | OR (95% CI) | p-Value | OR (95% CI) | p-Value | OR (95% CI) | p-Value | OR (95% CI) | p-Value | |
Without hypertension | 4.04 (0.25–65.20) | 0.326 | 2.01 (0.18–22.46) | 0.570 | 2.00 (0.18–22.45) | 0.570 | 3.07 (0.67–14.01) | 0.147 | 2.45 (0.57–10.47) | 0.226 |
Without diabetes mellitus | 3.07 (0.67–14.01) | 0.147 | 3.31 (0.87–12.61) | 0.079 | 2.35 (0.67–8.22) | 0.181 | 2.62 (1.05–6.53) | 0.040 | 2.25 (0.92–5.51) | 0.075 |
Without ischemic heart disease | 3.48 (1.04–11.70) | 0.044 | 2.97 (0.92–9.62) | 0.069 | 2.51 (0.88–7.11) | 0.084 | 2.66 (1.21–5.88) | 0.015 | 2.26 (1.04–4.89) | 0.039 |
Without heart failure | 3.11 (1.21–8.00) | 0.019 | 2.84 (1.12–7.20) | 0.028 | 3.01 (1.34–6.77) | 0.008 | 2.78 (1.46–5.29) | 0.002 | 2.51 (1.35–4.67) | 0.004 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jung, Y.S.; Jee, Y.; Im, E.; Kim, M.-h.; Moon, C.M. Bowel Preparation and Subsequent Colonoscopy Is Associated with the Risk of Atrial Fibrillation: A Population-Based Case-Crossover Study. J. Pers. Med. 2022, 12, 1207. https://doi.org/10.3390/jpm12081207
Jung YS, Jee Y, Im E, Kim M-h, Moon CM. Bowel Preparation and Subsequent Colonoscopy Is Associated with the Risk of Atrial Fibrillation: A Population-Based Case-Crossover Study. Journal of Personalized Medicine. 2022; 12(8):1207. https://doi.org/10.3390/jpm12081207
Chicago/Turabian StyleJung, Yoon Suk, Yongho Jee, Eui Im, Min-ho Kim, and Chang Mo Moon. 2022. "Bowel Preparation and Subsequent Colonoscopy Is Associated with the Risk of Atrial Fibrillation: A Population-Based Case-Crossover Study" Journal of Personalized Medicine 12, no. 8: 1207. https://doi.org/10.3390/jpm12081207
APA StyleJung, Y. S., Jee, Y., Im, E., Kim, M. -h., & Moon, C. M. (2022). Bowel Preparation and Subsequent Colonoscopy Is Associated with the Risk of Atrial Fibrillation: A Population-Based Case-Crossover Study. Journal of Personalized Medicine, 12(8), 1207. https://doi.org/10.3390/jpm12081207