CD24: A Novel Target for Cancer Immunotherapy
Abstract
:1. Introduction
2. Resistance to Chemotherapy
3. Implications in Antitumor Immunity
4. CD24 Inhibition in Solid Tumors
4.1. Preclinical Data
4.1.1. Monoclonal Antibodies
4.1.2. Antibody–Drug Conjugates
4.1.3. Chimeric Antigen Receptor (CAR) T Cell Therapy
4.2. Clinical Trials
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Esfahani, K.; Roudaia, L.; Buhlaiga, N.; Del Rincon, S.V.; Papneja, N.; Miller, W.H. A Review of Cancer Immunotherapy: From the Past, to the Present, to the Future. Curr. Oncol. 2020, 27, 87–97. [Google Scholar] [CrossRef] [PubMed]
- Mellman, I.; Coukos, G.; Dranoff, G. Cancer immunotherapy comes of age. Nature 2011, 480, 480–489. [Google Scholar] [CrossRef] [PubMed]
- Qin, S.; Xu, L.; Yi, M.; Yu, S.; Wu, K.; Luo, S. Novel immune checkpoint targets: Moving beyond PD-1 and CTLA-4. Mol. Cancer 2019, 18, 155. [Google Scholar] [CrossRef]
- Altevogt, P.; Sammar, M.; Hüser, L.; Kristiansen, G. Novel insights into the function of CD24: A driving force in cancer. Int. J. Cancer 2021, 148, 546–559. [Google Scholar] [CrossRef] [PubMed]
- Fang, X.; Zheng, P.; Tang, J.; Liu, Y. CD24: From A to Z. Cell. Mol. Immunol. 2010, 7, 100–103. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Jones, B.; Aruffo, A.; Sullivan, K.M.; Linsley, P.S.; Janeway, C.A. Heat-stable antigen is a costimulatory molecule for CD4 T cell growth. J. Exp. Med. 1992, 175, 437–445. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, T.; Kiyokawa, N.; Taguchi, T.; Sekino, T.; Katagiri, Y.U.; Fujimoto, J. CD24 Induces Apoptosis in Human B Cells Via the Glycolipid-Enriched Membrane Domains/Rafts-Mediated Signaling System. J. Immunol. 2001, 166, 5567–5577. [Google Scholar] [CrossRef] [Green Version]
- Chappel, M.S.; Hough, M.R.; Mittel, A.; Takei, F.; Kay, R.; Humphries, R.K. Cross-linking the murine heat-stable antigen induces apoptosis in B cell precursors and suppresses the anti-CD40-induced proliferation of mature resting B lymphocytes. J. Exp. Med. 1996, 184, 1639–1649. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Su, Z.; Barnie, P.A. The role of B regulatory (B10) cells in inflammatory disorders and their potential as therapeutic targets. Int. Immunopharmacol. 2020, 78, 106111. [Google Scholar] [CrossRef]
- Shi, Y.; Zhu, J.; Liu, J.-Q.; Talebian, F.; Li, M.; Bai, X.-F. CD24 is expressed on FoxP3+ regulatory T cells and regulates their function. Am. J. Transl. Res. 2022, 14, 2291–2300. [Google Scholar]
- Kim, T.S.; Gorski, S.A.; Hahn, S.; Murphy, K.M.; Braciale, T.J. Distinct Dendritic Cell Subsets Dictate the Fate Decision between Effector and Memory CD8+ T Cell Differentiation by a CD24-Dependent Mechanism. Immunity 2014, 40, 400–413. [Google Scholar] [CrossRef] [Green Version]
- Li, O.; Chang, X.; Zhang, H.; Kocak, E.; Ding, C.; Zheng, P.; Liu, Y. Massive and destructive T cell response to homeostatic cue in CD24-deficient lymphopenic hosts. J. Exp. Med. 2006, 203, 1713–1720. [Google Scholar] [CrossRef] [PubMed]
- Kristiansen, G.; Sammar, M.; Altevogt, P. Tumour Biological Aspects of CD24, A Mucin-Like Adhesion Molecule. J. Mol. Histol. 2004, 35, 255–262. [Google Scholar] [CrossRef] [PubMed]
- Aigner, S.; Ruppert, M.; Hubbe, M.; Sammar, M.; Sthoeger, Z.; Butcher, E.C.; Vestweber, D.; Altevogt, P.; Kaufmann, S.H.E. Heat stable antigen (mouse CD24) supports myeloid cell binding to endothelial and platelet P-selectin. Int. Immunol. 1995, 7, 1557–1565. [Google Scholar] [CrossRef] [PubMed]
- Runz, S.; Mierke, C.T.; Joumaa, S.; Behrens, J.; Fabry, B.; Altevogt, P. CD24 induces localization of β1 integrin to lipid raft domains. Biochem. Biophys. Res. Commun. 2008, 365, 35–41. [Google Scholar] [CrossRef]
- Sammar, M.; Gulbins, E.; Hilbert, K.; Lang, F.; Altevogt, P. Mouse CD24 as a Signaling Molecule for Integrin-Mediated Cell Binding: Functional and Physical Association with src-Kinases. Biochem. Biophys. Res. Commun. 1997, 234, 330–334. [Google Scholar] [CrossRef] [PubMed]
- Pruszak, J.; Ludwig, W.; Blak, A.; Alavian, K.; Isacson, O. CD15, CD24, and CD29 Define a Surface Biomarker Code for Neural Lineage Differentiation of Stem Cells. Stem Cells 2009, 27, 2928–2940. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gilliam, D.T.; Menon, V.; Bretz, N.P.; Pruszak, J. The CD24 surface antigen in neural development and disease. Neurobiol. Dis. 2017, 99, 133–144. [Google Scholar] [CrossRef] [PubMed]
- Poncet, C.; Frances, V.; Gristina, R.; Scheiner, C.; Pellissier, J.-F.; Figarella-Branger, D. CD24, a glycosylphosphatidylinositol-anchored molecule, is transiently expressed during the development of human central nervous system and is a marker of human neural cell lineage tumors. Acta Neuropathol. 1996, 91, 400–408. [Google Scholar] [CrossRef]
- Kleene, R.; Yang, H.; Kutsche, M.; Schachner, M. The Neural Recognition Molecule L1 Is a Sialic Acid-binding Lectin for CD24, Which Induces Promotion and Inhibition of Neurite Outgrowth*. J. Biol. Chem. 2001, 276, 21656–21663. [Google Scholar] [CrossRef] [Green Version]
- Bretz, N.P.; Salnikov, A.V.; Perne, C.; Keller, S.; Wang, X.; Mierke, C.T.; Fogel, M.; Erbe-Hofmann, N.; Schlange, T.; Moldenhauer, G.; et al. CD24 controls Src/STAT3 activity in human tumors. Cell. Mol. Life Sci. CMLS 2012, 69, 3863–3879. [Google Scholar] [CrossRef] [PubMed]
- Deng, W.; Gu, L.; Li, X.; Zheng, J.; Zhang, Y.; Duan, B.; Cui, J.; Dong, J.; Du, J. CD24 associates with EGFR and supports EGF/EGFR signaling via RhoA in gastric cancer cells. J. Transl. Med. 2016, 14, 32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hosonaga, M.; Arima, Y.; Sugihara, E.; Kohno, N.; Saya, H. Expression of CD24 is associated with HER2 expression and supports HER2-Akt signaling in HER2-positive breast cancer cells. Cancer Sci. 2014, 105, 779–787. [Google Scholar] [CrossRef]
- Smith, S.C.; Oxford, G.; Wu, Z.; Nitz, M.D.; Conaway, M.; Frierson, H.F.; Hampton, G.; Theodorescu, D. The metastasis-associated gene CD24 is regulated by Ral GTPase and is a mediator of cell proliferation and survival in human cancer. Cancer Res. 2006, 66, 1917–1922. [Google Scholar] [CrossRef] [Green Version]
- Eyvazi, S.; Kazemi, B.; Dastmalchi, S.; Bandehpour, M. Involvement of CD24 in Multiple Cancer Related Pathways Makes It an Interesting New Target for Cancer Therapy. Curr. Cancer Drug Targets 2018, 18, 328–336. [Google Scholar] [CrossRef]
- Wang, W.; Wang, X.; Peng, L.; Deng, Q.; Liang, Y.; Qing, H.; Jiang, B. CD24-dependent MAPK pathway activation is required for colorectal cancer cell proliferation. Cancer Sci. 2010, 101, 112–119. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.; Yao, Y.; Xu, G.; Zhou, C.; Zhang, Y.; Sun, J.; Jiang, R.; Shao, Q.; Chen, Y. CD24 regulates sorafenib resistance via activating autophagy in hepatocellular carcinoma. Cell Death Dis. 2018, 9, 646. [Google Scholar] [CrossRef] [PubMed]
- Yin, S.-S.; Gao, F.-H. Molecular Mechanism of Tumor Cell Immune Escape Mediated by CD24/Siglec-10. Front. Immunol. 2020, 11, 1324. [Google Scholar] [CrossRef]
- Song, Y.; Lu, M.; Feng, L.; Chen, Q.; Huang, H.; Lin, Q. Identification of potential immunotherapy biomarkers for breast cancer by bioinformatics analysis. Biosci. Rep. 2022, 42, BSR20212035. [Google Scholar] [CrossRef]
- Barkal, A.A.; Brewer, R.E.; Markovic, M.; Kowarsky, M.; Barkal, S.A.; Zaro, B.W.; Krishnan, V.; Hatakeyama, J.; Dorigo, O.; Barkal, L.J.; et al. CD24 signalling through macrophage Siglec-10 is a target for cancer immunotherapy. Nature 2019, 572, 392–396. [Google Scholar] [CrossRef] [PubMed]
- Jackson, D.; Waibel, R.; Weber, E.; Bell, J.; Stahel, R.A. CD24, a signal-transducing molecule expressed on human B cells, is a major surface antigen on small cell lung carcinomas. Cancer Res. 1992, 52, 5264–5270. [Google Scholar] [PubMed]
- Sagiv, E.; Memeo, L.; Karin, A.; Kazanov, D.; Jacob–Hirsch, J.; Mansukhani, M.; Rechavi, G.; Hibshoosh, H.; Arber, N. CD24 Is a New Oncogene, Early at the Multistep Process of Colorectal Cancer Carcinogenesis. Gastroenterology 2006, 131, 630–639. [Google Scholar] [CrossRef] [PubMed]
- Sagiv, E.; Kazanov, D.; Arber, N. CD24 plays an important role in the carcinogenesis process of the pancreas. Biomed. Pharmacother. 2006, 60, 280–284. [Google Scholar] [CrossRef]
- Overdevest, J.B.; Thomas, S.; Kristiansen, G.; Hansel, D.E.; Smith, S.C.; Theodorescu, D. CD24 offers a therapeutic target for control of bladder cancer metastasis based on a requirement for lung colonization. Cancer Res. 2011, 71, 3802–3811. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kristiansen, G.; Pilarsky, C.; Pervan, J.; Stürzebecher, B.; Stephan, C.; Jung, K.; Loening, S.; Rosenthal, A.; Dietel, M. CD24 expression is a significant predictor of PSA relapse and poor prognosis in low grade or organ confined prostate cancer. Prostate 2004, 58, 183–192. [Google Scholar] [CrossRef]
- Mishra, S.; Tiwari, V.; Arora, A.; Gupta, S.; Anand, N.; Husain, N. Increased Expression of Oct4, Nanog and CD24 Predicts Poor Response to Chemo-Radiotherapy and Unfavourable Prognosis in Locally Advanced Oral Squamous Cell Carcinoma. Asian Pac. J. Cancer Prev. APJCP 2020, 21, 2539–2547. [Google Scholar] [CrossRef] [PubMed]
- Sandén, E.; Dyberg, C.; Krona, C.; Visse, E.; Carén, H.; Northcott, P.A.; Kool, M.; Ståhl, N.; Persson, A.; Englund, E.; et al. Aberrant immunostaining pattern of the CD24 glycoprotein in clinical samples and experimental models of pediatric medulloblastomas. J. Neurooncol. 2015, 123, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Boon, K.; Edwards, J.B.; Siu, I.-M.; Olschner, D.; Eberhart, C.G.; Marra, M.A.; Strausberg, R.L.; Riggins, G.J. Comparison of medulloblastoma and normal neural transcriptomes identifies a restricted set of activated genes. Oncogene 2003, 22, 7687–7694. [Google Scholar] [CrossRef] [Green Version]
- Uckun, F.M.; Song, C.W. Lack of CD24 antigen expression in B-lineage acute lymphoblastic leukemia is associated with intrinsic radiation resistance of primary clonogenic blasts. Blood 1993, 81, 1323–1332. [Google Scholar] [CrossRef] [Green Version]
- Raife, T.J.; Lager, D.J.; Kemp, J.D.; Dick, F.R. Expression of CD24 (BA-1) Predicts Monocytic Lineage in Acute Myeloid Leukemia. Am. J. Clin. Pathol. 1994, 101, 296–299. [Google Scholar] [CrossRef]
- Gross Even-Zohar, N.; Pick, M.; Hofstetter, L.; Shaulov, A.; Nachmias, B.; Lebel, E.; Gatt, M.E. CD24 Is a Prognostic Marker for Multiple Myeloma Progression and Survival. J. Clin. Med. 2022, 11, 2913. [Google Scholar] [CrossRef] [PubMed]
- Nersisyan, S.; Ahlers, A.-K.; Lange, T.; Wicklein, D.; Galatenko, A.; Bohnenberger, H.; Elakad, O.; Conradi, L.-C.; Genduso, S.; Maar, H.; et al. Low expression of CD24 is associated with poor survival in colorectal cancer. Biochimie 2022, 192, 91–101. [Google Scholar] [CrossRef]
- Choi, Y.-L.; Lee, S.-H.; Kwon, G.-Y.; Park, C.-K.; Han, J.-J.; Choi, J.S.; Choi, H.Y.; Kim, S.-H.; Shin, Y.K. Overexpression of CD24: Association with invasiveness in urothelial carcinoma of the bladder. Arch. Pathol. Lab. Med. 2007, 131, 275–281. [Google Scholar] [CrossRef] [PubMed]
- Baumann, P.; Cremers, N.; Kroese, F.; Orend, G.; Chiquet-Ehrismann, R.; Uede, T.; Yagita, H.; Sleeman, J.P. CD24 expression causes the acquisition of multiple cellular properties associated with tumor growth and metastasis. Cancer Res. 2005, 65, 10783–10793. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shapira, S.; Kazanov, D.; Weisblatt, S.; Starr, A.; Arber, N.; Kraus, S. The CD24 protein inducible expression system is an ideal tool to explore the potential of CD24 as an oncogene and a target for immunotherapy in vitro and in vivo. J. Biol. Chem. 2011, 286, 40548–40555. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aigner, S.; Sthoeger, Z.M.; Fogel, M.; Weber, E.; Zarn, J.; Ruppert, M.; Zeller, Y.; Vestweber, D.; Stahel, R.; Sammar, M.; et al. CD24, a Mucin-Type Glycoprotein, Is a Ligand for P-Selectin on Human Tumor Cells. Blood 1997, 89, 3385–3395. [Google Scholar] [CrossRef]
- Myung, J.H.; Gajjar, K.A.; Pearson, R.M.; Launiere, C.A.; Eddington, D.T.; Hong, S. Direct Measurements on CD24-Mediated Rolling of Human Breast Cancer MCF-7 Cells on E-selectin. Anal. Chem. 2011, 83, 1078–1083. [Google Scholar] [CrossRef] [Green Version]
- Thomas, S.; Harding, M.A.; Smith, S.C.; Overdevest, J.B.; Nitz, M.D.; Frierson, H.F.; Tomlins, S.A.; Kristiansen, G.; Theodorescu, D. CD24 Is an Effector of HIF-1–Driven Primary Tumor Growth and Metastasis. Cancer Res. 2012, 72, 5600–5612. [Google Scholar] [CrossRef] [Green Version]
- Kraus, S.; Shapira, S.; Kazanov, D.; Naumov, I.; Moshkowitz, M.; Santo, E.; Galazan, L.; Geva, R.; Shmueli, E.; Hallack, A.; et al. Predictive Levels of CD24 in Peripheral Blood Leukocytes for the Early Detection of Colorectal Adenomas and Adenocarcinomas. Dis. Markers 2015, 2015, e916098. [Google Scholar] [CrossRef] [Green Version]
- Shapira, S.; Kazanov, D.; Mdah, F.; Yaakobi, H.; Herishanu, Y.; Perry, C.; Avivi, I.; Itchaki, G.; Shacham-Abulafia, A.; Raanani, P.; et al. Feasibly of CD24/CD11b as a Screening Test for Hematological Malignancies. J. Pers. Med. 2021, 11, 724. [Google Scholar] [CrossRef]
- Perry, J.M.; Tao, F.; Roy, A.; Lin, T.; He, X.C.; Chen, S.; Lu, X.; Nemechek, J.; Ruan, L.; Yu, X.; et al. Overcoming Wnt–β-catenin dependent anticancer therapy resistance in leukaemia stem cells. Nat. Cell Biol. 2020, 22, 689–700. [Google Scholar] [CrossRef]
- Sun, J.; Feng, D.; Xi, H.; Luo, J.; Zhou, Z.; Liu, Q.; Chen, Y.; Shao, Q. CD24 blunts the sensitivity of retinoblastoma to vincristine by modulating autophagy. Mol. Oncol. 2020, 14, 1740–1759. [Google Scholar] [CrossRef]
- Sui, X.; Chen, R.; Wang, Z.; Huang, Z.; Kong, N.; Zhang, M.; Han, W.; Lou, F.; Yang, J.; Zhang, Q.; et al. Autophagy and chemotherapy resistance: A promising therapeutic target for cancer treatment. Cell Death Dis. 2013, 4, e838. [Google Scholar] [CrossRef] [PubMed]
- Huth, H.W.; Castro-Gomes, T.; de Goes, A.M.; Ropert, C. Translocation of intracellular CD24 constitutes a triggering event for drug resistance in breast cancer. Sci. Rep. 2021, 11, 17077. [Google Scholar] [CrossRef] [PubMed]
- Ju, J.; Jang, K.; Lee, K.; Kim, M.; Kim, J.; Yi, J.Y.; Noh, D.-Y.; Shin, I. CD24 enhances DNA damage-induced apoptosis by modulating NF-κB signaling in CD44-expressing breast cancer cells. Carcinogenesis 2011, 32, 1474–1483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Modur, V.; Joshi, P.; Nie, D.; Robbins, K.T.; Khan, A.U.; Rao, K. CD24 Expression May Play a Role as a Predictive Indicator and a Modulator of Cisplatin Treatment Response in Head and Neck Squamous Cellular Carcinoma. PLoS ONE 2016, 11, e0156651. [Google Scholar] [CrossRef] [Green Version]
- Koh, J.; Lee, S.; Park, H.; Lee, H.J.; Cho, N.H.; Kim, J. Susceptibility of CD24(+) ovarian cancer cells to anti-cancer drugs and natural killer cells. Biochem. Biophys. Res. Commun. 2012, 427, 373–378. [Google Scholar] [CrossRef] [PubMed]
- Jia, Y.; Gu, D.; Wan, J.; Yu, B.; Zhang, X.; Chiorean, E.G.; Wang, Y.; Xie, J. The role of GLI-SOX2 signaling axis for gemcitabine resistance in pancreatic cancer. Oncogene 2019, 38, 1764–1777. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soni, P.; Qayoom, S.; Husain, N.; Kumar, P.; Chandra, A.; Ojha, B.K.; Gupta, R.K. CD24 and Nanog expression in Stem Cells in Glioblastoma: Correlation with Response to Chemoradiation and Overall Survival. Asian Pac. J. Cancer Prev. APJCP 2017, 18, 2215–2219. [Google Scholar] [CrossRef]
- Pandey, V.; Jung, Y.; Kang, J.; Steiner, M.; Qian, P.-X.; Banerjee, A.; Mitchell, M.D.; Wu, Z.-S.; Zhu, T.; Liu, D.-X.; et al. Artemin Reduces Sensitivity to Doxorubicin and Paclitaxel in Endometrial Carcinoma Cells through Specific Regulation of CD24. Transl. Oncol. 2010, 3, 218–229, IN1–IN5. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Song, J.; Jiang, Y.; Yu, C.; Ma, Z. Predictive value of CD44 and CD24 for prognosis and chemotherapy response in invasive breast ductal carcinoma. Int. J. Clin. Exp. Pathol. 2015, 8, 11287–11295. [Google Scholar] [PubMed]
- Horiguchi, K.; Toi, M.; Horiguchi, S.-I.; Sugimoto, M.; Naito, Y.; Hayashi, Y.; Ueno, T.; Ohno, S.; Funata, N.; Kuroi, K.; et al. Predictive value of CD24 and CD44 for neoadjuvant chemotherapy response and prognosis in primary breast cancer patients. J. Med. Dent. Sci. 2010, 57, 165–175. [Google Scholar] [CrossRef] [Green Version]
- Marmé, F.; Werft, W.; Walter, A.; Keller, S.; Wang, X.; Benner, A.; Burwinkel, B.; Sinn, P.; Hug, S.; Sohn, C.; et al. CD24 Ala57Val polymorphism predicts pathologic complete response to sequential anthracycline- and taxane-based neoadjuvant chemotherapy for primary breast cancer. Breast Cancer Res. Treat. 2012, 132, 819–831. [Google Scholar] [CrossRef] [PubMed]
- Hüser, L.; Sachindra, S.; Granados, K.; Federico, A.; Larribère, L.; Novak, D.; Umansky, V.; Altevogt, P.; Utikal, J. SOX2-mediated upregulation of CD24 promotes adaptive resistance toward targeted therapy in melanoma. Int. J. Cancer 2018, 143, 3131–3142. [Google Scholar] [CrossRef] [Green Version]
- Kitazono, S.; Takiguchi, Y.; Ashinuma, H.; Saito-Kitazono, M.; Kitamura, A.; Chiba, T.; Sakaida, E.; Sekine, I.; Tada, Y.; Kurosu, K.; et al. Effect of metformin on residual cells after chemotherapy in a human lung adenocarcinoma cell line. Int. J. Oncol. 2013, 43, 1846–1854. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Gao, W. Overcoming acquired resistance of gefitinib in lung cancer cells without T790M by AZD9291 or Twist1 knockdown in vitro and in vivo. Arch. Toxicol. 2019, 93, 1555–1571. [Google Scholar] [CrossRef]
- Stremitzer, S.; Sunakawa, Y.; Zhang, W.; Yang, D.; Ning, Y.; Stintzing, S.; Sebio, A.; Yamauchi, S.; Matsusaka, S.; El-Khoueiry, R.; et al. Variations in genes involved in immune response checkpoints and association with outcomes in patients with resected colorectal liver metastases. Pharm. J. 2015, 15, 521–529. [Google Scholar] [CrossRef] [PubMed]
- van Houtum, E.J.H.; Büll, C.; Cornelissen, L.A.M.; Adema, G.J. Siglec Signaling in the Tumor Microenvironment. Front. Immunol. 2021, 12, 790317. [Google Scholar] [CrossRef]
- Crocker, P.R.; Paulson, J.C.; Varki, A. Siglecs and their roles in the immune system. Nat. Rev. Immunol. 2007, 7, 255–266. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.-Y.; Tang, J.; Zheng, P.; Liu, Y. CD24 and Siglec-10 selectively repress tissue damage-induced immune responses. Science 2009, 323, 1722–1725. [Google Scholar] [CrossRef] [Green Version]
- Tang, D.; Kang, R.; Coyne, C.B.; Zeh, H.J.; Lotze, M.T. PAMPs and DAMPs: Signal 0s that spur autophagy and immunity. Immunol. Rev. 2012, 249, 158–175. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Chen, G.-Y.; Zheng, P. CD24-Siglec G/10 discriminates danger- from pathogen-associated molecular patterns. Trends Immunol. 2009, 30, 557–561. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, L.; Lin, S.; Rammohan, K.W.; Liu, Z.; Liu, J.; Liu, R.; Guinther, N.; Lima, J.; Zhou, Q.; Wang, T.; et al. A Dinucleotide Deletion in CD24 Confers Protection against Autoimmune Diseases. PLoS Genet. 2007, 3, e49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, P.; Liu, Y.; Chen, H.; Devenport, M.; Reddy, P.; Farag, S.S.; Devine, S.M.; Jaglowski, S.; Uberti, J.; Braun, T.; et al. Targeting Danger Associated Molecular Pattern (DAMP) with CD24Fc to Reduce Acute Gvhd: Study Design on a Randomized Double Blind Placebo Controlled Phase III Clinical Trial (CATHY Study). Biol. Blood Marrow Transplant. 2020, 26, S180–S181. [Google Scholar] [CrossRef]
- Eckhardt, C.M.; O’Donnell, M.R. CD24Fc: An emerging COVID-19 therapy. Lancet Infect. Dis. 2022, 22, 565–567. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, G.-Y.; Zheng, P. Sialoside-based pattern recognitions discriminating infections from tissue injuries. Curr. Opin. Immunol. 2011, 23, 41–45. [Google Scholar] [CrossRef] [Green Version]
- Munkley, J.; Scott, E. Targeting Aberrant Sialylation to Treat Cancer. Medicines 2019, 6, 102. [Google Scholar] [CrossRef] [Green Version]
- Chen, G.-Y.; Chen, X.; King, S.; Cavassani, K.A.; Cheng, J.; Zheng, X.; Cao, H.; Yu, H.; Qu, J.; Fang, D.; et al. Amelioration of sepsis by inhibiting sialidase-mediated disruption of the CD24-SiglecG interaction. Nat. Biotechnol. 2011, 29, 428–435. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, J.; Liang, F.; Guo, H.; Gao, S.; Yang, F.; Guo, H.; Wang, G.; Wang, W.; Zhou, G. Innate immune checkpoint Siglec10 in cancers: Mining of comprehensive omics data and validation in patient samples. Front. Med. 2022, 1–14. [Google Scholar] [CrossRef]
- Meesmann, H.M.; Fehr, E.-M.; Kierschke, S.; Herrmann, M.; Bilyy, R.; Heyder, P.; Blank, N.; Krienke, S.; Lorenz, H.-M.; Schiller, M. Decrease of sialic acid residues as an eat-me signal on the surface of apoptotic lymphocytes. J. Cell Sci. 2010, 123, 3347–3356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, C.-Y.; Tsai, C.-L.; Chao, A.; Lee, L.-Y.; Chen, W.-C.; Tang, Y.-H.; Chao, A.-S.; Lai, C.-H. Nucleophosmin/B23 promotes endometrial cancer cell escape from macrophage phagocytosis by increasing CD24 expression. J. Mol. Med. Berl. Ger. 2021, 99, 1125–1137. [Google Scholar] [CrossRef] [PubMed]
- Ames, E.; Canter, R.J.; Grossenbacher, S.K.; Mac, S.; Chen, M.; Smith, R.C.; Hagino, T.; Perez-Cunningham, J.; Sckisel, G.D.; Urayama, S.; et al. NK Cells Preferentially Target Tumor Cells with a Cancer Stem Cell Phenotype. J. Immunol. 2015, 195, 4010–4019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yin, T.; Wang, G.; He, S.; Liu, Q.; Sun, J.; Wang, Y. Human cancer cells with stem cell-like phenotype exhibit enhanced sensitivity to the cytotoxicity of IL-2 and IL-15 activated natural killer cells. Cell. Immunol. 2016, 300, 41–45. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Lu, X.; Tao, K.; Shi, L.; Li, W.; Wang, G.; Wu, K. Siglec-10 is associated with survival and natural killer cell dysfunction in hepatocellular carcinoma. J. Surg. Res. 2015, 194, 107–113. [Google Scholar] [CrossRef] [PubMed]
- Alsuliman, A.; Colak, D.; Al-Harazi, O.; Fitwi, H.; Tulbah, A.; Al-Tweigeri, T.; Al-Alwan, M.; Ghebeh, H. Bidirectional crosstalk between PD-L1 expression and epithelial to mesenchymal transition: Significance in claudin-low breast cancer cells. Mol. Cancer 2015, 14, 149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiao, X.; Lao, X.-M.; Chen, M.-M.; Liu, R.-X.; Wei, Y.; Ouyang, F.-Z.; Chen, D.-P.; Zhao, X.-Y.; Zhao, Q.; Li, X.-F.; et al. PD-1hi Identifies a Novel Regulatory B-cell Population in Human Hepatoma That Promotes Disease Progression. Cancer Discov. 2016, 6, 546–559. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, M.; Wang, X.; Zhang, P.; Su, J.; Du, X.; Zhang, Y.; Liu, Y.; Zheng, P. 813 CD24Fc ameliorates immune-related adverse events while preserving anti-tumor therapeutic effect. J. Immunother. Cancer 2021, 9, A1054. [Google Scholar] [CrossRef]
- Kong, T.; Ahn, R.; Yang, K.; Zhu, X.; Fu, Z.; Morin, G.; Bramley, R.; Cliffe, N.C.; Xue, Y.; Kuasne, H.; et al. CD44 Promotes PD-L1 Expression and Its Tumor-Intrinsic Function in Breast and Lung Cancers. Cancer Res. 2020, 80, 444–457. [Google Scholar] [CrossRef]
- Naor, D.; Wallach-Dayan, S.B.; Zahalka, M.A.; Sionov, R.V. CHAPTER 8-Involvement of CD44, a Molecule with a Thousand Faces, in Cancer Dissemination. In Hyaluronan in Cancer Biology; Stern, R., Ed.; Academic Press: San Diego, CA, USA, 2009; pp. 127–146. ISBN 978-0-12-374178-3. [Google Scholar]
- Naor, D.; Sionov, R.V.; Ish-Shalom, D. CD44: Structure, Function and Association with the Malignant Process. Adv. Cancer Res. 1997, 71, 241–319. [Google Scholar] [CrossRef] [PubMed]
- Jaggupilli, A.; Elkord, E. Significance of CD44 and CD24 as Cancer Stem Cell Markers: An Enduring Ambiguity. Clin. Dev. Immunol. 2012, 2012, e708036. [Google Scholar] [CrossRef] [Green Version]
- Napier, S.L.; Healy, Z.R.; Schnaar, R.L.; Konstantopoulos, K. Selectin Ligand Expression Regulates the Initial Vascular Interactions of Colon Carcinoma Cells: THE ROLES OF CD44V AND ALTERNATIVE SIALOFUCOSYLATED SELECTIN LIGANDS*. J. Biol. Chem. 2007, 282, 3433–3441. [Google Scholar] [CrossRef] [Green Version]
- Mrass, P.; Kinjyo, I.; Ng, L.G.; Reiner, S.L.; Puré, E.; Weninger, W. CD44 Mediates Successful Interstitial Navigation by Killer T Cells and Enables Efficient Antitumor Immunity. Immunity 2008, 29, 971–985. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klement, J.D.; Paschall, A.V.; Redd, P.S.; Ibrahim, M.L.; Lu, C.; Yang, D.; Celis, E.; Abrams, S.I.; Ozato, K.; Liu, K. An osteopontin/CD44 immune checkpoint controls CD8+ T cell activation and tumor immune evasion. J. Clin. Investig. 2018, 128, 5549–5560. [Google Scholar] [CrossRef]
- Shurin, M.R. Osteopontin controls immunosuppression in the tumor microenvironment. J. Clin. Investig. 2018, 128, 5209–5212. [Google Scholar] [CrossRef] [PubMed]
- Velasco-Velázquez, M.A.; Homsi, N.; De La Fuente, M.; Pestell, R.G. Breast cancer stem cells. Int. J. Biochem. Cell Biol. 2012, 44, 573–577. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hurt, E.M.; Kawasaki, B.T.; Klarmann, G.J.; Thomas, S.B.; Farrar, W.L. CD44+CD24− prostate cells are early cancer progenitor/stem cells that provide a model for patients with poor prognosis. Br. J. Cancer 2008, 98, 756–765. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, H.; Jia, J.; Wang, X.; Ma, B.; Di, L.; Song, G.; Ren, J. CD44+/CD24− breast cancer cells isolated from MCF-7 cultures exhibit enhanced angiogenic properties. Clin. Transl. Oncol. 2013, 15, 46–54. [Google Scholar] [CrossRef] [PubMed]
- El-Ashmawy, N.E.; Salem, M.L.; Khedr, E.G.; El-Zamarany, E.A.; Ibrahim, A.O. Dual-targeted therapeutic strategy combining CSC-DC-based vaccine and cisplatin overcomes chemo-resistance in experimental mice model. Clin. Transl. Oncol. Off. Publ. Fed. Span. Oncol. Soc. Natl. Cancer Inst. Mex. 2020, 22, 1155–1165. [Google Scholar] [CrossRef]
- Mirza, S.; Jain, N.; Rawal, R. Evidence for circulating cancer stem-like cells and epithelial–mesenchymal transition phenotype in the pleurospheres derived from lung adenocarcinoma using liquid biopsy. Tumor Biol. 2017, 39, 1010428317695915. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meng, E.; Long, B.; Sullivan, P.; McClellan, S.; Finan, M.A.; Reed, E.; Shevde, L.; Rocconi, R.P. CD44+/CD24− ovarian cancer cells demonstrate cancer stem cell properties and correlate to survival. Clin. Exp. Metastasis 2012, 29, 939–948. [Google Scholar] [CrossRef]
- Li, C.; Heidt, D.G.; Dalerba, P.; Burant, C.F.; Zhang, L.; Adsay, V.; Wicha, M.; Clarke, M.F.; Simeone, D.M. Identification of pancreatic cancer stem cells. Cancer Res. 2007, 67, 1030–1037. [Google Scholar] [CrossRef] [Green Version]
- Tanida, T.; Tanemura, M.; Miyoshi, E.; Nagano, H.; Furukawa, K.; Nonaka, Y.; Akita, H.; Hama, N.; Wada, H.; Kawamoto, K.; et al. Pancreatic cancer immunotherapy using a tumor lysate vaccine, engineered to express α-gal epitopes, targets pancreatic cancer stem cells. Int. J. Oncol. 2015, 46, 78–90. [Google Scholar] [CrossRef]
- Dashti, A.; Ebrahimi, M.; Hadjati, J.; Memarnejadian, A.; Moazzeni, S.M. Dendritic cell based immunotherapy using tumor stem cells mediates potent antitumor immune responses. Cancer Lett. 2016, 374, 175–185. [Google Scholar] [CrossRef]
- Salnikov, A.V.; Bretz, N.P.; Perne, C.; Hazin, J.; Keller, S.; Fogel, M.; Herr, I.; Schlange, T.; Moldenhauer, G.; Altevogt, P. Antibody targeting of CD24 efficiently retards growth and influences cytokine milieu in experimental carcinomas. Br. J. Cancer 2013, 108, 1449–1459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sagiv, E.; Starr, A.; Rozovski, U.; Khosravi, R.; Altevogt, P.; Wang, T.; Arber, N. Targeting CD24 for treatment of colorectal and pancreatic cancer by monoclonal antibodies or small interfering RNA. Cancer Res. 2008, 68, 2803–2812. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Wang, T.; Tu, X.; Xie, W.; He, H.; Wang, M.; Zhang, J. Antibody-based targeting of CD24 enhances antitumor effect of cetuximab via attenuating phosphorylation of Src/STAT3. Biomed. Pharmacother. 2017, 90, 427–436. [Google Scholar] [CrossRef]
- Wang, T.; Sun, F.; Xie, W.; Tang, M.; He, H.; Jia, X.; Tian, X.; Wang, M.; Zhang, J. A bispecific protein rG7S-MICA recruits natural killer cells and enhances NKG2D-mediated immunosurveillance against hepatocellular carcinoma. Cancer Lett. 2016, 372, 166–178. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Feng, L.; An, G.; Zhang, X.; Zhao, Z.; Han, R.; Lei, F.; Zhang, Y.; Luo, A.; Jing, X.; et al. Ribosome display and selection of single-chain variable fragments effectively inhibit growth and progression of microspheres in vitro and in vivo. Cancer Sci. 2018, 109, 1503–1512. [Google Scholar] [CrossRef]
- Zangemeister-Wittke, U.; Lehmann, H.P.; Waibel, R.; Wawrzynczak, E.J.; Stahel, R.A. Action of a CD24-specific deglycosylated ricin-A-chain immunotoxin in conventional and novel models of small-cell-lung-cancer xenograft. Int. J. Cancer 1993, 53, 521–528. [Google Scholar] [CrossRef] [PubMed]
- Schnell, R.; Katouzi, A.A.; Linnartz, C.; Schoen, G.; Drillich, S.; Hansmann, M.-L.; Schiefer, D.; Barth, S.; Zangemeister-Wittke, U.; Stahel, R.A.; et al. Potent anti-tumor effects of an anti-CD24 ricin A-chain immunotoxin in vitro and in a disseminated human Burkitt’s lymphoma model in SCID mice. Int. J. Cancer 1996, 66, 526–531. [Google Scholar] [CrossRef]
- Shapira, S.; Shapira, A.; Starr, A.; Kazanov, D.; Kraus, S.; Benhar, I.; Arber, N. An immunoconjugate of anti-CD24 and Pseudomonas exotoxin selectively kills human colorectal tumors in mice. Gastroenterology 2011, 140, 935–946. [Google Scholar] [CrossRef] [PubMed]
- Sun, F.; Wang, T.; Jiang, J.; Wang, Y.; Ma, Z.; Li, Z.; Han, Y.; Pan, M.; Cai, J.; Wang, M.; et al. Engineering a high-affinity humanized anti-CD24 antibody to target hepatocellular carcinoma by a novel CDR grafting design. Oncotarget 2017, 8, 51238–51252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, Z.; He, H.; Sun, F.; Xu, Y.; Huang, X.; Ma, Y.; Zhao, H.; Wang, Y.; Wang, M.; Zhang, J. Selective targeted delivery of doxorubicin via conjugating to anti-CD24 antibody results in enhanced antitumor potency for hepatocellular carcinoma both in vitro and in vivo. J. Cancer Res. Clin. Oncol. 2017, 143, 1929–1940. [Google Scholar] [CrossRef] [PubMed]
- Sun, F.; Wang, Y.; Luo, X.; Ma, Z.; Xu, Y.; Zhang, X.; Lv, T.; Zhang, Y.; Wang, M.; Huang, Z.; et al. Anti-CD24 Antibody-Nitric Oxide Conjugate Selectively and Potently Suppresses Hepatic Carcinoma. Cancer Res. 2019, 79, 3395–3405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maliar, A.; Servais, C.; Waks, T.; Chmielewski, M.; Lavy, R.; Altevogt, P.; Abken, H.; Eshhar, Z. Redirected T cells that target pancreatic adenocarcinoma antigens eliminate tumors and metastases in mice. Gastroenterology 2012, 143, 1375–1384.e5. [Google Scholar] [CrossRef]
- Wu, H.; Liu, J.; Wang, Z.; Yuan, W.; Chen, L. Prospects of antibodies targeting CD47 or CD24 in the treatment of glioblastoma. CNS Neurosci. Ther. 2021, 27, 1105–1117. [Google Scholar] [CrossRef]
- Han, Y.; Sun, F.; Zhang, X.; Wang, T.; Jiang, J.; Cai, J.; Gao, Q.; Hezam, K.; Liu, Y.; Xie, J.; et al. CD24 targeting bi-specific antibody that simultaneously stimulates NKG2D enhances the efficacy of cancer immunotherapy. J. Cancer Res. Clin. Oncol. 2019, 145, 1179–1190. [Google Scholar] [CrossRef]
- Lu, R.-M.; Hwang, Y.-C.; Liu, I.-J.; Lee, C.-C.; Tsai, H.-Z.; Li, H.-J.; Wu, H.-C. Development of therapeutic antibodies for the treatment of diseases. J. Biomed. Sci. 2020, 27, 1. [Google Scholar] [CrossRef] [PubMed]
- Brentuximab Vedotin. Available online: https://www.fda.gov/drugs/resources-information-approved-drugs/brentuximab-vedotin (accessed on 4 April 2022).
- June, C.H.; O’Connor, R.S.; Kawalekar, O.U.; Ghassemi, S.; Milone, M.C. CAR T cell immunotherapy for human cancer. Science 2018, 359, 1361–1365. [Google Scholar] [CrossRef] [Green Version]
- Klapdor, R.; Wang, S.; Morgan, M.; Dörk, T.; Hacker, U.; Hillemanns, P.; Büning, H.; Schambach, A. Characterization of a Novel Third-Generation Anti-CD24-CAR against Ovarian Cancer. Int. J. Mol. Sci. 2019, 20, 660. [Google Scholar] [CrossRef] [Green Version]
- Cioca, D.P.; Deak, E.; Cioca, F.; Paunescu, V. Monoclonal antibodies targeted against melanoma and ovarian tumors enhance dendritic cell-mediated cross-presentation of tumor-associated antigens and efficiently cross-prime CD8+ T cells. J. Immunother. Hagerstown Md 1997 2006, 29, 41–52. [Google Scholar] [CrossRef] [PubMed]
- Fischer, A.; Blanche, S.; Le Bidois, J.; Bordigoni, P.; Garnier, J.L.; Niaudet, P.; Morinet, F.; Le Deist, F.; Fischer, A.-M.; Griscelli, C.; et al. Anti–B-Cell Monoclonal Antibodies in the Treatment of Severe B-Cell Lymphoproliferative Syndrome Following Bone Marrow and Organ Transplantation. N. Engl. J. Med. 1991, 324, 1451–1456. [Google Scholar] [CrossRef]
- Benkerrou, M.; Jais, J.-P.; Leblond, V.; Durandy, A.; Sutton, L.; Bordigoni, P.; Garnier, J.L.; Le Bidois, J.; Le Deist, F.; Blanche, S.; et al. Anti–B-Cell Monoclonal Antibody Treatment of Severe Posttransplant B-Lymphoproliferative Disorder: Prognostic Factors and Long-Term Outcome. Blood 1998, 92, 3137–3147. [Google Scholar] [CrossRef] [PubMed]
- National Comprehensive Cancer Network B-Cell Lymphomas (Version 2.2022). Available online: https://www.nccn.org/professionals/physician_gls/pdf/b-cell.pdf (accessed on 23 March 2022).
- Xu, K.; Meng, Z.; Mu, X.; Sun, B.; Chai, Y. One Single Site Clinical Study: To Evaluate the Safety and Efficacy of Immunotherapy with Autologous Dendritic Cells, Cytokine-Induced Killer Cells in Primary Hepatocellular Carcinoma Patients. Front. Oncol. 2020, 10, 581270. [Google Scholar] [CrossRef]
- Toubai, T.; Rossi, C.; Oravecz-Wilson, K.; Zajac, C.; Liu, C.; Braun, T.; Fujiwara, H.; Wu, J.; Sun, Y.; Brabbs, S.; et al. Siglec-G represses DAMP-mediated effects on T cells. JCI Insight 2017, 2, e92293. [Google Scholar] [CrossRef] [Green Version]
Tumor Type | CD24 Overexpression | Disease Characteristics | Outcome | Reference |
---|---|---|---|---|
Hepatocellular carcinoma | High IHC expression | NA | Decreased OS | [27] |
Breast carcinoma | Moderate/high-intensity IHC staining or present in >26% of cells | Luminal A subtype | Decreased OS | [29] |
Breast carcinoma | mRNA expression >median | TNBC subtype | Decreased OS | [30] |
Ovarian carcinoma | mRNA expression >median | NA | Decreased RFS | [30] |
Colorectal adenocarcinoma | Moderate/high IHC staining, mRNA expression >90th percentile | NA | Increased OS | [42] |
Urothelial carcinoma | Moderate/high-intensity IHC staining in >10% of cells | High grade, stage | NA | [43] |
Prostate adenocarcinoma | Any IHC staining | High stage | Decreased PSA relapse time | [35] |
Oral squamous cell carcinoma | IHC staining in >10% of cells | NA | Decreased ORR to neoadjuvant therapy | [36] |
Multiple myeloma | BM PC expression >5% by flow cytometry | NA | Increased PFS, OS | [41] |
Immune Cell Subype | Effect | Proposed Mechanism | Outcome |
---|---|---|---|
T cells | Regulation of proliferation | Inhibition of rapid T cell proliferation in lymphopenic hosts | Inhibition |
T cells | Downregulation of Th1, upregulation of Treg cells | CD24+ Breg cells | Inhibition |
T cells | Promotion of the differentiation of memory/effector T cells | Costimulatory signal for naive CD8+ T cells | Activation |
NK cells | Reduced NK cell cytotoxicity | Siglec-10-mediated | Inhibition |
Macrophages | Inhibition of phagocytosis | Siglec-10-mediated | Inhibition |
Monocytes/neutrophils | Hematogenous spread | P-selectin-mediated cell adhesion to activated endothelial cells or platelets | Activation |
Dendritic cells | Suppression of immune response to tissue damage | Inhibition of TLR-mediated inflammation via Siglec-10 interaction | Inhibition |
Tumor Type | Anti-CD24 Agent | Other Agents | Result | Proposed Mechanism | Reference |
---|---|---|---|---|---|
Urothelial carcinoma | ALB9 | NA | Tumor growth inhibition | Inhibition of P-selectin-mediated metastatic dissemination | [34] |
Lung adenocarcinoma | SWA11 | NA | Tumor growth inhibition | Inhibition of Src/STAT3 signaling | [21] |
Pancreatic adenocarcinoma | SWA11 | NA | Tumor growth inhibition | Inhibition of Src/STAT3 signaling | |
Ovarian carcinoma | SWA11 | NA | Tumor growth inhibition | Inhibition of Src/STAT3 signaling | |
Lung adenocarcinoma | SWA11 | Gemcitabine | Tumor growth inhibition, increased efficacy of gemcitabine | Modification of intratumoral cytokine microenvironment | [105] |
Ovarian carcinoma | SWA11 | NA | Tumor growth inhibition | Modification of intratumoral cytokine microenvironment | |
Colorectal adenocarcinoma | SWA11 | Paclitaxel, doxorubicin, 5-fluorouracil, oxaliplatin, irinotecan | Tumor growth inhibition, increased efficacy of chemotherapeutic agents | Inhibition of Ras pathway | [106] |
Breast carcinoma | SN3 | NA | Tumor growth inhibition | Promotion of phagocytosis by Siglec-10-expressing macrophages | [30] |
Lung adenocarcinoma | G7mAb | Cetuximab | Improved survival | Inhibition of STAT3 signaling by dual targeting of CD24 and EGFR | [107] |
Hepatocellular carcinoma | G7mAb | Cetuximab | Tumor growth inhibition, improved survival | Inhibition of STAT3 signaling by dual targeting of CD24 and EGFR | |
Colorectal adenocarcinoma | G7mAb | Cetuximab | Tumor growth inhibition, improved survival | Inhibition of STAT3 signaling by dual targeting of CD24 and EGFR | |
Hepatocellular carcinoma | rG7S-MICA | NA | Tumor growth inhibition | NK cell recruitment through MICA/NKG2D pathway | [108] |
Breast carcinoma | scFvs | Epirubicin | Tumor growth inhibition, increased efficacy of epirubicin | Targeting of CD44+/CD24+ cells | [109] |
Small cell lung cancer | SWA11-SPDB-dg.ricin A chain | NA | Tumor growth inhibition | Targeted, ricin-mediated toxicity | [110] |
Burkitt’s lymphoma | SWA11.dgA | NA | Durable complete remissions | Targeted, ricin-mediated toxicity | [111] |
Colorectal adenocarcinoma | SWA11-ZZ-PE38 | NA | Tumor growth inhibition | Targeted, exotoxin-mediated cytotoxicity | [112] |
Hepatocellular carcinoma | hG7-BM3-VcMM | NA | Tumor growth inhibition | Targeted, MMAE-mediated cytotoxicity | [113] |
Hepatocellular carcinoma | G7mAb-DOX | NA | Tumor growth inhibition, improved survival | Targeted, doxorubicin-mediated cytotoxicity | [114] |
Hepatocellular carcinoma | HN-01 | NA | Tumor growth inhibition, improved survival | Targeted, intracellular release of nitric oxide | [115] |
Pancreatic adenocarcinoma | CAR-redirected anti-CD24 T-cells | NA | Tumor growth inhibition, improved survival | T-cell mediated cytotoxicity | [116] |
Trial Identifier | Inclusion | Agent | Phase | Setting | Primary Outcome | Enrollment | Status | Results |
---|---|---|---|---|---|---|---|---|
NCT04552704 | Advanced Solid Tumors | CD24 agonist | I/II | Any | Safety, tolerability, recovery from irAEs | 78 | Active, not recruiting | No |
NCT04060407 | Unresectable or metastatic melanoma | CD24 agonist, nivolumab, ipilimumab | Ib/II | Any | Safety, tolerability | 0 | Withdrawn | No |
NA | Posttransplant BLPD | ALB9, BL13 | I/II | First line | Safety, tolerability | 58 | Completed | Yes |
NA | Resected HCC | CD24-loaded DC/CIK autotransfusion | I/II | Adjuvant | Safety, efficacy | 36 | Completed | Yes |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Panagiotou, E.; Syrigos, N.K.; Charpidou, A.; Kotteas, E.; Vathiotis, I.A. CD24: A Novel Target for Cancer Immunotherapy. J. Pers. Med. 2022, 12, 1235. https://doi.org/10.3390/jpm12081235
Panagiotou E, Syrigos NK, Charpidou A, Kotteas E, Vathiotis IA. CD24: A Novel Target for Cancer Immunotherapy. Journal of Personalized Medicine. 2022; 12(8):1235. https://doi.org/10.3390/jpm12081235
Chicago/Turabian StylePanagiotou, Emmanouil, Nikolaos K. Syrigos, Andriani Charpidou, Elias Kotteas, and Ioannis A. Vathiotis. 2022. "CD24: A Novel Target for Cancer Immunotherapy" Journal of Personalized Medicine 12, no. 8: 1235. https://doi.org/10.3390/jpm12081235
APA StylePanagiotou, E., Syrigos, N. K., Charpidou, A., Kotteas, E., & Vathiotis, I. A. (2022). CD24: A Novel Target for Cancer Immunotherapy. Journal of Personalized Medicine, 12(8), 1235. https://doi.org/10.3390/jpm12081235