Trust-Based Decision-Making in the Health Context Discriminates Biological Risk Profiles in Type 1 Diabetes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Characterization
2.2. Experimental Interactive Game Decision-Making Tasks
- Experiment 1: Computer and Human Mediator Neuroeconomics Experiment (Economic Trust Game)
- Experiment 2: Extending Utility Based Neuroeconomics to the Health Context (Health Trust Game)
2.3. Data Analysis
3. Results
3.1. Decision-Making under Uncertainty (The First Play Move)
3.2. Adjusted Decision-Making during Probabilistic Learning (Sequential Play Move)
4. Discussion
5. Limitations
6. Future Directions
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Charness, G.; Gneezy, U.; Kuhn, M.A. Experimental Methods: Between-Subject and Within-Subject Design. J. Econ. Behav. Organ. 2012, 81, 1–8. [Google Scholar] [CrossRef]
- Glimcher, P.; Porris, M. Neuronal Studies of Decision-Making in the Visual-Saccadic System. In The Cognitive Neuroscience, 3rd ed.; Gazzaniga, M., Norton, W.W., Eds.; National Center for Biotechnology Information (NCBI): Bethesda, MD, USA, 2004; pp. 1215–1227. [Google Scholar]
- Lane, S.; Cherek, D.R. Analysis of Risk Taking in Adults with A History of High-Risk Behavior. Drug Alcohol Depend. 2000, 60, 179–187. [Google Scholar] [CrossRef]
- Mohr, P.; Biele, G.; Heekeren, H. Neural Processing of Risk. J. Neurosci. 2010, 12, 6613–6619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruff, C.; Huettel, S. Experimental Methods in Cognitive Neuroscience. In Neuroeconomics: Decision-Making and the Brain, 2nd ed.; Glimcher, P.W., Fehr, E., Eds.; Elsevier: Amsterdam, The Netherlands, 2014; pp. 77–108. Available online: https://stanford.edu/~knutson/bad/glimcher08.pdf (accessed on 3 December 2020).
- Christopoulos, G.I.; Tobler, P.N.; Bossaerts, P.; Dolan, R.J.; Schultz, W. Neural Correlates of Value, Risk and Risk Aversion Contributing to Decision-Making Under Risk. J. Neurosci. 2009, 29, 12574–12583. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.H.; Yoon, H.; Hamann, S. Individual Differences in Sensitivity to Reward and Punishment and Neural Activity during Reward and Avoidance Learning. Soc. Cogn. Affect. Neurosci. 2015, 10, 1219–1227. [Google Scholar] [CrossRef] [Green Version]
- Rangel, A.; Camerer, C.; Montague, R. A Framework for Studying the Neurobiology of Valed-Based Decision Making. Nat. Rev. 2008, 9, 545–556. [Google Scholar] [CrossRef] [Green Version]
- Bechara, A.; Damasio, H.; Tranel, D.; Damasio, A.R. Deciding Advantageously Before Knowing the Advantageous Strategy. Science 1997, 275, 1293–1295. [Google Scholar] [CrossRef] [Green Version]
- Dong, G.; Zhang, Y.; Xu, J.; Lin, X.; Du, X. How the Risky Features of Previous Selection Affect Subsequent Decision-Making: Evidence from Behavioral and Fmri Measures. Front. Neurosci. 2015, 9, 364. [Google Scholar] [CrossRef] [Green Version]
- Megías, A.; Cándido, A.; Maldonado, A.; Catena, A. Neural Correlates of Risk Perception as a Function of Risk Level: An Approach to the Study of Risk through a Daily Life Task. Neuropsychologica 2018, 119, 464–473. [Google Scholar] [CrossRef]
- Vives, M.-L.; FeldmanHall, O. Tolerance to Ambiguous Uncertainty Predicts Prosocial Behavior. Nat. Commun. 2018, 9, 2156. [Google Scholar] [CrossRef] [Green Version]
- Rustad, J.K.; Musselman, D.L.; Skyler, J.S.; Matheson, D.; Delamater, A.; Kenyon, N.S.; Cáceda, R.; Nemeroff, C.B. Decision-Making in Diabetes Mellitus Type 1. J. Neuropsychiatry Clin. Neurosci. 2013, 25, 40–50. [Google Scholar] [CrossRef]
- Jorge, H.; Duarte, I.C.; Correia, B.R.; Barros, L.; Relvas, A.P.; Castelo-Branco, M. Successful Metabolic Control in Diabetes Type 1 Depends on Individual Neuroeconomic and Health Risk-Taking Decision Endophenotypes: A New Target in Personalized Care. Psychol. Med. 2021, 1–9. [Google Scholar] [CrossRef]
- Tarrant, C.; Stokes, T.; Colman, A.M. Models of the Medical Consultation: Opportunities and Limitations of A Game Theory Perspective. BMJ Qual. Saf. 2004, 13, 461–466. [Google Scholar] [CrossRef] [Green Version]
- Delgado, M.R.; Frank, R.H.; A Phelps, E. Perceptions of Moral Character Modulate the Neural Systems of Reward during the Trust Game. Nat. Neurosci. 2005, 8, 1611–1618. [Google Scholar] [CrossRef]
- Zinchenko, O.; Arsalidou, M. Brain Responses to Social Norms: Meta-Analyses of f MRI Studies. Hum. Brain Mapp. 2017, 39, 955–970. [Google Scholar] [CrossRef] [Green Version]
- Soltani, A.; Izquierdo, A. Adaptive Learning under Expected and Unexpected Uncertainty. Nat. Rev. Neurosci. 2019, 20, 635–644. [Google Scholar] [CrossRef]
- Li, Y.; Dudman, J.T. Mice Infer Probabilistic Models for Timing. Proc. Natl. Acad. Sci. USA 2013, 110, 17154–17159. [Google Scholar] [CrossRef] [Green Version]
- Platt, M.L.; A Huettel, S. Risky Business: The Neuroeconomics of Decision Making under Uncertainty. Nat. Neurosci. 2008, 11, 398–403. [Google Scholar] [CrossRef]
- Blais, A.R.; Weber, E.U. A Domain-Specific Risk-Taking (Dospert) Scale for Adult Populations. Judgm. Decis.-Mak. 2006, 1, 33–47. Available online: http://www.journal.sjdm.org/jdm06005.pdf (accessed on 3 December 2020).
- Castro-Fonseca, A.; Eysenck, S.B.; Simões, A. Um Estudo Intercultural da Personalidade: Comparação de Adultos Portugueses e Ingleses no EPQ. Rev. Port. Pedagog. 1991, 25, 187–203. Available online: https://www.uc.pt/fpce/rppedagogia (accessed on 3 December 2020).
- Cruz, A.; Barbosa, F. European Portuguese Version of BIS-11 for Research. 2012. Available online: http://www.impulsivity.org/measurement/BIS11_Portuguese (accessed on 3 December 2020).
- Fernandes, D. Validation Studies of Barratt Impulsivity Scale BIS-11-for Portuguese Population. Master’s Thesis, University of Coimbra, Coimbra, Portugal, 2014. Unpublished. Available online: https://estudogeral.sib.uc.pt/bitstream/10316/28357/3/TESE%20%20Daniela%20Fernandes.pdf (accessed on 3 December 2020).
- Weber, E.U.; Blais, A.R.; Betz, N.E. A Domain-Specific Risk-Attitude Scale: Measuring Risk Perceptions and Risk Behaviors. J. Behav. Decis. Mak. 2002, 15, 263–290. [Google Scholar] [CrossRef]
- Silva, J.P. Risk Profiling and the DOSPERT Scale: An Approach Using Prospect Theory. Master’s Thesis, University of Lisbon, Lisbon, Portugal, 2012. Unpublished. Available online: https://www.repository.utl.pt/bitstream/10400.5/10351/1/DM-RJCPS-2012.pdf (accessed on 3 December 2020).
- Fernie, G.; Cole, J.C.; Goudie, A.J.; Field, M. Risk-Taking but not Response Inhibition or Delay Discounting Predict Alcohol Consumption in Social Drinkers. Drug Alcohol Depend. 2010, 112, 54–61. [Google Scholar] [CrossRef] [PubMed]
- Van Strien, T.; Frijters, J.E.R.; Bergers, G.P.A.; Defares, P.B. The Dutch Eating Behavior Questionnaire (DEBQ) for Assessment of Restrained, Emotional and External Eating Behavior. Int. J. Eat. Disord. 1986, 5, 295–315. [Google Scholar] [CrossRef]
- Viana, V.; Sinde, S. Eating style: Adaptation and validation of the Dutch eating behavior questionnaire. Psicol. Teor. Investig. Prat. 2003, 8, 59–71. Available online: https://www.researchgate.net/publication/236649218_ESTILO_ALIMENTAR_Adaptacao_e_validacao_do_Questionario_Holandes_do_Comportamento_Alimentar (accessed on 3 December 2020).
- Simões, M. Critical Recension: Raven’s Coloured Progress. Matrices test in Potugal. In Avaliação Psicológica: Instrumentos Validados para a População Portuguesa [Psychological Assessment: Instruments Validated for Portuguese Population]; Almeida, L.S., Simões, M.R., Machado, C., Gonçalves, M.M., Eds.; Quarteto: Coimbra, Portugal, 2004; Volume 2. [Google Scholar]
- Wechsler, D. WAIS-III- Wechsler Adult Intelligence Scale, 3rd ed.; Cegoc: Lisbon, Portugal, 2008. [Google Scholar]
- Freitas, S.; Simoes, M.; Alves, L.; Santana, I. Montreal Cognitive Assessment (MoCA): Normative Study for the Portuguese Population. J. Clin. Exp. Neuropsychol. 2011, 33, 989–996. [Google Scholar] [CrossRef] [PubMed]
- Moallen, N.R.; Ray, L.A. Dimensions of Impulsivity among Heavy Drinkers, Smokers, and Heavy Drinking Smokers: Singular and Combined Effects. Addict. Behav. 2012, 37, 871–874. [Google Scholar] [CrossRef] [Green Version]
- Schultz, W.; O’Neill, M.; Tobler, P.; Kobayashi, S. Neuronal Signals for Reward Risk in Frontal Cortex. Ann. N. Y. Acad. Sci. 2011, 1239, 109–117. [Google Scholar] [CrossRef]
- Maroco, J. Statistical Analysis: Using SPSS, 3rd ed.; Edições Sílabo: Lisbon, Portugal, 2007. [Google Scholar]
- Ghasemi, A.; Zahediasl, S. Normality Tests for Statistical Analysis: A Guide for Non-Statisticians. Int. J. Endocrinol. Metab. 2012, 10, 486–489. [Google Scholar] [CrossRef] [Green Version]
- O’Doherty, J.; Cockburn, J.; Pauli, W. Learning, Reward and Decision-Making. Annu. Rev. Psychol. 2017, 68, 73–100. [Google Scholar] [CrossRef] [Green Version]
- Gray, D.P.; Evans, P.; Sweeney, K.; Lings, P. Towards a Theory of Continuity of Care. J. R. Soc. Med. 2003, 96, 160–166. [Google Scholar] [CrossRef] [Green Version]
- Rilling, J.K.; Gutman, D.A.; Zeh, T.R.; Pagnoni, G.; Berns, G.S.; Kilts, C.D. A Neural Basis for Social Cooperation. Neuron 2002, 35, 395–405. [Google Scholar] [CrossRef] [Green Version]
- Singer, T.; Tusche, A. Understanding Others: Brains Mechanisms of Theory of Mind and Empathy. In Neuroeconomics. Decision-Making and the Brain, 2nd ed.; Glimcher, P.W., Fehr, E., Eds.; Elsevier: Oxford, UK, 2014; pp. 513–532. [Google Scholar]
Variables | MC (N = 49) | NoMC (N = 42) | X2 | t | U | gl | p | d |
---|---|---|---|---|---|---|---|---|
Demographic data | ||||||||
Gender (M/F) | 31/18 | 25/17 | 0.134 | ----- | ----- | ----- | 0.824 | 0.07 |
Age (y) | 37.20 (9.47) | 36.19 (8.67) | ----- | 0.529 | ----- | 89 | 0.59 | −0.11 |
Civil State (Single/Couple) | 22/27 | 24/18 | 1.367 | ----- | ----- | 1 | 0.244 | 0.07 |
Household members (1/2/3) | 17/28/3 | 16/21/5 | 1.695 | ----- | ----- | 1 | 0.428 | 0.08 |
Household income B (1/2) | 33/15 | 16/26 | 8.94 | ----- | ----- | 1 | 0.003 | 0.66 |
Residence | 20/12/16 | 16/17/9 | 2.97 | ----- | ----- | 2 | 0.226 | 0.36 |
Education level (1/2) | 17/32 | 27/15 | 7.93 | ----- | ----- | 1 | 0.005 | 0.61 |
Cognitive data | ||||||||
Vocabulary | 32.33 (3.47) | 33.60 (2.81) | ----- | ----- | 807 | ----- | 0.075 | 0.034 |
Digit Memory | 14.82 (2.15) | 14.10 (1.92) | ----- | ----- | 1273 | ----- | 0.05 | 0.416 |
RPMT | 8.04 (0.90) | 8.05 (1.01) | ----- | ----- | 981 | ----- | 0.688 | 0.08 |
Clinical features | ||||||||
Disease onset (</>18) | 24/25 | 24/18 | 0.605 | ----- | ----- | 1 | 0.382 | 0.16 |
Disease Dealing Time | 17.56 (10.38) | 17.21 (9.58) | ----- | −0.161 | ----- | 89 | 0.870 | −0.034 |
HbA1c(%/mmol/mol) | 7.19/55 (0.65) | 8.52/70 (1.22) | ----- | 6.329 | ----- | 89 | <0.001 | 0.07 |
BMI | 24.95 (3.31) | 25.20 (3.81) | ----- | ----- | 989 | ----- | 0.750 | 0.067 |
Complications (Y/N) | 21/28 | 30/12 | 7.94 | ----- | ----- | 1 | 0.006 | 0.62 |
Smoking status (Y/N) | 11/38 | 7/35 | 0.48 | ----- | ----- | 1 | 0.49 | 0.14 |
Self-report measures | ||||||||
Neuroticism | 6.49 (4.02) | 9.95 (4.22) | ----- | 4.005 | ----- | 89 | <0.001 | 0.84 |
Extroversion | 13.12 (3.49) | 10.98 (3.61) | ----- | −2.88 | ----- | 89 | 0.005 | −0.61 |
Impulsivity | 54.11 (7.06) | 58.05 (8.03) | ----- | 2.138 | ----- | 89 | 0.035 | 0.45 |
Lack of planning | 14.32 (3.76) | 17.03 (4.41) | ----- | ----- | 657.5 | ----- | 0.003 | 3.34 |
Health risk perception | 37.65 (5.25) | 35.98 (8.8) | ----- | ----- | 1273 | ----- | 0.029 | 0.41 |
Past Risk | 14.60 (3.73) | 12.00 (3.29) | ----- | 3.52 | ----- | 89 | 0.001 | 0.74 |
Present Risk | 10.67 (2.80) | 13.64 (4.31) | ----- | 3.83 | ----- | 89 | <0.001 | 0.81 |
Health Intertemporal Choice | 25/15/9 | 13/24/5 | 6.51 | ----- | ----- | 2 | 0.039 | 0.55 |
Emotional Eating Behavior | 2.34 (0.54) | 2.29 (0.78) | ------ | 2.84 | ----- | 89 | 0.006 | 0.59 |
External Eating Behavior | 2.34 (0.54) | 2.58 (0.51) | ------ | 2.10 | ----- | 89 | 0.039 | 0.44 |
Economic Context | ||||
---|---|---|---|---|
NoMC | MC | |||
Variable | M | SD | M | SD |
Expected Value | ||||
M0 | 66.96 | 21.55 | 64.13 | 19.47 |
M1 | 63.64 | 20.91 | 67.88 | 18.41 |
M2 | 72.91 | 24.42 | 74.90 | 22.64 |
M3 | 67.08 | 25.58 | 61.96 | 27.19 |
Investment | ||||
M0 | 37.41 | 23.59 | 36.56 | 18.73 |
M1 | 36.83 | 19.42 | 39.64 | 17.71 |
M2 | 40.82 | 21.16 | 40.07 | 16.44 |
M3 | 55.97 | 31.26 | 54.88 | 33.28 |
Feedback | ||||
M0 | 75.55 | 18.53 | 73.95 | 16.52 |
M1 | 73.28 | 18.36 | 79.56 | 18.36 |
M2 | 106.86 | 38.14 | 106.80 | 33.94 |
M3 | 106.80 | 33.94 | 71.83 | 29.43 |
Health Context | ||||
NoMC | MC | |||
Variable | M | SD | M | SD |
Expected Value | ||||
M1 | 125.53 | 23.55 | 116.81 | 28.22 |
M2 | 106.70 | 26.26 | 96.70 | 36.67 |
M3 | 106.99 | 27.16 | 105.62 | 29.32 |
Investment | ||||
M1 | 4.68 | 0.76 | 4.82 | 0.86 |
M2 | 5.17 | 0.72 | 5.10 | 0.86 |
M3 | 4.87 | 0.85 | 4.87 | 1.04 |
Feedback | ||||
M1 | 149.14 | 17.52 | 144.95 | 14.22 |
M2 | 98.13 | 37.69 | 97.42 | 36.21 |
M3 | 125.91 | 22.51 | 119.08 | 26.59 |
NoMC Group | ||||||||
---|---|---|---|---|---|---|---|---|
Variable | Economic Context (N = 42) | Health Related Context (N = 42) | ||||||
Friedman | gl | p | W | Friedman | gl | p | W | |
Investment | ||||||||
M0 (1–7) | 7.23 | 6 | 0.300 | 0.03 | ||||
M1 (1–7) | 4.86 | 6 | 0.560 | 0.02 | 7.29 | 6 | 0.294 | 0.03 |
M2 (1–7) | 7.14 | 6 | 0.308 | 0.03 | 17.85 | 6 | 0.007 ** | 0.07 |
M3 (1–7) | 14.13 | 6 | 0.028 ** | 0.60 | 7.79 | 6 | 0.254 | 0.03 |
MC Group | ||||||||
---|---|---|---|---|---|---|---|---|
Variable | Economic Context (N = 49) | Health Related Context (N = 49) | ||||||
Friedman | df | p | W | Friedman | df | p | W | |
Investment | ||||||||
M0 (1–7) | 12.76 | 6 | 0.050 | 0.05 | ||||
M1 (1–7) | 10.54 | 6 | 0.104 | 0.10 | 2.53 | 6 | 0.865 | 0.03 |
M2 (1–7) | 6.86 | 6 | 0.334 | 0.02 | 5.57 | 6 | 0.473 | 0.02 |
M3 (1–7) | 12.47 | 6 | 0.052 | 0.04 | 2.53 | 6 | 0.860 | 0.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jorge, H.; Duarte, I.C.; Baptista, C.; Relvas, A.P.; Castelo-Branco, M. Trust-Based Decision-Making in the Health Context Discriminates Biological Risk Profiles in Type 1 Diabetes. J. Pers. Med. 2022, 12, 1236. https://doi.org/10.3390/jpm12081236
Jorge H, Duarte IC, Baptista C, Relvas AP, Castelo-Branco M. Trust-Based Decision-Making in the Health Context Discriminates Biological Risk Profiles in Type 1 Diabetes. Journal of Personalized Medicine. 2022; 12(8):1236. https://doi.org/10.3390/jpm12081236
Chicago/Turabian StyleJorge, Helena, Isabel C. Duarte, Carla Baptista, Ana Paula Relvas, and Miguel Castelo-Branco. 2022. "Trust-Based Decision-Making in the Health Context Discriminates Biological Risk Profiles in Type 1 Diabetes" Journal of Personalized Medicine 12, no. 8: 1236. https://doi.org/10.3390/jpm12081236
APA StyleJorge, H., Duarte, I. C., Baptista, C., Relvas, A. P., & Castelo-Branco, M. (2022). Trust-Based Decision-Making in the Health Context Discriminates Biological Risk Profiles in Type 1 Diabetes. Journal of Personalized Medicine, 12(8), 1236. https://doi.org/10.3390/jpm12081236