Personalized Diagnosis and Treatment for Neuroimaging in Depressive Disorders
Abstract
:1. Introduction
2. Considerations for ML in Neuroimaging in Depressive Disorders: Diagnosis (Table 1)
2.1. Structural Characteristics for the Assessment of Depression
2.1.1. Structural Neuroimaging Studies for Diagnosis
2.1.2. ML in Structural Studies for Diagnosing MDD
2.2. Functional Characteristics for the Assessment of Depression
3. Considerations for ML in Neuroimaging in Depressive Disorders—Treatment Outcomes (Table 2)
3.1. Structural Characteristics Related with Depression Treatment Outcomes
3.2. Functional Characteristics Related with Depression Treatment Outcomes
4. Further Considerations in ML for Depressive Disorder
4.1. Sample Sizes
4.2. Type of Data including Imaging Modality and Selection of Features from Those Data
4.3. Training Algorithms and Types of Validation
4.4. Clinical Applicability from Results
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shi, Y.; Zhang, L.; Wang, Z.; Lu, X.; Wang, T.; Zhou, D.; Zhang, Z. Multivariate machine learning analyses in identification of major depressive disorder using resting-state functional connectivity: A multicentral study. ACS Chem. Neurosci. 2021, 12, 2878–2886. [Google Scholar] [CrossRef] [PubMed]
- Orrù, G.; Pettersson-Yeo, W.; Marquand, A.F.; Sartori, G.; Mechelli, A. Using support vector machine to identify imaging biomarkers of neurological and psychiatric disease: A critical review. Neurosci. Biobehav. Rev. 2012, 36, 1140–1152. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.; Calhoun, V.D.; Sui, J. Machine learning in major depression: From classification to treatment outcome prediction. CNS Neurosci. Ther. 2018, 24, 1037–1052. [Google Scholar] [CrossRef] [PubMed]
- Squarcina, L.; Villa, F.M.; Nobile, M.; Grisan, E.; Brambilla, P. Deep learning for the prediction of treatment response in depression. J. Affect. Disord. 2021, 281, 618–622. [Google Scholar] [CrossRef]
- Foland-Ross, L.C.; Sacchet, M.D.; Prasad, G.; Gilbert, B.; Thompson, P.M.; Gotlib, I.H. Cortical thickness predicts the first onset of major depression in adolescence. Int. J. Dev. Neurosci. 2015, 46, 125–131. [Google Scholar] [CrossRef]
- Kim, D.H.; Kang, P.S.; Kim, J.H.; Kim, C.Y.; Lee, J.H.; Suh, S.I.; Lee, M.S. Machine learning classification of first-onset drug-naïve MDD using structural MRI. IEEE Access 2019, 7, 153977–153985. [Google Scholar] [CrossRef]
- Qiu, L.; Huang, X.; Zhang, J.; Wang, Y.; Kuang, W.; Li, J.; Wang, X.; Wang, L.; Yang, X.; Lui, S.; et al. Characterization of major depressive disorder using a multiparametric classification approach based on high resolution structural images. J. Psychiatry Neurosci. 2014, 39, 78–86. [Google Scholar] [CrossRef]
- Qin, J.; Wei, M.; Liu, H.; Chen, J.; Yan, R.; Hua, L.; Zhao, K.; Yao, Z.; Lu, Q. Abnormal hubs of white matter networks in the frontal-parieto circuit contribute to depression discrimination via pattern classification. Magn. Reson. Imaging 2014, 32, 1314–1320. [Google Scholar] [CrossRef]
- Patel, M.J.; Andreescu, C.; Price, J.C.; Edelman, K.L.; Reynolds, C.F., 3rd; Aizenstein, H.J. Machine learning approaches for integrating clinical and imaging features in late-life depression classification and response prediction. Int. J. Geriatr. Psychiatry 2015, 30, 1056–1067. [Google Scholar] [CrossRef]
- Wise, T.; Marwood, L.; Perkins, A.M.; Herane-Vives, A.; Williams, S.C.R.; Young, A.H.; Cleare, A.J.; Arnone, D. A morphometric signature of depressive symptoms in unmedicated patients with mood disorders. Acta Psychiatr. Scand. 2018, 138, 73–82. [Google Scholar] [CrossRef]
- Fung, G.; Deng, Y.; Zhao, Q.; Li, Z.; Qu, M.; Li, K.; Zeng, Y.W.; Jin, Z.; Ma, Y.T.; Yu, X.; et al. Distinguishing bipolar and major depressive disorders by brain structural morphometry: A pilot study. BMC Psychiatry 2015, 15, 298. [Google Scholar] [CrossRef]
- Deng, F.; Wang, Y.; Huang, H.; Niu, M.; Zhong, S.; Zhao, L.; Qi, Z.; Wu, X.; Sun, Y.; Niu, C.; et al. Abnormal segments of right uncinate fasciculus and left anterior thalamic radiation in major and bipolar depression. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2018, 81, 340–349. [Google Scholar] [CrossRef]
- Fu, C.H.; Mourao-Miranda, J.; Costafreda, S.G.; Khanna, A.; Marquand, A.F.; Williams, S.C.; Brammer, M.J. Pattern classification of sad facial processing: Toward the development of neurobiological markers in depression. Biol. Psychiatry 2008, 63, 656–662. [Google Scholar] [CrossRef]
- Cao, L.; Guo, S.; Xue, Z.; Hu, Y.; Liu, H.; Mwansisya, T.E.; Pu, W.; Yang, B.; Liu, C.; Feng, J.; et al. Aberrant functional connectivity for diagnosis of major depressive disorder: A discriminant analysis. Psychiatry Clin. Neurosci. 2014, 68, 110–119. [Google Scholar] [CrossRef]
- Mourão-Miranda, J.; Hardoon, D.R.; Hahn, T.; Marquand, A.F.; Williams, S.C.; Shawe-Taylor, J.; Brammer, M. Patient classification as an outlier detection problem: An application of the one-class support vector machine. Neuroimage 2011, 58, 793–804. [Google Scholar] [CrossRef]
- Zeng, L.L.; Shen, H.; Liu, L.; Wang, L.; Li, B.; Fang, P.; Zhou, Z.; Li, Y.; Hu, D. Identifying major depression using whole-brain functional connectivity: A multivariate pattern analysis. Brain 2012, 135, 1498–1507. [Google Scholar] [CrossRef]
- Guo, W.; Cui, X.; Liu, F.; Chen, J.; Xie, G.; Wu, R.; Zhang, Z.; Chen, H.; Zhang, X.; Zhao, J. Decreased interhemispheric coordination in the posterior default-mode network and visual regions as trait alterations in first-episode, drug-naive major depressive disorder. Brain Imaging Behav. 2018, 12, 1251–1258. [Google Scholar] [CrossRef]
- Wei, M.; Qin, J.; Yan, R.; Li, H.; Yao, Z.; Lu, Q. Identifying major depressive disorder using Hurst exponent of resting-state brain networks. Psychiatry Res. 2013, 214, 306–312. [Google Scholar] [CrossRef]
- He, C.; Bai, Y.; Wang, Z.; Fan, D.; Wang, Q.; Liu, X.; Zhang, H.; Zhang, H.; Zhang, Z.; Yao, H.; et al. Identification of microRNA-9 linking the effects of childhood maltreatment on depression using amygdala connectivity. Neuroimage 2021, 224, 117428. [Google Scholar] [CrossRef]
- Ramasubbu, R.; Brown, M.R.; Cortese, F.; Gaxiola, I.; Goodyear, B.; Greenshaw, A.J.; Dursun, S.M.; Greiner, R. Accuracy of automated classification of major depressive disorder as a function of symptom severity. Neuroimage Clin. 2016, 12, 320–331. [Google Scholar] [CrossRef] [Green Version]
- Ramasubbu, R.; Brown, E.C.; Marcil, L.D.; Talai, A.S.; Forkert, N.D. Automatic classification of major depression disorder using arterial spin labeling MRI perfusion measurements. Psychiatry Clin. Neurosci. 2019, 73, 486–493. [Google Scholar] [CrossRef]
- Yamashita, A.; Sakai, Y.; Yamada, T.; Yahata, N.; Kunimatsu, A.; Okada, N.; Itahashi, T.; Hashimoto, R.; Mizuta, H.; Ichikawa, N.; et al. Generalizable brain network markers of major depressive disorder across multiple imaging sites. PLoS Biol. 2020, 18, e3000966. [Google Scholar] [CrossRef]
- Nouretdinov, I.; Costafreda, S.G.; Gammerman, A.; Chervonenkis, A.; Vovk, V.; Vapnik, V.; Fu, C.H. Machine learning classification with confidence: Application of transductive conformal predictors to MRI-based diagnostic and prognostic markers in depression. Neuroimage 2011, 56, 809–813. [Google Scholar] [CrossRef]
- Hahn, T.; Marquand, A.F.; Ehlis, A.C.; Dresler, T.; Kittel-Schneider, S.; Jarczok, T.A.; Lesch, K.P.; Jakob, P.M.; Mourao-Miranda, J.; Brammer, M.J.; et al. Integrating neurobiological markers of depression. Arch. Gen. Psychiatry 2011, 68, 361–368. [Google Scholar] [CrossRef]
- Rosa, M.J.; Portugal, L.; Hahn, T.; Fallgatter, A.J.; Garrido, M.I.; Shawe-Taylor, J.; Mourao-Miranda, J. Sparse network-based models for patient classification using fMRI. Neuroimage 2015, 105, 493–506. [Google Scholar] [CrossRef]
- Shi, Y.; Zhang, L.; He, C.; Yin, Y.; Song, R.; Chen, S.; Fan, D.; Zhou, D.; Yuan, Y.; Xie, C.; et al. Sleep disturbance-related neuroimaging features as potential biomarkers for the diagnosis of major depressive disorder: A multicenter study based on machine learning. J. Affect. Disord. 2021, 295, 148–155. [Google Scholar] [CrossRef]
- Guo, H.; Qin, M.; Chen, J.; Xu, Y.; Xiang, J. Machine-learning classifier for patients with major depressive disorder: Multifeature approach based on a high-order minimum spanning tree functional brain network. Comput. Math. Methods Med. 2017, 2017, 4820935. [Google Scholar] [CrossRef]
- Sato, J.R.; Moll, J.; Green, S.; Deakin, J.F.; Thomaz, C.E.; Zahn, R. Machine learning algorithm accurately detects fMRI signature of vulnerability to major depression. Psychiatry Res. 2015, 233, 289–291. [Google Scholar] [CrossRef]
- Han, W.; Sorg, C.; Zheng, C.; Yang, Q.; Zhang, X.; Ternblom, A.; Mawuli, C.B.; Gao, L.; Luo, C.; Yao, D.; et al. Low-rank network signatures in the triple network separate schizophrenia and major depressive disorder. Neuroimage Clin. 2019, 22, 101725. [Google Scholar] [CrossRef]
- Yu, Y.; Shen, H.; Zeng, L.L.; Ma, Q.; Hu, D. Convergent and divergent functional connectivity patterns in schizophrenia and depression. PLoS ONE 2013, 8, e68250. [Google Scholar] [CrossRef] [Green Version]
- Grotegerd, D.; Suslow, T.; Bauer, J.; Ohrmann, P.; Arolt, V.; Stuhrmann, A.; Heindel, W.; Kugel, H.; Dannlowski, U. Discriminating unipolar and bipolar depression by means of fMRI and pattern classification: A pilot study. Eur. Arch. Psychiatry Clin. Neurosci. 2013, 263, 119–131. [Google Scholar] [CrossRef] [PubMed]
- He, Z.; Lu, F.; Sheng, W.; Han, S.; Pang, Y.; Chen, Y.; Tang, Q.; Yang, Y.; Luo, W.; Yu, Y.; et al. Abnormal functional connectivity as neural biological substrate of trait and state characteristics in major depressive disorder. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2020, 102, 109949. [Google Scholar] [CrossRef] [PubMed]
- Maglanoc, L.A.; Kaufmann, T.; Jonassen, R.; Hilland, E.; Beck, D.; Landrø, N.I.; Westlye, L.T. Multimodal fusion of structural and functional brain imaging in depression using linked independent component analysis. Hum. Brain Mapp. 2020, 41, 241–255. [Google Scholar] [CrossRef] [PubMed]
- Sundermann, B.; Feder, S.; Wersching, H.; Teuber, A.; Schwindt, W.; Kugel, H.; Heindel, W.; Arolt, V.; Berger, K.; Pfleiderer, B. Diagnostic classification of unipolar depression based on resting-state functional connectivity MRI: Effects of generalization to a diverse sample. J. Neural Transm. 2017, 124, 589–605. [Google Scholar] [CrossRef]
- Schmaal, L.; Hibar, D.P.; Sämann, P.G.; Hall, G.B.; Baune, B.T.; Jahanshad, N.; Cheung, J.W.; van Erp, T.G.M.; Bos, D.; Ikram, M.A.; et al. Cortical abnormalities in adults and adolescents with major depression based on brain scans from 20 cohorts worldwide in the ENIGMA major depressive disorder working group. Mol. Psychiatry 2017, 22, 900–909. [Google Scholar] [CrossRef]
- Grieve, S.M.; Korgaonkar, M.S.; Koslow, S.H.; Gordon, E.; Williams, L.M. Widespread reductions in gray matter volume in depression. Neuroimage Clin. 2013, 3, 332–339. [Google Scholar] [CrossRef]
- Qiu, L.; Lui, S.; Kuang, W.; Huang, X.; Li, J.; Li, J.; Zhang, J.; Chen, H.; Sweeney, J.A.; Gong, Q. Regional increases of cortical thickness in untreated, first-episode major depressive disorder. Transl. Psychiatry 2014, 4, e378. [Google Scholar] [CrossRef]
- Tu, P.C.; Chen, L.F.; Hsieh, J.C.; Bai, Y.M.; Li, C.T.; Su, T.P. Regional cortical thinning in patients with major depressive disorder: A surface-based morphometry study. Psychiatry Res. 2012, 202, 206–213. [Google Scholar] [CrossRef]
- Lee, J.S.; Kang, W.; Kang, Y.; Kim, A.; Han, K.M.; Tae, W.S.; Ham, B.J. Alterations in the occipital cortex of drug-naïve adults with major depressive disorder: A surface-based analysis of surface area and cortical thickness. Psychiatry Investig. 2021, 18, 1025–1033. [Google Scholar] [CrossRef]
- Peng, D.; Shi, F.; Li, G.; Fralick, D.; Shen, T.; Qiu, M.; Liu, J.; Jiang, K.; Shen, D.; Fang, Y. Surface vulnerability of cerebral cortex to major depressive disorder. PLoS ONE 2015, 10, e0120704. [Google Scholar] [CrossRef] [Green Version]
- Na, K.S.; Won, E.; Kang, J.; Chang, H.S.; Yoon, H.K.; Tae, W.S.; Kim, Y.K.; Lee, M.S.; Joe, S.H.; Kim, H.; et al. Brain-derived neurotrophic factor promoter methylation and cortical thickness in recurrent major depressive disorder. Sci. Rep. 2016, 6, 21089. [Google Scholar] [CrossRef]
- Liu, X.; Kakeda, S.; Watanabe, K.; Yoshimura, R.; Abe, O.; Ide, S.; Hayashi, K.; Katsuki, A.; Umeno-Nakano, W.; Watanabe, R.; et al. Relationship between the cortical thickness and serum cortisol levels in drug-naïve, first-episode patients with major depressive disorder: A surface-based morphometric study. Depress. Anxiety 2015, 32, 702–708. [Google Scholar] [CrossRef]
- Wise, T.; Radua, J.; Via, E.; Cardoner, N.; Abe, O.; Adams, T.M.; Amico, F.; Cheng, Y.; Cole, J.H.; de Azevedo Marques Périco, C.; et al. Common and distinct patterns of grey-matter volume alteration in major depression and bipolar disorder: Evidence from voxel-based meta-analysis. Mol. Psychiatry 2017, 22, 1455–1463. [Google Scholar] [CrossRef]
- Järnum, H.; Eskildsen, S.F.; Steffensen, E.G.; Lundbye-Christensen, S.; Simonsen, C.W.; Thomsen, I.S.; Fründ, E.T.; Théberge, J.; Larsson, E.M. Longitudinal MRI study of cortical thickness, perfusion, and metabolite levels in major depressive disorder. Acta Psychiatr. Scand. 2011, 124, 435–446. [Google Scholar] [CrossRef]
- Kim, J.H.; Suh, S.I.; Lee, H.J.; Lee, J.H.; Lee, M.S. Cortical and subcortical gray matter alterations in first-episode drug-naïve adolescents with major depressive disorder. Neuroreport 2019, 30, 1172–1178. [Google Scholar] [CrossRef]
- Li, Q.; Zhao, Y.; Chen, Z.; Long, J.; Dai, J.; Huang, X.; Lui, S.; Radua, J.; Vieta, E.; Kemp, G.J.; et al. Meta-analysis of cortical thickness abnormalities in medication-free patients with major depressive disorder. Neuropsychopharmacology 2020, 45, 703–712. [Google Scholar] [CrossRef]
- Bracht, T.; Linden, D.; Keedwell, P. A review of white matter microstructure alterations of pathways of the reward circuit in depression. J. Affect. Disord. 2015, 187, 45–53. [Google Scholar] [CrossRef]
- Beaulieu, C. The basis of anisotropic water diffusion in the nervous system-a technical review. NMR Biomed. 2002, 15, 435–455. [Google Scholar] [CrossRef]
- Zhang, A.; Leow, A.; Ajilore, O.; Lamar, M.; Yang, S.; Joseph, J.; Medina, J.; Zhan, L.; Kumar, A. Quantitative tract-specific measures of uncinate and cingulum in major depression using diffusion tensor imaging. Neuropsychopharmacology 2012, 37, 959–967. [Google Scholar] [CrossRef]
- Manelis, A.; Soehner, A.; Halchenko, Y.O.; Satz, S.; Ragozzino, R.; Lucero, M.; Swartz, H.A.; Phillips, M.L.; Versace, A. White matter abnormalities in adults with bipolar disorder type-II and unipolar depression. Sci. Rep. 2021, 11, 7541. [Google Scholar] [CrossRef]
- Ota, M.; Noda, T.; Sato, N.; Hattori, K.; Hori, H.; Sasayama, D.; Teraishi, T.; Nagashima, A.; Obu, S.; Higuchi, T.; et al. White matter abnormalities in major depressive disorder with melancholic and atypical features: A diffusion tensor imaging study. Psychiatry Clin. Neurosci. 2015, 69, 360–368. [Google Scholar] [CrossRef] [PubMed]
- Zou, K.; Huang, X.; Li, T.; Gong, Q.; Li, Z.; Ou-yang, L.; Deng, W.; Chen, Q.; Li, C.; Ding, Y.; et al. Alterations of white matter integrity in adults with major depressive disorder: A magnetic resonance imaging study. J. Psychiatry Neurosci. 2008, 33, 525–530. [Google Scholar] [PubMed]
- Zhu, X.; Wang, X.; Xiao, J.; Zhong, M.; Liao, J.; Yao, S. Altered white matter integrity in first-episode, treatment-naive young adults with major depressive disorder: A tract-based spatial statistics study. Brain Res. 2011, 1369, 223–229. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Hu, X.; Li, L.; Huang, X.; Lui, S.; Kuang, W.; Ai, H.; Bi, F.; Gu, Z.; Gong, Q. Disorganization of white matter architecture in major depressive disorder: A meta-analysis of diffusion tensor imaging with tract-based spatial statistics. Sci. Rep. 2016, 6, 21825. [Google Scholar] [CrossRef]
- Kieseppä, T.; Eerola, M.; Mäntylä, R.; Neuvonen, T.; Poutanen, V.P.; Luoma, K.; Tuulio-Henriksson, A.; Jylhä, P.; Mantere, O.; Melartin, T.; et al. Major depressive disorder and white matter abnormalities: A diffusion tensor imaging study with tract-based spatial statistics. J. Affect. Disord. 2010, 120, 240–244. [Google Scholar] [CrossRef]
- Sugimoto, K.; Kakeda, S.; Watanabe, K.; Katsuki, A.; Ueda, I.; Igata, N.; Igata, R.; Abe, O.; Yoshimura, R.; Korogi, Y. Relationship between white matter integrity and serum inflammatory cytokine levels in drug-naive patients with major depressive disorder: Diffusion tensor imaging study using tract-based spatial statistics. Transl. Psychiatry 2018, 8, 141. [Google Scholar] [CrossRef]
- Han, K.M.; Choi, S.; Jung, J.; Na, K.S.; Yoon, H.K.; Lee, M.S.; Ham, B.J. Cortical thickness, cortical and subcortical volume, and white matter integrity in patients with their first episode of major depression. J. Affect. Disord. 2014, 155, 42–48. [Google Scholar] [CrossRef]
- Zhou, L.; Wang, L.; Wang, M.; Dai, G.; Xiao, Y.; Feng, Z.; Wang, S.; Chen, G. Alterations in white matter microarchitecture in adolescents and young adults with major depressive disorder: A voxel-based meta-analysis of diffusion tensor imaging. Psychiatry Res. Neuroimaging 2022, 323, 111482. [Google Scholar] [CrossRef]
- de Diego-Adeliño, J.; Pires, P.; Gómez-Ansón, B.; Serra-Blasco, M.; Vives-Gilabert, Y.; Puigdemont, D.; Martín-Blanco, A.; Alvarez, E.; Pérez, V.; Portella, M.J. Microstructural white-matter abnormalities associated with treatment resistance, severity and duration of illness in major depression. Psychol. Med. 2014, 44, 1171–1182. [Google Scholar] [CrossRef]
- Zheng, K.Z.; Wang, H.N.; Liu, J.; Xi, Y.B.; Li, L.; Zhang, X.; Li, J.M.; Yin, H.; Tan, Q.R.; Lu, H.B.; et al. Incapacity to control emotion in major depression may arise from disrupted white matter integrity and OFC-amygdala inhibition. CNS Neurosci. Ther. 2018, 24, 1053–1062. [Google Scholar] [CrossRef] [Green Version]
- Uchida, M.; Hung, Y.; Green, A.; Kelberman, C.; Capella, J.; Gaillard, S.L.; Gabrieli, J.D.E.; Biederman, J. Association between frontal cortico-limbic white-matter microstructure and risk for pediatric depression. Psychiatry Res. Neuroimaging 2021, 318, 111396. [Google Scholar] [CrossRef]
- Korgaonkar, M.S.; Williams, L.M.; Song, Y.J.; Usherwood, T.; Grieve, S.M. Diffusion tensor imaging predictors of treatment outcomes in major depressive disorder. Br. J. Psychiatry 2014, 205, 321–328. [Google Scholar] [CrossRef]
- Grieve, S.M.; Korgaonkar, M.S.; Gordon, E.; Williams, L.M.; Rush, A.J. Prediction of nonremission to antidepressant therapy using diffusion tensor imaging. J. Clin. Psychiatry 2016, 77, e436–e443. [Google Scholar] [CrossRef]
- Mwangi, B.; Ebmeier, K.P.; Matthews, K.; Steele, J.D. Multi-centre diagnostic classification of individual structural neuroimaging scans from patients with major depressive disorder. Brain 2012, 135, 1508–1521. [Google Scholar] [CrossRef]
- Gong, Q.; Wu, Q.; Scarpazza, C.; Lui, S.; Jia, Z.; Marquand, A.; Huang, X.; McGuire, P.; Mechelli, A. Prognostic prediction of therapeutic response in depression using high-field MR imaging. Neuroimage 2011, 55, 1497–1503. [Google Scholar] [CrossRef]
- Korgaonkar, M.S.; Rekshan, W.; Gordon, E.; Rush, A.J.; Williams, L.M.; Blasey, C.; Grieve, S.M. Magnetic resonance imaging measures of brain structure to predict antidepressant treatment outcome in major depressive disorder. EBioMedicine 2015, 2, 37–45. [Google Scholar] [CrossRef]
- Johnston, B.A.; Steele, J.D.; Tolomeo, S.; Christmas, D.; Matthews, K. Structural MRI-based predictions in patients with treatment-refractory depression (TRD). PLoS ONE 2015, 10, e0132958. [Google Scholar] [CrossRef]
- Bartlett, E.A.; DeLorenzo, C.; Sharma, P.; Yang, J.; Zhang, M.; Petkova, E.; Weissman, M.; McGrath, P.J.; Fava, M.; Ogden, R.T.; et al. Pretreatment and early-treatment cortical thickness is associated with SSRI treatment response in major depressive disorder. Neuropsychopharmacology 2018, 43, 2221–2230. [Google Scholar] [CrossRef]
- Redlich, R.; Opel, N.; Grotegerd, D.; Dohm, K.; Zaremba, D.; Bürger, C.; Münker, S.; Mühlmann, L.; Wahl, P.; Heindel, W.; et al. Prediction of individual response to electroconvulsive therapy via machine learning on structural magnetic resonance imaging data. JAMA Psychiatry 2016, 73, 557–564. [Google Scholar] [CrossRef]
- Cao, B.; Luo, Q.; Fu, Y.; Du, L.; Qiu, T.; Yang, X.; Chen, X.; Chen, Q.; Soares, J.C.; Cho, R.Y.; et al. Predicting individual responses to the electroconvulsive therapy with hippocampal subfield volumes in major depression disorder. Sci. Rep. 2018, 8, 5434. [Google Scholar] [CrossRef] [Green Version]
- Gärtner, M.; Ghisu, E.; Herrera-Melendez, A.L.; Koslowski, M.; Aust, S.; Asbach, P.; Otte, C.; Regen, F.; Heuser, I.; Borgwardt, K.; et al. Using routine MRI data of depressed patients to predict individual responses to electroconvulsive therapy. Exp. Neurol. 2021, 335, 113505. [Google Scholar] [CrossRef]
- Takamiya, A.; Liang, K.C.; Nishikata, S.; Tarumi, R.; Sawada, K.; Kurokawa, S.; Hirano, J.; Yamagata, B.; Mimura, M.; Kishimoto, T. Predicting individual remission after electroconvulsive therapy based on structural magnetic resonance imaging: A machine learning approach. J. ECT 2020, 36, 205–210. [Google Scholar] [CrossRef]
- Tymofiyeva, O.; Yuan, J.P.; Huang, C.Y.; Connolly, C.G.; Henje Blom, E.; Xu, D.; Yang, T.T. Application of machine learning to structural connectome to predict symptom reduction in depressed adolescents with cognitive behavioral therapy (CBT). Neuroimage Clin. 2019, 23, 101914. [Google Scholar] [CrossRef]
- Marquand, A.F.; Mourão-Miranda, J.; Brammer, M.J.; Cleare, A.J.; Fu, C.H. Neuroanatomy of verbal working memory as a diagnostic biomarker for depression. Neuroreport 2008, 19, 1507–1511. [Google Scholar] [CrossRef]
- Frässle, S.; Marquand, A.F.; Schmaal, L.; Dinga, R.; Veltman, D.J.; van der Wee, N.J.A.; van Tol, M.J.; Schöbi, D.; Penninx, B.; Stephan, K.E. Predicting individual clinical trajectories of depression with generative embedding. Neuroimage Clin. 2020, 26, 102213. [Google Scholar] [CrossRef]
- Tian, S.; Sun, Y.; Shao, J.; Zhang, S.; Mo, Z.; Liu, X.; Wang, Q.; Wang, L.; Zhao, P.; Chattun, M.R.; et al. Predicting escitalopram monotherapy response in depression: The role of anterior cingulate cortex. Hum. Brain Mapp. 2020, 41, 1249–1260. [Google Scholar] [CrossRef]
- Liu, Y.; Admon, R.; Mellem, M.S.; Belleau, E.L.; Kaiser, R.H.; Clegg, R.; Beltzer, M.; Goer, F.; Vitaliano, G.; Ahammad, P.; et al. Machine learning identifies large-scale reward-related activity modulated by dopaminergic enhancement in major depression. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 2020, 5, 163–172. [Google Scholar] [CrossRef]
- Osuch, E.; Gao, S.; Wammes, M.; Théberge, J.; Willimason, P.; Neufeld, R.J.; Du, Y.; Sui, J.; Calhoun, V. Complexity in mood disorder diagnosis: fMRI connectivity networks predicted medication-class of response in complex patients. Acta Psychiatr. Scand. 2018, 138, 472–482. [Google Scholar] [CrossRef]
- Hopman, H.J.; Chan, S.M.S.; Chu, W.C.W.; Lu, H.; Tse, C.Y.; Chau, S.W.H.; Lam, L.C.W.; Mak, A.D.P.; Neggers, S.F.W. Personalized prediction of transcranial magnetic stimulation clinical response in patients with treatment-refractory depression using neuroimaging biomarkers and machine learning. J. Affect. Disord. 2021, 290, 261–271. [Google Scholar] [CrossRef]
- Cash, R.F.H.; Cocchi, L.; Anderson, R.; Rogachov, A.; Kucyi, A.; Barnett, A.J.; Zalesky, A.; Fitzgerald, P.B. A multivariate neuroimaging biomarker of individual outcome to transcranial magnetic stimulation in depression. Hum. Brain Mapp. 2019, 40, 4618–4629. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Wei, Q.; Yuan, X.; Jiang, X.; Xu, J.; Zhou, X.; Tian, Y.; Wang, K. Local functional connectivity density is closely associated with the response of electroconvulsive therapy in major depressive disorder. J. Affect. Disord. 2018, 225, 658–664. [Google Scholar] [CrossRef] [PubMed]
- Pei, C.; Sun, Y.; Zhu, J.; Wang, X.; Zhang, Y.; Zhang, S.; Yao, Z.; Lu, Q. Ensemble learning for early-response prediction of antidepressant treatment in major depressive disorder. J. Magn. Reson. Imaging 2020, 52, 161–171. [Google Scholar] [CrossRef] [PubMed]
- Gartlehner, G.; Thaler, K.; Hill, S.; Hansen, R.A. How should primary care doctors select which antidepressants to administer? Curr. Psychiatry Rep. 2012, 14, 360–369. [Google Scholar] [CrossRef] [PubMed]
- Rush, A.J.; Trivedi, M.H.; Wisniewski, S.R.; Nierenberg, A.A.; Stewart, J.W.; Warden, D.; Niederehe, G.; Thase, M.E.; Lavori, P.W.; Lebowitz, B.D.; et al. Acute and longer-term outcomes in depressed outpatients requiring one or several treatment steps: A STAR*D report. Am. J. Psychiatry 2006, 163, 1905–1917. [Google Scholar] [CrossRef]
- Soriano-Mas, C.; Hernández-Ribas, R.; Pujol, J.; Urretavizcaya, M.; Deus, J.; Harrison, B.J.; Ortiz, H.; López-Solà, M.; Menchón, J.M.; Cardoner, N. Cross-sectional and longitudinal assessment of structural brain alterations in melancholic depression. Biol. Psychiatry 2011, 69, 318–325. [Google Scholar] [CrossRef]
- Takahashi, T.; Yücel, M.; Lorenzetti, V.; Tanino, R.; Whittle, S.; Suzuki, M.; Walterfang, M.; Pantelis, C.; Allen, N.B. Volumetric MRI study of the insular cortex in individuals with current and past major depression. J. Affect. Disord. 2010, 121, 231–238. [Google Scholar] [CrossRef]
- Trivedi, M.H.; McGrath, P.J.; Fava, M.; Parsey, R.V.; Kurian, B.T.; Phillips, M.L.; Oquendo, M.A.; Bruder, G.; Pizzagalli, D.; Toups, M.; et al. Establishing moderators and biosignatures of antidepressant response in clinical care (EMBARC): Rationale and design. J. Psychiatr. Res. 2016, 78, 11–23. [Google Scholar] [CrossRef]
- Bellani, M.; Dusi, N.; Yeh, P.H.; Soares, J.C.; Brambilla, P. The effects of antidepressants on human brain as detected by imaging studies. Focus on major depression. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2011, 35, 1544–1552. [Google Scholar] [CrossRef]
- Lee, Y.; Ragguett, R.M.; Mansur, R.B.; Boutilier, J.J.; Rosenblat, J.D.; Trevizol, A.; Brietzke, E.; Lin, K.; Pan, Z.; Subramaniapillai, M.; et al. Applications of machine learning algorithms to predict therapeutic outcomes in depression: A meta-analysis and systematic review. J. Affect. Disord. 2018, 241, 519–532. [Google Scholar] [CrossRef]
- Aoki, Y.; Yamaguchi, S.; Ando, S.; Sasaki, N.; Bernick, P.J.; Akiyama, T. The experience of electroconvulsive therapy and its impact on associated stigma: A meta-analysis. Int. J. Soc. Psychiatry 2016, 62, 708–718. [Google Scholar] [CrossRef]
- Penninx, B.W.; Beekman, A.T.; Smit, J.H.; Zitman, F.G.; Nolen, W.A.; Spinhoven, P.; Cuijpers, P.; De Jong, P.J.; Van Marwijk, H.W.; Assendelft, W.J.; et al. The Netherlands Study of Depression and Anxiety (NESDA): Rationale, objectives and methods. Int. J. Methods Psychiatr. Res. 2008, 17, 121–140. [Google Scholar] [CrossRef]
- Gillett, G.; Tomlinson, A.; Efthimiou, O.; Cipriani, A. Predicting treatment effects in unipolar depression: A meta-review. Pharmacol. Ther. 2020, 212, 107557. [Google Scholar] [CrossRef]
- Janssen, R.J.; Mourão-Miranda, J.; Schnack, H.G. Making individual prognoses in psychiatry using neuroimaging and machine learning. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 2018, 3, 798–808. [Google Scholar] [CrossRef]
- Kim, Y.K.; Na, K.S. Application of machine learning classification for structural brain MRI in mood disorders: Critical review from a clinical perspective. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2018, 80, 71–80. [Google Scholar] [CrossRef]
References (Year) | Subjects (Mean Age) | Features | Machine Learning Method | Cross-Validation | Accuracy * | Comments |
---|---|---|---|---|---|---|
Foland-Ross et al., 2015 [5] | Baseline 33 adolescents (follow-up: 18 MDD and 15 HC) | Cortical thickness | SVM | stratified 10-fold cross validation | Average accuracy, 69.7% | Girls with an onset of MDD show baseline thinner right medial orbitofrontal cortex and thicker left insula |
Kim et al., 2019 [6] | 27 HC (15.96 ± 1.02) and 27 MDD (15.48 ± 1.72) | Cortical thickness | SVM | Double LOOCV | 94.4% (sensitivity, 92.6% and specificity, 96.3%) | TreeBagging, RF, MLP, AdaBoost, and GBM were used, but they showed lower accuracies than SVM |
Qiu et al., 2014 [7] | 32 HC (35.0 ± 11.2) and 32 MDD (34.9 ± 11.1) | High-resolution T1-weighted imaging (morphometric parameters) | multivariate SVM | LOOCV | cortical thickness of right hemisphere, 78% (p ≤ 0.001) | First-episode, medication-naïve MDD without any psychiatric comorbidities |
Qin et al., 2014 [8] | 30 HC (35.57 ± 11.73) and 29 MDD (38.97 ± 9.95) | DTI data | SVM with RBF kernel | LOOCV | 83.05% | Hubs including the bilateral dorsolateral part of the superior frontal gyrus, the left middle frontal gyrus, the bilateral middle temporal gyrus, and the bilateral inferior temporal gyrus played an important role in diagnosing MDD |
Patel et al., 2015 [9] | 35 HC and 33 MDD | DTI data, structural imaging, functional imaging | Decision tree | LOOCV | 87.3% | The optimal ADTree model selected MMSE score, age, whole brain atrophy, and fluid-attenuated inversion recovery Global WM hyperintensity count for predicting depression diagnosis |
Wise et al., 2018 [10] | 39 MDD (30.67 ± 8.71) and 8 BPD (29.50 ± 6.21) | High-resolution T1-weighted structural imaging | SVM | LOOCV | Greater gray volume predicted higher MADRS scores | |
Fung et al., 2015 [11] | 19 MDD (30.0 ± 8.9), 16 BPD (26.3 ± 7.9) and HC (27.1 ± 8.4) | T1-weighted structural imaging (Cortical thickness, subcortical volume) | SVM | 10-fold cross validation | 74.3% (sensitivity, 62.5% and specificity, 84.2%) | Limitation: Effects of medication and chronicity of conditions in BPD and MDD on brain morphological alterations were not estimated |
Deng et al., 2018 [12] | 36 MDD (29.5 ± 8.6) and 31 BPD (26.3 ± 8.2) | DTI data (FA) | SVM | LOOCV | Left ATR, 68.33% (p = 0.018) Right SLF, 66.67% (p = 0.029) | RD profile (accuracy) Left CC, 65.57% (p = 0.043), Right SLF, 68.25% (p = 0.024) Right AF, 72.34% (p = 0.008) |
Fu et al., 2008 [13] | 19 MDD (43.2 ± 8.8) and 19 HC (42.8 ± 6.7) | fMRI data | SVM | LOOCV | 86% (sensitivity 84% and specificity 89%) | Lateral temporal cortex, amygdala, and visual processing networks contributed most |
Cao et al., 2014 [14] | 39 MDD (27.99 ± 7.49) and 37 HC (28.22 ± 6.47) | fMRI data | SVM | LOOCV | 84% | Inferior orbitofrontal, supramarginal gyrus, inferior parietal lobule-posterior cingulated gyrus, and middle temporal gyrus-inferior temporal gyrus contributed most |
Mourao-Miranda et al., 2011 [15] | 19 MDD (43.2 ± 8.8) and 19 HC (42.8 ± 6.7) | fMRI data | SVM | Nested LOOCV | 52% | Patients were identified as outliers during facial recognition, with 30% of outliers responding to antidepressants, whereas 89% of non-outliers responded |
Zeng et al., 2012 [16] | 24 MDD (31.83 ± 10.99) and 29 HC (33.62 ± 10.29) | fMRI data | SVM | LOOCV | 94.3% | 550 discriminating functional connections; 100% accuracy for patients, 89.7% for controls |
Guo et al., 2018 [17] | 59 MDD and 31 HC, 29 MDD and 24 HC | fMRI data | SVM | LOOCV | 92.22% and 90.57% | Voxel-mirrored homotopic connectivity (VMHC) alterations examined for two separate samples |
Wei et al., 2013 [18] | 20 MDD (34.3 ± 8.2 and 20 HC (30.8 ± 8.7) | fMRI data | SVM | LOOCV | 90% (sensitivity 95% and specificity 85%) | Right fronto-parietal and default mode networks showed deficits, while the left fronto-parietal, ventromedial prefrontal, and salience network were excess networks |
He et al., 2021 [19] | 40 MDD (40.05 ± 12.32) and 34 HC (34.44 ± 11.76) | fMRI data, peripheral blood | SVM | LOOCV | 85.1% | MicroRNA-9, thought to be a neural substrate of childhood maltreatment, integrated into analysis |
Ramasubbu et al., 2016 [20] | 45 MDD (37 ± 11) and 19 HC (33 ± 10) | fMRI data | SVM | 5-fold cross validation | 66% | Patients grouped by severity. Mild to moderate (58%) and severe (52%) groups showed lower accuracies |
Ramasubbu et al., 2019 [21] | 22 MDD (27.36 ± 7.5) and 22 HC (28.09 ± 2.71) | fMRI data | SVM | Nested LOOCV | 77.3% (sensitivity 75% and specificity 80%) | Arterial spin labeling MRI was used to measure cerebral blood flow (CBF). Regional CBF of cortical, limbic, and paralimbic regions contributed to classification. |
Yamasita et al., 2020 [22] | 149 MDD and 564 HC from four sites, 185 MDD and 264 HC from five sites | fMRI data | LASSO | Nested cross validation | 70% | Functional connectivity differences were identified in multisite data, which were applied for classification on another multisite dataset for validation. |
Nouretdinov et al., 2011 [23] | 19 MDD and 19 HC | fMRI data | TCP | Conformal prediction | 89.5% and 92.1% at 90% confidence | Two sad-face recognition tasks used to classify patients using the TCP method; prediction accuracy at least 90% at 90% confidence level |
Hahn et al., 2011 [24] | 30 patients (MDD, BPD) and 30 HC | fMRI data | GP classification | LOOCV | 60% | Sad face, happy face, anxious face, neutral face, anticipation of no reward, anticipation of large reward, anticipation of no loss, and avoiding small loss were significant classifiers |
Rosa et al., 2015 [25] | 30 patients (MDD, BPD) and 30 HC | fMRI data by Hahn et al. (2011) | Linear L1-norm regularized SVM | Nested cross validation | 85% | A novel sparse network based discriminative modeling framework was applied on existing data. Higher accuracies were reached |
Shi et al., 2021 [26] | 92 MDD, 460 MDD, and 470 HC | fMRI data | Relevance vector regression, eXtreme Gradient Boosting classification | LOOCV, 10-fold cross validation | 86.3% | Gray matter density and fractional amplitude of low-frequency fluctuation predicted sleep disturbance in patients. The model was applied to a multicenter dataset for validation. |
Guo et al., 2017 [27] | 38 MDD (28.4 ± 9.68) and 28 HC (26.6 ± 9.4) | fMRI data | Multikernel SVM | 97.54% | A method generating a high order minimum spanning tree functional connectivity network was used to reduce computing consumption and produce a scale conducive to subsequent network analysis | |
Sato et al., 2015 [28] | 25 MDD and 21 HC | fMRI data | Maximum entropy linear discriminant analysis | LOOCV | 78.3% (sensitivity 72.0%, specificity 85.7%) | Guilt selective connections used for classification |
Han et al., 2019 [29] | 25 MDD and 21 schizophrenia | fMRI data | Nonnegative matrix factorization | LOOCV | 82.6% | “Triple network” (default mode, salience, central executive) used to distinguish MDD patients from schizophrenia patients |
Yu et al., 2013 [30] | 19 MDD (26.65 ± 7.62), 32 schizophrenia (24 ± 5.66), and 38 HC (24.44 ± 4.45) | fMRI data | SVM | LOOCV | 80.9% (84.2% for MDD, 81.3% for schizophrenia, 78.9% for HC) | Altered connections in medial prefrontal, anterior cingulate, thalamus, hippocampus, and cerebellum for both patient groups; differences in prefrontal, amygdala, and temporal poles |
Grotegerd et al., 2013 [31] | 10 MDD (36.8 ± 10.1) and 100 BPD (36.8 ± 8.5) | fMRI data | SVM | LOOCV | 90% | Medial prefrontal, orbitofrontal regions contributed to classifying unipolar and bipolar depression |
He et al., 2020 [32] | 63 MDD (35.35 ± 11.02) and 63 HC (31.78 ± 10.56) | fMRI data | SVR | LOOCV | Left and right amygdala/hippocampus predicted trait sadness; medical prefrontal/anterior cingulate and amygdala/parahippocampal gyrus predicted state anhedonia scores | |
Maglanoc et al., 2020 [33] | 170 MDD (38.7 ± 13.3) and 71 HC (41.8 ± 13.1) | fMRI data | Shrinkage discriminant analysis | 10-fold cross validation | Low model performance for classification of depression or anxiety symptoms | |
Sundermann et al., 2017 [34] | Two subsets of 180 MDD and 180 HC | fMRI data | SVM | LOOCV | 56.1% | The subgroup with a higher symptom severity showed a higher classification accuracy (61.7%). |
References (Year) | Subjects (Mean Age) | Features | Machine Learning Method | Cross-Validation | Accuracy * | Comments |
---|---|---|---|---|---|---|
Patel et al., 2015 [9] | 11 MDD responders and 13 MDD non-responders | DTI data, structural imaging, functional imaging | Decision tree | LOOCV | 89.5% | The optimal ADTree model selected MMSE score, age, whole brain atrophy, and fluid-attenuated inversion recovery. Global WM hyperintensity count for predicting depression diagnosis |
Gong et al., 2011 [65] | 22 non-refractory MDD (39.17 ± 12.88) and 23 refractory MDD (40.43 ± 12.58) | GM and WM | SVM | LOOCV | 69.6% (GM) and 65.22% (WM) | Participants were treated with one of three classes of antidepressants: tricyclic, serotonin–norepinephrine reuptake inhibitor, and selective serotonin reuptake inhibitor |
Korgaonkar et al., 2015 [66] | 54 remitted MDD and 103 non-remitted MDD | GM volume and DTI data (FA) | Decision tree | Hold-out | 85.0% (GM volume) and 84.0% (FA) | Participants were randomized to receive flexibly-dosed escitalopram, sertraline, or venlafaxine-ER for 8 weeks |
Johnston et al., 2015 [67] | 20 treatment-refractory MDD (51.80 ± 11.23) and 21 HC (46.14 ± 13.97) | T1-weighted brain imaging (GM) | SVM | LOOCV | 85% (sensitivity, 85% and specificity, 86%) | MDD participants had experienced lifetime and/or current chronic episodes of depression, not necessarily meeting criteria for MDD at time of scanning |
Bartlett et al., 2018 [68] | 63 remitters (34.59 ± 12.23) and 121 non-remitters (38.40 ± 13.69) | T1-weighted brain imaging (cortical thickness) | RF, PLR | 10 repetitions of 5-fold cross-validation | 63.9% (sensitivity, 22.6% and specificity, 85.8%) | Patients with early onset MDD (before age 30) and chronic (episode duration >2 years) or recurrent MDD (≥2 recurrences) were enrolled. Remission status was predicted more accurately with RF than PLR |
Redlich et al., 2016 [69] | 23 ECT-treated MDD (45.7 ± 9.8), with 13 responders and 10 non-responders | High-resolution T1-weighted structural imaging (GM volume) | SVM, SVR | LOOCV | 78.3% (sensitivity, 100% and specificity, 50%) | Brief-pulse ECT was conducted three times a week with antidepressants (mean number of sessions, 14) |
Cao et al., 2018 [70] | 24 severe MDD (31.3 ± 10.8), with 12 remitters and 12 non-remitters | T1-weighted structural imaging (GM volume) | SVR | LOOCV | Overall, 83.3% (sensitivity, 91.7% and specificity, 75%) | All the patients were under severe unipolar depression and received eight sessions of modified ECT |
Gaertner et al., 2021 [71] | 39 responders (50.23 ± 17.53) and 32 non-responders (51.31 ± 18.09) | Structural MRI | SVM with a linear kernel | LOOCV | 69% (sensitivity, 67% and specificity, 72%) | Schizoaffective disorder (4%) and BD (13%) were included. Twelve sessions of ECT were administered, and patients with partial response had extra ECT-sessions (mean no. sessions: 13.61 ± 4.34) |
Takamiya et al., 2020 [72] | 20 remitters and seven non-remitters | High-resolution T1-weighted structural imaging (GM volume) and clinical variables | SVM, SVR | LOOCV | 90% (sensitivity, 100% and specificity, 71%) | Clinical variables included age, sex, diagnosis, psychotic features, family history of mood disorder, duration of episode, illness duration, previous ECT, and the score of each item of HDRS-17 |
Tymofiyeva et al., 2019 [73] | 30 MDD (16.0 ± 1.3) | DTI data | Decision tree (J48) | 10-fold cross validation | 83% (sensitivity, 82% and specificity, 84%) | All patients underwent CBT, and six patients received antidepressants with CBT; 19 improvers and 11 non-improvers were included |
Marquand et al., 2008 [74] | 20 MDD (43.7 ± 8.6) and 20 HC (43.7 ± 8.3) | fMRI data | SVM | LOOCV | Statistical significance for response prediction not achieved | |
Frassle et al., 2020 [75] | 85 MDD | fMRI data | SVM | LOOCV | 79% (chronic vs. fast remission), 61% (gradual improvement vs. fast remission) | Data from the Netherlands Study of Depression and Anxiety were used to classify chronic patients, gradual improvement, and fast remission |
Tian et al., 2020 [76] | 106 MDD and 109 HC | fMRI data | SVM | LOOCV | 79.4% | Multicenter data analyzed while assuming an HDRS score reduction of at least 50% as response after escitalopram monotherapy |
Liu et al., 2020 [77] | 57 MDD (31 amisulpride, 26 placebo) and 28 HC | fMRI data | Elastic net regularization | Nested cross validation | 77% (MDD vs. HC), 59% (amisulpride vs. placebo) | Striatal network functional connectivity changes were most predictive for classification, suggesting a dopaminergic role in treatment outcome |
Osuch et al., 2018 [78] | 34 MDD (19.7 ± 2.6), 32 BPD (21.3 ± 2.9), and 33 HC (20.2 ± 2.0) | fMRI data | SVM | Nested cross validation | 92.4% (MDD vs. BPD), 92% (medication class response prediction) | Diagnostic classification also succeeded in predicting the optimal medication class of response, where BPD patients responded to mood stabilizers, and MDD patients responded better to antidepressants. |
Hopman et al., 2021 [79] | 70 MDD (41.93 ± 11.67) | fMRI data | SVM | 5-fold cross validation | 95.35% | Medication resistant patients were treated with rTMS and analyzed to predict short term and long-term treatment response. Sustained response was associated with stronger anterior cingulate/occipital cortex connectivity |
Cash et al., 2019 [80] | 47 MDD (43 ± 12) and 29 HC (39 ± 15) | fMRI data | SVM | LOOCV | 85~95% | Reduced connectivity in default mode and affective network was associated with better rTMS response |
Wang et al., 2018 [81] | 23 MDD (38.74 ± 11.02) and 25 HC (39.52 ± 8.07) | fMRI data | SVM | LOOCV | 72.92% | Local functional connectivity density of left pre/postcentral gyri, both superior temporal gyri were predictive of ECT treatment response |
Pei et al., 2020 [82] | 98 MDD | fMRI data, venous blood | SVM | LOOCV | 86% | fMRI data were combined with genetic data on selected single nucleotide polymorphisms for classification of responders and non-responders to medication, resulting in higher accuracy than fMRI data alone (61%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.; Chi, S.; Lee, M.-S. Personalized Diagnosis and Treatment for Neuroimaging in Depressive Disorders. J. Pers. Med. 2022, 12, 1403. https://doi.org/10.3390/jpm12091403
Lee J, Chi S, Lee M-S. Personalized Diagnosis and Treatment for Neuroimaging in Depressive Disorders. Journal of Personalized Medicine. 2022; 12(9):1403. https://doi.org/10.3390/jpm12091403
Chicago/Turabian StyleLee, Jongha, Suhyuk Chi, and Moon-Soo Lee. 2022. "Personalized Diagnosis and Treatment for Neuroimaging in Depressive Disorders" Journal of Personalized Medicine 12, no. 9: 1403. https://doi.org/10.3390/jpm12091403
APA StyleLee, J., Chi, S., & Lee, M. -S. (2022). Personalized Diagnosis and Treatment for Neuroimaging in Depressive Disorders. Journal of Personalized Medicine, 12(9), 1403. https://doi.org/10.3390/jpm12091403