White Blood Cells, COVID-19, and Mendelian Randomization
Abstract
:Conflicts of Interest
References
- Huang, G.; Kovalic, A.J.; Graber, C.J. Prognostic Value of Leukocytosis and Lymphopenia for Coronavirus Disease Severity. Emerg. Infect. Dis. 2020, 26, 1839–1841. [Google Scholar] [CrossRef] [PubMed]
- Stoichitoiu, L.E.; Pinte, L.; Balea, M.I.; Nedelcu, V.; Badea, C.; Baicus, C. Anticoagulant protein S in COVID-19: Low activity, and associated with outcome. Rom. J. Intern. Med. 2020, 58, 251–258. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, S.; Khanna, P.; Singh, A.K. The Impact of Neutrophil-Lymphocyte Count Ratio in COVID-19: A Systematic Review and Meta-Analysis. J. Intensive Care Med. 2022, 37, 857–869. [Google Scholar] [CrossRef] [PubMed]
- Karakonstantis, S.; Gryllou, N.; Papazoglou, G.; Lydakis, C. Eosinophil count (EC) as a diagnostic and prognostic marker for infection in the internal medicine department setting. Rom. J. Intern. Med. 2019, 57, 166–174. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Yang, T.; Peng, X.F.; Lv, S.M.; Ye, X.L.; Zhao, T.S.; Li, J.C.; Shao, Z.J.; Lu, Q.B.; Li, J.Y.; et al. A systematic meta-analysis of immune signatures in patients with COVID-19. Rev. Med. Virol. 2021, 31, e2195. [Google Scholar] [CrossRef]
- Qin, R.; He, L.; Yang, Z.; Jia, N.; Chen, R.; Xie, J.; Fu, W.; Chen, H.; Lin, X.; Huang, R.; et al. Identification of Parameters Representative of Immune Dysfunction in Patients with Severe and Fatal COVID-19 Infection: A Systematic Review and Meta-analysis. Clin. Rev. Allergy Immunol. 2022, 18, 1–33. [Google Scholar] [CrossRef]
- Mateos González, M.; Sierra Gonzalo, E.; Casado Lopez, I.; Arnalich Fernández, F.; Beato Pérez, J.L.; Monge Monge, D.; Vargas Núñez, J.A.; García Fenoll, R.; Suárez Fernández, C.; Freire Castro, S.J.; et al. The Prognostic Value of Eosinophil Recovery in COVID-19: A Multicentre, Retrospective Cohort Study on Patients Hospitalised in Spanish Hospitals. J. Clin. Med. 2021, 10, 305. [Google Scholar] [CrossRef]
- Chen, D.; Zhang, S.; Feng, Y.; Wu, W.; Chang, C.; Chen, S.; Zhen, G.; Yi, L. Decreased eosinophil counts and elevated lactate dehydrogenase predict severe COVID-19 in patients with underlying chronic airway diseases. Postgrad. Med. J. 2021. epub ahead of print. [Google Scholar] [CrossRef]
- Cortés-Vieyra, R.; Gutiérrez-Castellanos, S.; Álvarez-Aguilar, C.; Baizabal-Aguirre, V.M.; Nuñez-Anita, R.E.; Rocha-López, A.G.; Gómez-García, A. Behavior of Eosinophil Counts in Recovered and Deceased COVID-19 Patients over the Course of the Disease. Viruses 2021, 13, 1675. [Google Scholar] [CrossRef]
- Yan, B.; Yang, J.; Xie, Y.; Tang, X. Relationship between blood eosinophil levels and COVID-19 mortality. World Allergy Organ. J. 2021, 14, 100521. [Google Scholar] [CrossRef]
- Tan, Y.; Zhou, J.; Zhou, Q.; Hu, L.; Long, Y. Role of eosinophils in the diagnosis and prognostic evaluation of COVID-19. J. Med. Virol. 2021, 93, 1105–1110. [Google Scholar] [CrossRef] [PubMed]
- Pinte, L.; Ceasovschih, A.; Niculae, C.M.; Stoichitoiu, L.E.; Ionescu, R.A.; Balea, M.I.; Cernat, R.C.; Vlad, N.; Padureanu, V.; Purcarea, A.; et al. Antibiotic Prescription and In-Hospital Mortality in COVID-19: A Prospective Multicentre Cohort Study. J. Pers. Med. 2022, 12, 877. [Google Scholar] [CrossRef] [PubMed]
- Le Borgne, P.; Abensur Vuillaume, L.; Alamé, K.; Lefebvre, F.; Chabrier, S.; Bérard, L.; Haessler, P.; Gennai, S.; Bilbault, P.; Lavoignet, C.E. Do Blood Eosinophils Predict in-Hospital Mortality or Severity of Disease in SARS-CoV-2 Infection? A Retrospective Multicenter Study. Microorganisms 2021, 9, 334. [Google Scholar] [CrossRef] [PubMed]
- Cazzaniga, M.; Fumagalli, L.A.M.; D’angelo, L.; Cerino, M.; Bonfanti, G.; Fumagalli, R.M.; Schiavo, G.; Lorini, C.; Lainu, E.; Terragni, S.; et al. Eosinopenia is a reliable marker of severe disease and unfavourable outcome in patients with COVID-19 pneumonia. Int. J. Clin. Pract. 2021, 75, e14047. [Google Scholar] [CrossRef]
- Koc, I.; Unalli Ozmen, S. Eosinophil Levels, Neutrophil-Lymphocyte Ratio, and Platelet-Lymphocyte Ratio in the Cytokine Storm Period of Patients with COVID-19. Int. J. Clin. Pract. 2022, 2022, 7450739. [Google Scholar] [CrossRef]
- Lourda, M.; Dzidic, M.; Hertwig, L.; Bergsten, H.; Palma Medina, L.M.; Sinha, I.; Kvedaraite, E.; Chen, P.; Muvva, J.R.; Gorin, J.B.; et al. High-dimensional profiling reveals phenotypic heterogeneity and disease-specific alterations of granulocytes in COVID-19. Proc. Natl. Acad. Sci. USA 2021, 118, e2109123118. [Google Scholar] [CrossRef]
- Suklan, J.; Cheaveau, J.; Hill, S.; Urwin, S.G.; Green, K.; Winter, A.; Hicks, T.; Boath, A.E.; Kernohan, A.; Price, D.A.; et al. Utility of Routine Laboratory Biomarkers to Detect COVID-19: A Systematic Review and Meta-Analysis. Viruses 2021, 13, 803. [Google Scholar] [CrossRef]
- Alnor, A.; Sandberg, M.B.; Toftanes, B.E.; Vinholt, P.J. Platelet parameters and leukocyte morphology is altered in COVID-19 patients compared to non-COVID-19 patients with similar symptomatology. Scand. J. Clin. Lab. Investig. 2021, 81, 213–217. [Google Scholar] [CrossRef]
- Sun, Y.; Zhou, J.; Ye, K. White Blood Cells and Severe COVID-19: A Mendelian Randomization Study. J. Pers. Med. 2021, 11, 195. [Google Scholar] [CrossRef]
- Shimonovich, M.; Pearce, A.; Thomson, H.; Keyes, K.; Katikireddi, S.V. Assessing causality in epidemiology: Revisiting Bradford Hill to incorporate developments in causal thinking. Eur. J. Epidemiol. 2021, 36, 873–887. [Google Scholar] [CrossRef]
- Davies, N.M.; Holmes, M.V.; Davey Smith, G. Reading Mendelian randomisation studies: A guide, glossary, and checklist for clinicians. BMJ 2018, 362, k601. [Google Scholar] [CrossRef] [PubMed]
- Luo, S.; Liang, Y.; Wong, T.H.T.; Schooling, C.M.; Au Yeung, S.L. Identifying factors contributing to increased susceptibility to COVID-19 risk: A systematic review of Mendelian randomization studies. Int. J. Epidemiol. 2022, 51, 1088–1105. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Qu, M.; Ding, L.; Shi, X.; Wang, C.; Cheng, S.; Hao, X. Liver and Kidney Function Biomarkers, Blood Cell Traits and Risk of Severe COVID-19: A Mendelian Randomization Study. Front. Genet. 2021, 12, 647303. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baicus, C. White Blood Cells, COVID-19, and Mendelian Randomization. J. Pers. Med. 2022, 12, 1425. https://doi.org/10.3390/jpm12091425
Baicus C. White Blood Cells, COVID-19, and Mendelian Randomization. Journal of Personalized Medicine. 2022; 12(9):1425. https://doi.org/10.3390/jpm12091425
Chicago/Turabian StyleBaicus, Cristian. 2022. "White Blood Cells, COVID-19, and Mendelian Randomization" Journal of Personalized Medicine 12, no. 9: 1425. https://doi.org/10.3390/jpm12091425
APA StyleBaicus, C. (2022). White Blood Cells, COVID-19, and Mendelian Randomization. Journal of Personalized Medicine, 12(9), 1425. https://doi.org/10.3390/jpm12091425