Application of Signals with Rippled Spectra as a Training Approach for Speech Intelligibility Improvements in Cochlear Implant Users
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Listeners
2.3. Rippled-Spectrum Signals
2.4. Procedure
2.5. Speech Discrimination Test
2.6. Control and Training
2.7. Instrumentation
2.8. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Milekhina, O.N.; Nechaev, D.I.; Supin, A.Y. Estimation of Frequency Resolving Power of Human Hearing by Different Methods: Roles of Sensory and Cognitive Factors. Hum. Physiol. 2018, 44, 481–487. [Google Scholar] [CrossRef]
- Supin, A.Y.; Popov, V.V.; Milekhina, O.N.; Tarakanov, M.B. Ripple density resolution for various rippled-noise patterns. J. Acoust. Soc. Am. 1998, 103, 2042–2050. [Google Scholar] [CrossRef] [PubMed]
- Henry, B.A.; Turner, C.W.; Behrens, A. Spectral peak resolution and speech recognition in quit: Normal hearing, hearing impaired, and cochlear implant listeners. J. Acoust. Soc. Am. 2005, 118, 1111–1121. [Google Scholar] [CrossRef]
- Henry, B.A.; Turner, C.W. The resolution of complex spectral patterns by cochlear implant and normal-hearing listeners. J. Acoust. Soc. Am. 2003, 113, 2861–2873. [Google Scholar] [CrossRef]
- Anderson, E.S.; Nelson, D.A.; Kreft, H.; Nelson, P.B.; Oxenham, A.J. Comparing spatial tuning curves, spectral ripple resolution, and speech perception in cochlea implant users. J. Acoust. Soc. Am. 2011, 130, 364–375. [Google Scholar] [CrossRef]
- Jeon, E.K.; Turner, C.W.; Karsten, S.A.; Henry, B.A.; Gantz, B.J. Cochlear implant users’ spectral ripple resolution. J. Acoust. Soc. Am. 2015, 138, 2350–2358. [Google Scholar] [CrossRef]
- Supin, A.Y.; Popov, V.; Milekhina, O.N.; Tarakanov, M.B. Frequency resolving power measured by rippled noise. Hear. Res. 1994, 78, 31–40. [Google Scholar] [CrossRef]
- Won, J.H.; Drennan, W.R.; Rubinstain, J.T. Spectral-rippler resolution correlated with speech reception in noise in cochlear implant users. J. Assoc. Res. Otolaryngol. 2007, 8, 384–392. [Google Scholar] [CrossRef]
- Litvak, L.M.; Spahr, A.J.; Saoji, A.A.; Fridman, G.Y. Relationship between perception of spectral ripple and speech recognition in cochlear implant and vocoder listeners. J. Acoust. Soc. Am. 2007, 122, 982–991. [Google Scholar] [CrossRef] [PubMed]
- Saoji, A.A.; Litvak, L.; Spahr, A.J.; Eddins, D.A. Spectral modulation detection and vowel and consonant identifications in cochlear implant listeners. J. Acoust. Soc. Am. 2009, 126, 955–958. [Google Scholar] [CrossRef]
- Aronoff, J.M.; Landsberger, D.M. The development of a modified spectral ripple test. J. Acoust. Soc. Am. 2013, 134, EL217–EL222. [Google Scholar] [CrossRef] [PubMed]
- De Jong, M.A.; Briaire, J.J.; Frijns, H.M. Learning effects in psychophysical tests od spectral and temporal resolution. Ear Hear. 2018, 39, 475–481. [Google Scholar] [CrossRef] [PubMed]
- Landsberger, D.M.; Stupa, N.; Aronoff, J.M. SLRM: A nonlinguistic test for audiology clinics. Ear Hear. 2019, 40, 1253–1255. [Google Scholar] [CrossRef] [PubMed]
- Nechaev, D.I.; Goykhburg, M.V.; Supin, A.Y.; Bakhshinyan, V.V.; Tavartkiladze, G.A. Discrimination of Rippled-Spectrum Signals by Prelingual and Postlingual Cochlear Implant Users. Hum. Physiol. 2020, 46, 119–126. [Google Scholar] [CrossRef]
- Drennan, W.R.; Anderson, E.S.; Won, J.H.; Rubinstein, J.T. Validation of a Clinical Assessment of Spectral-Ripple Resolution for Cochlear Implant Users. Ear Hear. 2014, 35, e92–e98. [Google Scholar] [CrossRef]
- Noble, J.H.; Gifford, R.; Hedley-Williams, A.J.; Dawant, B.M.; Labadie, R.F. Clinical Evaluation of an Image-Guided Cochlear Implant Programming Strategy. Audiol. Neurotol. 2014, 19, 400–411. [Google Scholar] [CrossRef]
- Dwyer, R.T.; Spahr, T.; Agrawal, S.; Hetlinger, C.; Holder, J.T.; Gifford, R.H. Participant-generated cochlear implant programs: Speech recognition, sound quality and satisfaction. Otol. Neurotol. 2016, 37, e209–e216. [Google Scholar] [CrossRef]
- Gifford, R.H.; Hedley-Williams, A.; Spahr, A.J. Clinical assessment of spectral modulation detection for adult cochlear implant recipients: A non-language based measure of performance outcomes. Int. J. Audiol. 2014, 53, 159–164. [Google Scholar] [CrossRef]
- Gifford, R.H.; Noble, J.H.; Camarata, S.M.; Sunderhaus, L.W.; Dwyer, R.T.; Dawant, B.M.; Dietrich, M.S.; Labadie, R.F. The Relationship Between Spectral Modulation Detection and Speech Recognition: Adult Versus Pediatric Cochlear Implant Recipients. Trends Hear. 2018, 22, 2331216518771176. [Google Scholar] [CrossRef]
- Drennan, W.R.; Won, J.H.; Nie, K.; Jameyson, E.; Rubinstein, J.T. Sensitivity of psychophysical measures to signal processor modifications in cochlear implant users. Hear. Res. 2010, 262, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Drennan, W.R.; Won, J.H.; Timme, A.O.; Rubinstein, J.T. Nonlinguistic Outcome Measures in Adult Cochlear Implant Users Over the First Year of Implantation. Ear Hear. 2016, 37, 354–364. [Google Scholar] [CrossRef] [PubMed]
- Drennan, W.R.; Won, J.H.; Dasika, V.K.; Rubinstein, J.T. Effects of Temporal Fine Structure on the Lateralization of Speech and on Speech Understanding in Noise. J. Assoc. Res. Otolaryngol. 2007, 8, 373–383. [Google Scholar] [CrossRef] [PubMed]
- Taitelbaum-Swead, R.; Kishon-Rabin, L.; Kaplan-Neeman, R.; Muchnik, C.; Kronenberg, J.; Hildesheimer, M. Speech perception of children using Nucleus, Clarion or Med-El cochlear implants. Int. J. Pediatr. Otorhinolaryngol. 2005, 69, 1675–1683. [Google Scholar] [CrossRef] [PubMed]
- Landsberger, D.M.; Padilla, M.; Martinez, A.S.; Eisenberg, L.S. Spectral-Temporal Modulated Ripple Discrimination by Children With Cochlear Implants. Ear Hear. 2018, 39, 60–68. [Google Scholar] [CrossRef]
ID | Age | CI Model | Implantation Date | Time of Training, Days |
---|---|---|---|---|
EG 1 | 47 | HiRes 90 K Advantage CI MS Electrode | 11 December 2019 | 84 |
EG 2 | 61 | HiRes 90 K Advantage CI MS Electrode | 30 May 2019 | 112 |
EG 3 | 46 | HiRes 90 K HiFocus Helix electrode | 8 December 2014 | 41 |
EG 4 | 48 | HiRes 90 K HiFocus Helix electrode | 24 January 2013 | 48 |
EG 5 | 35 | HiRes 90 K HiFocus Helix electrode | 28 June 2012 | 84 |
EG 6 | 57 | CI 512 (CA) | 24 October 2018 | 70 |
EG 7 | 37 | HiRes 90 K HiFocus Helix electrode | 3 April 2012 | 105 |
EG 8 | 28 | HiRes 90 K Advantage CI MS Electrode | 9 October 2019 | 28 |
EG 9 | 18 | HiRes 90 K HiFocus Helix electrode | 12 October 2012 | 82 |
EG 10 | 10 | HiRes 90 K HiFocus Helix electrode | 21 March 2015 | 77 |
CG 1 | 46 | CI 512 (CA) | 20 June 2017 | - |
CG 2 | 33 | CI 512 (CA) | 6 June 2019 | - |
CG 3 | 33 | CI 512 (CA) | 6 June 2019 | - |
CG 4 | 11 | Nucleus Freedom CI24RE(CA) | 22 June 2011 | - |
CG 5 | 46 | HiRes 90 K HiFocus Helix electrode | 2 November 2011 | - |
Experimental Group | |||
Code | Before Training Ripples/oct | After Training Ripples/oct | After/Before Ratio |
EG1 | 1.7 | 9.5 | 5.6 |
EG2 | 1.2 | 4.8 | 4.0 |
EG3 | 1.2 | 3.4 | 2.8 |
EG4 | 1.3 | 4.9 | 3.8 |
EG5 | 1.0 | 2.6 | 2.6 |
EG6 | 5.9 | 7.0 | 1.2 |
EG7 | 3.1 | 5.3 | 1.7 |
EG8 | 0.8 | 2.1 | 2.6 |
EG9 | 5.4 | 9.2 | 1.7 |
EG10 | 4.4 | 12.1 | 2.8 |
Control Group | |||
Code | Test | Retest | Retest/Test Ratio |
CG1 | 1.5 | 1.4 | 0.9 |
CG2 | 3.4 | 3.3 | 1.0 |
CG3 | 1.5 | 2.6 | 1.7 |
CG4 | 6.1 | 5.5 | 0.9 |
CG5 | 1.7 | 1.9 | 1.1 |
ID | Long Before, % | Before Training, % | After Training, % |
---|---|---|---|
EG1 | - | 60 | 90 |
EG2 | 80 | 90 | 100 |
EG3 | 55 | 55 | 70 |
EG4 | 80 | 80 | 80 |
EG5 | 50 | 55 | 70 |
EG6 | 80 | 80 | 95 |
EG7 | - | 90 | 100 |
EG8 | - | 20 | 65 |
EG9 | - | 60 | 95 |
EG10 | - | 85 | 95 |
Test | Retest | ||
CG1 | - | 80 | 80 |
CG2 | - | 45 | 45 |
CG3 | - | 20 | 25 |
CG4 | - | 100 | 95 |
CG5 | - | 90 | 95 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nechaev, D.; Goykhburg, M.; Supin, A.; Bakhshinyan, V.; Tavartkiladze, G. Application of Signals with Rippled Spectra as a Training Approach for Speech Intelligibility Improvements in Cochlear Implant Users. J. Pers. Med. 2022, 12, 1426. https://doi.org/10.3390/jpm12091426
Nechaev D, Goykhburg M, Supin A, Bakhshinyan V, Tavartkiladze G. Application of Signals with Rippled Spectra as a Training Approach for Speech Intelligibility Improvements in Cochlear Implant Users. Journal of Personalized Medicine. 2022; 12(9):1426. https://doi.org/10.3390/jpm12091426
Chicago/Turabian StyleNechaev, Dmitry, Marina Goykhburg, Alexander Supin, Vigen Bakhshinyan, and George Tavartkiladze. 2022. "Application of Signals with Rippled Spectra as a Training Approach for Speech Intelligibility Improvements in Cochlear Implant Users" Journal of Personalized Medicine 12, no. 9: 1426. https://doi.org/10.3390/jpm12091426
APA StyleNechaev, D., Goykhburg, M., Supin, A., Bakhshinyan, V., & Tavartkiladze, G. (2022). Application of Signals with Rippled Spectra as a Training Approach for Speech Intelligibility Improvements in Cochlear Implant Users. Journal of Personalized Medicine, 12(9), 1426. https://doi.org/10.3390/jpm12091426