CAR-T Cell Therapy in the Treatment of Pediatric Non-Hodgkin Lymphoma
Abstract
:1. Introduction
2. The Possibility of Using CAR-T Cells in NHL Therapy
2.1. Mechanism of Action of CAR-T Cells
2.2. CAR-T Cells Anti-CD19
2.2.1. Axicabtagene Ciloleucel (Other Terms: Axi-Cel, Yescarta, KTE-CD19)
2.2.2. Tisagenlecleucel (Other Terms: Tisa-Cel, Kymriah, CTL019)
2.2.3. Brexucabtagene Autoleucel (Other Terms: Tecartus, KTE-X19)
2.2.4. Lisocabtagene Maraleucel (Other Terms: Liso-Cel, Breyanzi, JCAR017)
2.2.5. CAR-T Cells in Burkitt Lymphoma after Liver Transplantation
2.3. Other CAR-T Cells against NHL
2.3.1. Anti-CD20
2.3.2. Bispecific and Dual Targeting CAR-T Cells
CD19/CD20
CD19/CD22
2.3.3. Sequential CD19/CD20/CD22-Targeted CAR-T Cells
2.3.4. General Relevance of Clinical Trials on the Effectiveness and Safety of CAR-T Cell Therapy to the Pediatric Population
2.4. Recruiting Clinical Trials
3. The Challenges of CAR-T Cell Therapy
3.1. Aftermath of CAR-T Cell Therapy
3.1.1. Cytokine Release Syndrome
3.1.2. Immune Effector Cell-Associated Neurotoxicity Syndrome
3.1.3. Other Neurotoxicities
3.1.4. Infections
3.1.5. Cytopenia
3.1.6. B-Cell Aplasia and Hypogammaglobulinemia
3.1.7. Hemophagocytic Lymphohistiocytosis
3.1.8. Tumor Lysis Syndrome
3.1.9. Anaphylaxis and Immunogenicity
3.2. Limitations of CAR-T Cell Therapy
3.2.1. Patient Selection
3.2.2. Resistance
Obstacle 1: Achieving CAR-T
Obstacle 2: Relapse
3.2.3. The Tumor Microenvironment
3.2.4. Gut Microbiome
3.2.5. Race, Ethnicity and Obesity
3.2.6. Tumor Burden, Inflammation and Attributes of Axi-Cel
4. CAR-T Cell Therapy in Hodgkin lymphoma
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
NHL | non-Hodgkin lymphoma |
B-NHL | B-cell non-Hodgkin lymphoma |
BL | Burkitt lymphoma |
DLBCL | diffuse large B-cell lymphoma |
CNS | central nervous system |
OS | overall survival |
mAb | monoclonal antibody |
ICI | immune checkpoint inhibitor |
ADC | antibody–drug conjugate |
CAR | chimeric antigen receptor |
MHC | major histocompatibility complex |
CD | cluster of differentiation |
TCR | T cell receptor |
ITAM | immuno-tyrosine activation motif |
ICOS | inducible T cell co-stimulator |
IL | interleukin |
FDA | Food and Drug Administration |
EMA | European Medicines Agency |
R/R | relapsed or refractory |
ORR | overall response rate |
CRR | complete response rate |
CR | complete response |
PRR | partial response rate |
PR | partial response |
DOR | duration of response |
PFS | progression-free survival |
CRS | cytokine release syndrome |
FL | follicular lymphoma |
LBCL | large B-cell lymphoma |
tisa-cel | tisagenlecleucel |
HGBCL | high-grade B-cell lymphoma |
tFL | transformed follicular lymphoma |
auto-HSCT | autologous hematopoietic stem-cell transplantation |
ALL | acute lymphoblastic leukemia |
axi-cel | axicabtagene ciloleucel |
KTE | X19-Brexucabtagene autoleucel |
liso-cel | lisocabtagene maraleucel |
DLT | dose-limiting toxicities |
CLL | chronic lymphocytic leukemia |
SLL | small lymphocytic lymphoma |
LDH | lactate dehydrogenase |
HRQoL | health-related quality of life |
EORTC | QLQ-C30-European Organization for Research and Treatment of Cancer Quality of Life Questionnaire |
QoL | Quality of Life |
PET | Positron-Emission Tomography |
PET-CT-Positron | Emission Tomography and Computed Tomography |
PTLD-post-transplant | B-cell lymphoproliferative disorder |
allo-HSCT-allogeneic | hematopoietic stem cell transplantation |
ctDNA-cell-free | circulating tumor DNA |
AE-adverse | effect |
ICANS | immune effector cell-associated neurotoxicity syndrome |
CRES | CAR-T-cell-related encephalopathy syndrome |
TLS | tumor lysis syndrome |
TNF | α-tumor necrosis factor-alpha |
ICU | intensive care unit |
CRP | C-reactive protein |
CBC | complete blood count |
DIC | disseminated intravascular coagulation |
BBB | blood–brain barrier |
ICE | immune effector cell-associated encephalopathy |
EEG | electroencephalography |
CMV | cytomegalovirus |
EBV | Epstein–Barr virus |
HHV6 | human herpesvirus 6 |
HSV | herpes simplex virus |
HBV | hepatitis B virus |
PJP | Pneumocystis jirovecii |
HLH | hemophagocytic lymphohistiocytosis |
G-CSF | granulocyte colony-stimulating factor |
IVIG | intravenous immunoglobulin |
G6PD | glucose-6-phosphate dehydrogenase |
TME | tumor microenvironment |
TB | tumor burden |
IFN-ɣ | interferon-gamma |
HL | hodgkin lymphoma |
References
- Harker-Murray, P.D.; Pommert, L.; Barth, M.J. Novel Therapies Potentially Available for Pediatric B-Cell Non-Hodgkin Lymphoma. J. Natl. Compr. Canc. Netw. 2020, 18, 1125–1134. [Google Scholar] [CrossRef] [PubMed]
- National Cancer Institute: NCCR*Explorer: An Interactive Website for NCCR Cancer Statistics. National Cancer Institute: Bethesda, MD, USA. Available online: https://nccrexplorer.ccdi.cancer.gov/application.html?site=210&data_type=1&graph_type=2&compareBy=sex&chk_sex_3=3&chk_sex_2=2&race=1&age_range=1&advopt_precision=1&advopt_show_ci=on&hdn_view=1&advopt_display=1 (accessed on 27 September 2023).
- Hochberg, J.; Waxman, I.M.; Kelly, K.M.; Morris, E.; Cairo, M.S. Adolescent non-Hodgkin lymphoma and Hodgkin lymphoma: State of the science. Br. J. Haematol. 2009, 144, 24–40. [Google Scholar] [CrossRef] [PubMed]
- Graham, B.S.; Lynch, D.T. Burkitt Lymphoma. [Updated 2023 Aug 7]. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2023. Available online: https://www.ncbi.nlm.nih.gov/books/NBK538148/ (accessed on 27 September 2023).
- Li, Y.; Wang, Y.; Wang, Z.; Yi, D.; Ma, S. Racial differences in three major NHL subtypes: Descriptive epidemiology. Cancer Epidemiol. 2015, 39, 8–13. [Google Scholar] [CrossRef] [PubMed]
- Sandlund, J.T.; Downing, J.R.; Crist, W.M. Non-Hodgkin’s lymphoma in childhood. N. Engl. J. Med. 1996, 334, 1238–1248. [Google Scholar] [CrossRef] [PubMed]
- Bluhm, E.C.; Ronckers, C.; Hayashi, R.J.; Neglia, J.P.; Mertens, A.; Stovall, M.; Meadows, A.T.; Mitby, P.A.; Whitton, J.A.; Hammond, S.; et al. Cause-specific mortality and second cancer incidence after non-Hodgkin lymphoma: A report from the Childhood Cancer Survivor Study. Blood 2008, 111, 4014–4021. [Google Scholar] [CrossRef]
- Gravina, G.L.; Festuccia, C.; Marampon, F.; Popov, V.M.; Pestell, R.G.; Zani, B.M.; Tombolini, V. Biological rationale for the use of DNA methyltransferase inhibitors as new strategy for modulation of tumor response to chemotherapy and radiation. Mol. Cancer 2010, 9, 305. [Google Scholar] [CrossRef]
- Shiramizu, B.; Mussolin, L.; Woessmann, W.; Klapper, W. Paediatric non-Hodgkin lymphoma—Perspectives in translational biology. Br. J. Haematol. 2016, 173, 617–624. [Google Scholar] [CrossRef]
- Zhao, Z.; Chen, Y.; Francisco, N.M.; Zhang, Y.; Wu, M. The application of CAR-T cell therapy in hematological malignancies: Advantages and challenges. Acta Pharm. Sin. B 2018, 8, 539–551. [Google Scholar] [CrossRef]
- Jensen, M.C.; Riddell, S.R. Designing chimeric antigen receptors to effectively and safely target tumors. Curr. Opin. Immunol. 2015, 33, 9–15. [Google Scholar] [CrossRef]
- Eshhar, Z.; Waks, T.; Gross, G.; Schindler, D.G. Specific activation and targeting of cytotoxic lymphocytes through chimeric single chains consisting of antibody-binding domains and the gamma or zeta subunits of the immunoglobulin and T-cell receptors. Proc. Natl. Acad. Sci. USA 1993, 90, 720–724. [Google Scholar] [CrossRef]
- Wange, R.L.; Samelson, L.E. Complex complexes: Signaling at the TCR. Immunity 1996, 5, 197–205. [Google Scholar] [CrossRef] [PubMed]
- Krause, A.; Guo, H.F.; Latouche, J.B.; Tan, C.; Cheung, N.K.; Sadelain, M. Antigen-dependent CD28 signaling selectively enhances survival and proliferation in genetically modified activated human primary T lymphocytes. J. Exp. Med. 1998, 188, 619–626. [Google Scholar] [CrossRef] [PubMed]
- Guedan, S.; Chen, X.; Madar, A.; Carpenito, C.; McGettigan, S.E.; Frigault, M.J.; Lee, J.; Posey, A.D., Jr.; Scholler, J.; Scholler, N.; et al. ICOS-based chimeric antigen receptors program bipolar TH17/TH1 cells. Blood 2014, 124, 1070–1080. [Google Scholar] [CrossRef] [PubMed]
- Kerkar, S.P.; Muranski, P.; Kaiser, A.; Boni, A.; Sanchez-Perez, L.; Yu, Z.; Palmer, D.C.; Reger, R.N.; Borman, Z.A.; Zhang, L.; et al. Tumor-specific CD8+ T cells expressing interleukin-12 eradicate established cancers in lymphodepleted hosts. Cancer Res. 2010, 70, 6725–6734. [Google Scholar] [CrossRef] [PubMed]
- Chmielewski, M.; Hombach, A.A.; Abken, H. Of CARs and TRUCKs: Chimeric antigen receptor (CAR) T cells engineered with an inducible cytokine to modulate the tumor stroma. Immunol. Rev. 2014, 257, 83–90. [Google Scholar] [CrossRef]
- Ramos, C.A.; Savoldo, B.; Dotti, G. CD19-CAR trials. Cancer J. 2014, 20, 112–118. [Google Scholar] [CrossRef]
- Bailly, S.; Cartron, G.; Chaganti, S.; Córdoba, R.; Corradini, P.; Düll, J.; Ferrarini, I.; Osborne, W.; Rosenwald, A.; Sancho, J.M.; et al. Targeting CD19 in diffuse large B-cell lymphoma: An expert opinion paper. Hematol. Oncol. 2022, 40, 505–517. [Google Scholar] [CrossRef]
- Yin, Z.; Zhang, Y.; Wang, X. Advances in chimeric antigen receptor T-cell therapy for B-cell non-Hodgkin lymphoma. Biomark. Res. 2021, 9, 58. [Google Scholar] [CrossRef]
- Chu, Y.; Gardenswartz, A.; Diorio, C.; Marks, L.J.; Lowe, E.; Teachey, D.T.; Cairo, M.S. Cellular and humoral immunotherapy in children, adolescents and young adults with non-Hodgkin lymphoma. Best. Pract. Res. Clin. Haematol. 2023, 36, 101442. [Google Scholar] [CrossRef]
- Westin, J.R.; Kersten, M.J.; Salles, G.; Abramson, J.S.; Schuster, S.J.; Locke, F.L.; Andreadis, C. Efficacy and safety of CD19-directed CAR-T cell therapies in patients with relapsed/refractory aggressive B-cell lymphomas: Observations from the JULIET, ZUMA-1, and TRANSCEND trials. Am. J. Hematol. 2021, 96, 1295–1312. [Google Scholar] [CrossRef]
- Locke, F.L.; Ghobadi, A.; Jacobson, C.A.; Miklos, D.B.; Lekakis, L.J.; Oluwole, O.O.; Lin, Y.; Braunschweig, I.; Hill, B.T.; Timmerman, J.M.; et al. Long-term safety and activity of axicabtagene ciloleucel in refractory large B-cell lymphoma (ZUMA-1): A single-arm, multicentre, phase 1–2 trial. Lancet Oncol. 2019, 20, 31–42. [Google Scholar] [CrossRef]
- Jacobson, C.A.; Chavez, J.C.; Sehgal, A.R.; William, B.M.; Munoz, J.; Salles, G.; Munshi, P.N.; Casulo, C.; Maloney, D.G.; de Vos, S.; et al. Axicabtagene ciloleucel in relapsed or refractory indolent non-Hodgkin lymphoma (ZUMA-5): A single-arm, multicentre, phase 2 trial. Lancet Oncol. 2022, 23, 91–103. [Google Scholar] [CrossRef] [PubMed]
- Neelapu, S.S.; Dickinson, M.; Munoz, J.; Ulrickson, M.L.; Thieblemont, C.; Oluwole, O.O.; Herrera, A.F.; Ujjani, C.S.; Lin, Y.; Riedell, P.A.; et al. Axicabtagene ciloleucel as first-line therapy in high-risk large B-cell lymphoma: The phase 2 ZUMA-12 trial. Nat. Med. 2022, 28, 735–742. [Google Scholar] [CrossRef] [PubMed]
- Seitter, S.J.; McClelland, P.H.; Ahlman, M.A.; Goff, S.L.; Yang, J.C.; McIntyre, L.; Rosenberg, S.A.; Kochenderfer, J.N.; Brudno, J.N. Durable remissions in two adult patients with Burkitt lymphoma following anti-CD19 CAR T-cell therapy: A single center experience. Leuk. Lymphoma 2022, 63, 2469–2473. [Google Scholar] [CrossRef] [PubMed]
- Schuster, S.J.; Tam, C.S.; Borchmann, P.; Worel, N.; McGuirk, J.P.; Holte, H.; Waller, E.K.; Jaglowski, S.; Bishop, M.R.; Damon, L.E.; et al. Long-term clinical outcomes of tisagenlecleucel in patients with relapsed or refractory aggressive B-cell lymphomas (JULIET): A multicentre, open-label, single-arm, phase 2 study. Lancet Oncol. 2021, 22, 1403–1415. [Google Scholar] [CrossRef]
- Awasthi, R.; Pacaud, L.; Waldron, E.; Tam, C.S.; Jäger, U.; Borchmann, P.; Jaglowski, S.; Foley, S.R.; van Besien, K.; Wagner-Johnston, N.D.; et al. Tisagenlecleucel cellular kinetics, dose, and immunogenicity in relation to clinical factors in relapsed/refractory DLBCL. Blood Adv. 2020, 4, 560–572. [Google Scholar] [CrossRef] [PubMed]
- Schuster, S.J.; Svoboda, J.; Chong, E.A.; Nasta, S.D.; Mato, A.R.; Anak, Ö.; Brogdon, J.L.; Pruteanu-Malinici, I.; Bhoj, V.; Landsburg, D.; et al. Chimeric Antigen Receptor T Cells in Refractory B-Cell Lymphomas. N. Engl. J. Med. 2017, 377, 2545–2554. [Google Scholar] [CrossRef] [PubMed]
- Schuster, S.J.; Bishop, M.R.; Tam, C.S.; Waller, E.K.; Borchmann, P.; McGuirk, J.P.; Jäger, U.; Jaglowski, S.; Andreadis, C.; Westin, J.R.; et al. Tisagenlecleucel in Adult Relapsed or Refractory Diffuse Large B-Cell Lymphoma. N. Engl. J. Med. 2019, 380, 45–56. [Google Scholar] [CrossRef]
- Frigault, M.J.; Dietrich, J.; Martinez-Lage, M.; Leick, M.; Choi, B.D.; DeFilipp, Z.; Chen, Y.B.; Abramson, J.; Crombie, J.; Armand, P.; et al. Tisagenlecleucel CAR T-cell therapy in secondary CNS lymphoma. Blood 2019, 134, 860–866. [Google Scholar] [CrossRef]
- Fukuhara, N.; Kato, K.; Goto, H.; Takeshi, T.; Kawaguchi, M.; Tokushige, K.; Akashi, K.; Teshima, T.; Harigae, H.; Schuster, S.J.; et al. Efficacy and safety of tisagenlecleucel in adult Japanese patients with relapsed or refractory follicular lymphoma: Results from the phase 2 ELARA trial. Int. J. Hematol. 2023, 117, 251–259. [Google Scholar] [CrossRef]
- Minard, V.; Maude, S.L.; Buechner, J.; Krueger, J.; Locatelli, F.; Attarbaschi, A.; Laetsch, T.W.; González Martínez, B.; Diaz de Heredia Rubio, C.; Awasthi, R.; et al. Bianca: Phase II, single-arm, global trial to determine efficacy and safety of tisagenlecleucel in pediatric/young adult (YA) patients (Pts) with relapsed/refractory B-cell non-Hodgkin lymphoma (R/R B-NHL). J. Clin. Oncol. 2020, 38 (Suppl. S15), e22504. [Google Scholar] [CrossRef]
- Ernst, M.; Oeser, A.; Besiroglu, B.; Caro-Valenzuela, J.; Abd El Aziz, M.; Monsef, I.; Borchmann, P.; Estcourt, L.J.; Skoetz, N.; Goldkuhle, M. Chimeric antigen receptor (CAR) T-cell therapy for people with relapsed or refractory diffuse large B-cell lymphoma. Cochrane Database Syst. Rev. 2021, 9, CD013365. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Munoz, J.; Goy, A.; Locke, F.L.; Jacobson, C.A.; Hill, B.T.; Timmerman, J.M.; Holmes, H.; Jaglowski, S.; Flinn, I.W.; et al. KTE-X19 CAR T-Cell Therapy in Relapsed or Refractory Mantle-Cell Lymphoma. N. Engl. J. Med. 2020, 382, 1331–1342. [Google Scholar] [CrossRef] [PubMed]
- Study Evaluating Brexucabtagene Autoleucel (KTE-X19) in Pediatric and Adolescent Participants with Relapsed/Refractory B-precursor Acute Lymphoblastic Leukemia or Relapsed/Refractory B-Cell Non-Hodgkin Lymphoma (ZUMA-4). Available online: https://clinicaltrials.gov/study/NCT02625480?cond=Non-Hodgkin%20Lymphoma&intr=CAR-T&distance=50&aggFilters=ages:child,status:rec&page=4&rank=44&fbclid=IwAR2Dy_ZCZZstFLjYh7yYvWgzm-gcUeYo3iCj-fXYcWegWR3DmKRqGSjmpgI (accessed on 27 September 2023).
- Siddiqi, T.; Soumerai, J.D.; Dorritie, K.A.; Stephens, D.M.; Riedell, P.A.; Arnason, J.; Kipps, T.J.; Gillenwater, H.H.; Gong, L.; Yang, L.; et al. Phase 1 TRANSCEND CLL 004 study of lisocabtagene maraleucel in patients with relapsed/refractory CLL or SLL. Blood 2022, 139, 1794–1806. [Google Scholar] [CrossRef] [PubMed]
- Abramson, J.S.; Palomba, M.L.; Gordon, L.I.; Lunning, M.A.; Wang, M.; Arnason, J.; Mehta, A.; Purev, E.; Maloney, D.G.; Andreadis, C.; et al. Lisocabtagene maraleucel for patients with relapsed or refractory large B-cell lymphomas (TRANSCEND NHL 001): A multicentre seamless design study. Lancet 2020, 396, 839–852. [Google Scholar] [CrossRef]
- Patrick, D.L.; Powers, A.; Jun, M.P.; Kim, Y.; Garcia, J.; Dehner, C.; Maloney, D.G. Effect of lisocabtagene maraleucel on HRQoL and symptom severity in relapsed/refractory large B-cell lymphoma. Blood Adv. 2021, 5, 2245–2255. [Google Scholar] [CrossRef]
- Kamdar, M.; Solomon, S.R.; Arnason, J.; Johnston, P.B.; Glass, B.; Bachanova, V.; Ibrahimi, S.; Mielke, S.; Mutsaers, P.; Hernandez-Ilizaliturri, F.; et al. Lisocabtagene maraleucel versus standard of care with salvage chemotherapy followed by autologous stem cell transplantation as second-line treatment in patients with relapsed or refractory large B-cell lymphoma (TRANSFORM): Results from an interim analysis of an open-label, randomised, phase 3 trial. Lancet 2022, 399, 2294–2308, Erratum in: Lancet 2022, 400, 160. [Google Scholar] [CrossRef]
- Sehgal, A.; Hoda, D.; Riedell, P.A.; Ghosh, N.; Hamadani, M.; Hildebrandt, G.C.; Godwin, J.E.; Reagan, P.M.; Wagner-Johnston, N.; Essell, J.; et al. Lisocabtagene maraleucel as second-line therapy in adults with relapsed or refractory large B-cell lymphoma who were not intended for haematopoietic stem cell transplantation (PILOT): An open-label, phase 2 study. Lancet Oncol. 2022, 23, 1066–1077. [Google Scholar] [CrossRef]
- Wang, T.; Feng, M.; Luo, C.; Wan, X.; Pan, C.; Tang, J.; Xue, F.; Yin, M.; Lu, D.; Xia, Q.; et al. Successful Treatment of Pediatric Refractory Burkitt Lymphoma PTLD after Liver Transplantation using Anti-CD19 Chimeric Antigen Receptor T-Cell Therapy. Cell Transplant. 2021, 30, 963689721996649. [Google Scholar] [CrossRef]
- Tong, C.; Zhang, Y.; Liu, Y.; Ji, X.; Zhang, W.; Guo, Y.; Han, X.; Ti, D.; Dai, H.; Wang, C.; et al. Optimized tandem CD19/CD20 CAR-engineered T cells in refractory/relapsed B-cell lymphoma. Blood 2020, 136, 1632–1644. [Google Scholar] [CrossRef]
- Marofi, F.; Rahman, H.S.; Achmad, M.H.; Sergeevna, K.N.; Suksatan, W.; Abdelbasset, W.K.; Mikhailova, M.V.; Shomali, N.; Yazdanifar, M.; Hassanzadeh, A.; et al. A Deep Insight Into CAR-T Cell Therapy in Non-Hodgkin Lymphoma: Application, Opportunities, and Future Directions. Front. Immunol. 2021, 12, 681984. [Google Scholar] [CrossRef]
- Kumar, A.; Planchais, C.; Fronzes, R.; Mouquet, H.; Reyes, N. Binding mechanisms of therapeutic antibodies to human CD20. Science 2020, 369, 793–799. [Google Scholar] [CrossRef]
- Klein, C.; Jamois, C.; Nielsen, T. Anti-CD20 treatment for B-cell malignancies: Current status and future directions. Expert. Opin. Biol. Ther. 2021, 21, 161–181. [Google Scholar] [CrossRef]
- Cheng, Q.; Tan, J.; Liu, R.; Kang, L.; Zhang, Y.; Wang, E.; Li, Y.; Zhang, J.; Xiao, H.; Xu, N.; et al. CD20-specific chimeric antigen receptor-expressing T cells as salvage therapy in rituximab-refractory/relapsed B-cell non-Hodgkin lymphoma. Cytotherapy 2022, 24, 1026–1034. [Google Scholar] [CrossRef] [PubMed]
- Zah, E.; Lin, M.Y.; Silva-Benedict, A.; Jensen, M.C.; Chen, Y.Y. T Cells Expressing CD19/CD20 Bispecific Chimeric Antigen Receptors Prevent Antigen Escape by Malignant B Cells. Cancer Immunol. Res. 2016, 4, 498–508. [Google Scholar] [CrossRef] [PubMed]
- Majzner, R.G.; Mackall, C.L. Tumor Antigen Escape from CAR T-cell Therapy. Cancer Discov. 2018, 8, 1219–1226. [Google Scholar] [CrossRef] [PubMed]
- Shah, N.N.; Johnson, B.D.; Schneider, D.; Zhu, F.; Szabo, A.; Keever-Taylor, C.A.; Krueger, W.; Worden, A.A.; Kadan, M.J.; Yim, S.; et al. Bispecific anti-CD20, anti-CD19 CAR T cells for relapsed B cell malignancies: A phase 1 dose escalation and expansion trial. Nat. Med. 2020, 26, 1569–1575. [Google Scholar] [CrossRef] [PubMed]
- Sang, W.; Shi, M.; Yang, J.; Cao, J.; Xu, L.; Yan, D.; Yao, M.; Liu, H.; Li, W.; Zhang, B.; et al. Phase II trial of co-administration of CD19- and CD20-targeted chimeric antigen receptor T cells for relapsed and refractory diffuse large B cell lymphoma. Cancer Med. 2020, 9, 5827–5838. [Google Scholar] [CrossRef]
- Clark, E.A.; Giltiay, N.V. CD22: A Regulator of Innate and Adaptive B Cell Responses and Autoimmunity. Front. Immunol. 2018, 9, 2235. [Google Scholar] [CrossRef]
- Huang, L.; Li, J.; Yang, J.; Zhang, X.; Zhang, M.; He, J.; Zhang, G.; Li, W.; Wang, H.; Li, J.; et al. Safety and Efficacy of Humanized Versus Murinized CD19 and CD22 CAR T-Cell Cocktail Therapy for Refractory/Relapsed B-Cell Lymphoma. Cells 2022, 11, 4085. [Google Scholar] [CrossRef]
- Shalabi, H.; Qin, H.; Su, A.; Yates, B.; Wolters, P.L.; Steinberg, S.M.; Ligon, J.A.; Silbert, S.; DéDé, K.; Benzaoui, M.; et al. CD19/22 CAR T cells in children and young adults with B-ALL: Phase 1 results and development of a novel bicistronic CAR. Blood 2022, 140, 451–463. [Google Scholar] [CrossRef] [PubMed]
- Qu, C.; Zou, R.; Wang, P.; Zhu, Q.; Kang, L.; Ping, N.; Xia, F.; Liu, H.; Kong, D.; Yu, L.; et al. Decitabine-primed tandem CD19/CD22 CAR-T therapy in relapsed/refractory diffuse large B-cell lymphoma patients. Front. Immunol. 2022, 13, 969660. [Google Scholar] [CrossRef] [PubMed]
- Spiegel, J.Y.; Patel, S.; Muffly, L.; Hossain, N.M.; Oak, J.; Baird, J.H.; Frank, M.J.; Shiraz, P.; Sahaf, B.; Craig, J.; et al. CAR T cells with dual targeting of CD19 and CD22 in adult patients with recurrent or refractory B cell malignancies: A phase 1 trial. Nat. Med. 2021, 27, 1419–1431. [Google Scholar] [CrossRef]
- Cao, Y.; Xiao, Y.; Wang, N.; Wang, G.; Huang, L.; Hong, Z.; Meng, L.; Zhou, X.; Wang, J.; Yang, Y.; et al. CD19/CD22 Chimeric Antigen Receptor T Cell Cocktail Therapy following Autologous Transplantation in Patients with Relapsed/Refractory Aggressive B Cell Lymphomas. Transplant. Cell Ther. 2021, 27, 910.e1–910.e11. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Cao, Y.; Zhang, Q.; Liu, W.; Zhou, X.; Ming, X.; Meng, F.; Zhang, Y.; Li, C.; Huang, L.; et al. Chimeric Antigen Receptor-Modified T Cell Immunotherapy for Relapsed and Refractory Adult Burkitt Lymphoma. Front. Immunol. 2022, 13, 879983. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Ge, T.; Li, T.; Huang, L.; Cao, Y.; Xiao, Y.; Zhen, M.; Chen, L.; Zhou, J. CAR19/22 T cell therapy in adult refractory Burkitt’s lymphoma. Cancer Immunol. Immunother. 2021, 70, 2379–2384. [Google Scholar] [CrossRef]
- Zeng, C.; Cheng, J.; Li, T.; Huang, J.; Li, C.; Jiang, L.; Wang, J.; Chen, L.; Mao, X.; Zhu, L.; et al. Efficacy and toxicity for CD22/CD19 chimeric antigen receptor T-cell therapy in patients with relapsed/refractory aggressive B-cell lymphoma involving the gastrointestinal tract. Cytotherapy 2020, 22, 166–171. [Google Scholar] [CrossRef]
- Zhang, W.; Yang, J.; Zhou, C.; Hu, B.; Jin, L.; Deng, B.; Liu, Y.; Wang, S.; Chang, A.H.; Du, J.; et al. Early response observed in pediatric patients with relapsed/refractory Burkitt lymphoma treated with chimeric antigen receptor T cells. Blood 2020, 135, 2425–2427. [Google Scholar] [CrossRef]
- Liu, Y.; Deng, B.; Hu, B.; Zhang, W.; Zhu, Q.; Liu, Y.; Wang, S.; Zhang, P.; Yang, Y.; Yang, J.; et al. Sequential different B-cell antigen-targeted CAR T-cell therapy for pediatric refractory/relapsed Burkitt lymphoma. Blood Adv. 2022, 6, 717–730. [Google Scholar] [CrossRef]
- Du, J.; Zhang, Y. Sequential anti-CD19, 22, and 20 autologous chimeric antigen receptor T-cell (CAR-T) treatments of a child with relapsed refractory Burkitt lymphoma: A case report and literature review. J. Cancer Res. Clin. Oncol. 2020, 146, 1575–1582. [Google Scholar] [CrossRef]
- Zhang, W.; Hu, B.; Jing, L.; Yang, J.; Wang, S.; Liu, Y.; Du, J.; Ren, Y.; Zhang, Y. Early Response Observed in Pediatric Patients with Refractory/Relapsed B-Cell Non-Hodgkin Lymphoma Treated with Sequential Chimeric Antigen Receptor T Cells. Blood 2019, 134 (Suppl. S1), 1945. [Google Scholar] [CrossRef]
- Meng, Y.; Deng, B.; Rong, L.; Li, C.; Song, W.; Ling, Z.; Xu, J.; Duan, J.; Wang, Z.; Chang, A.H.; et al. Short-Interval Sequential CAR-T Cell Infusion May Enhance Prior CAR-T Cell Expansion to Augment Anti-Lymphoma Response in B-NHL. Front. Oncol. 2021, 11, 640166. [Google Scholar] [CrossRef]
- A Study of CAR-T Cells Therapy for Patients with Relapsed and/or Refractory Central Nervous System Hematological Malignancies. Available online: https://clinicaltrials.gov/study/NCT04532203?distance=50&cond=Non-Hodgkin%20Lymphoma&intr=CAR-T&aggFilters=ages:child,status:rec&fbclid=IwAR2N4dmBF0CHpOhuE23F_Q_XnpqkD2rVukfgKVhRBeqdxnrH4PN7EITI_hE&rank=10 (accessed on 27 September 2023).
- Activated T-Cells Expressing 2nd or 3rd Generation CD19-Specific CAR, Advanced B-Cell NHL, ALL, and CLL (SAGAN) (SAGAN). Available online: https://clinicaltrials.gov/study/NCT01853631?distance=50&cond=Non-Hodgkin%20Lymphoma&intr=CAR-T&aggFilters=ages:child,status:rec&fbclid=IwAR2N4dmBF0CHpOhuE23F_Q_XnpqkD2rVukfgKVhRBeqdxnrH4PN7EITI_hE&page=2&rank=11 (accessed on 27 September 2023).
- A Study of Murine CD19 CAR-T Therapy for Patients with Relapsed or Refractory CD19+ B-Cell Hematological Malignancies. Available online: https://clinicaltrials.gov/study/NCT04532281?distance=50&cond=Non-Hodgkin%20Lymphoma&intr=CAR-T&aggFilters=ages:child,status:rec&fbclid=IwAR2N4dmBF0CHpOhuE23F_Q_XnpqkD2rVukfgKVhRBeqdxnrH4PN7EITI_hE&page=2&rank=12 (accessed on 27 September 2023).
- A Study of Humanized CD19 CAR-T Cells Therapy for Patients with Relapsed and/or Refractory B-Cell ALL and B-Cell NHL. Available online: https://clinicaltrials.gov/study/NCT04532268?distance=50&cond=Non-Hodgkin%20Lymphoma&intr=CAR-T&aggFilters=ages:child,status:rec&fbclid=IwAR2N4dmBF0CHpOhuE23F_Q_XnpqkD2rVukfgKVhRBeqdxnrH4PN7EITI_hE&page=2&rank=13 (accessed on 27 September 2023).
- CD19+Targeted CAR-T Cell Therapy for Relapsed/Refractory CD19+ B Cell Leukemia and Lymphoma. Available online: https://clinicaltrials.gov/study/NCT04271410?distance=50&cond=Non-Hodgkin%20Lymphoma&intr=CAR-T&aggFilters=ages:child,status:rec&fbclid=IwAR2N4dmBF0CHpOhuE23F_Q_XnpqkD2rVukfgKVhRBeqdxnrH4PN7EITI_hE&page=2&rank=14 (accessed on 27 September 2023).
- Immunotherapy for High Risk/Relapsed CD19+ Acute Lymphoblastic Leukaemia, B-Cell Non-Hodgkin’s Lymphoma (B-NHL) and Chronic Lymphocytic Leukaemia (CLL)/Small Lymphocytic Lymphoma (SLL) Using CAR T-Cells to Target CD19 (ALLCAR19). Available online: https://clinicaltrials.gov/study/NCT02935257?distance=50&cond=Non-Hodgkin%20Lymphoma&intr=CAR-T&aggFilters=ages:child,status:rec&fbclid=IwAR2N4dmBF0CHpOhuE23F_Q_XnpqkD2rVukfgKVhRBeqdxnrH4PN7EITI_hE&page=2&rank=15 (accessed on 27 September 2023).
- CD19 CAR T-Cell Therapy for R/R Non-Hodgkin Lymphoma and Acute Lymphoblastic Leukemia. Available online: https://clinicaltrials.gov/study/NCT06027957?distance=50&cond=Non-Hodgkin%20Lymphoma&intr=CAR-T&aggFilters=ages:child,status:rec&fbclid=IwAR2N4dmBF0CHpOhuE23F_Q_XnpqkD2rVukfgKVhRBeqdxnrH4PN7EITI_hE&page=2&rank=19 (accessed on 27 September 2023).
- Anti-CD19, Dual Co-stimulatory (4-1BB, CD3ζ) Chimeric Antigen Receptor T-Cells in Patients with Relapsed/Refractory Aggressive Lymphoma or Acute Lymphoblastic Leukemia (ALL) (ACIT001/EXC002). Available online: https://clinicaltrials.gov/study/NCT03938987?distance=50&cond=Non-Hodgkin%20Lymphoma&intr=CAR-T&aggFilters=ages:child,status:rec&fbclid=IwAR2N4dmBF0CHpOhuE23F_Q_XnpqkD2rVukfgKVhRBeqdxnrH4PN7EITI_hE&page=3&rank=26 (accessed on 27 September 2023).
- Phase 1/2 Study of CD19 Chimeric Antigen Receptor T-Cell (CD19 CAR-T) for Relapsed or Refractory B-Cell Lymphoma. Available online: https://clinicaltrials.gov/study/NCT05326243?distance=50&cond=Non-Hodgkin%20Lymphoma&intr=CAR-T&aggFilters=ages:child,status:rec&fbclid=IwAR2N4dmBF0CHpOhuE23F_Q_XnpqkD2rVukfgKVhRBeqdxnrH4PN7EITI_hE&page=3&rank=28 (accessed on 27 September 2023).
- Allogeneic CD19 CAR-T Cells for the Treatment of Relapsed/Refractory B-Cell Lymphoma (CAR-T). Available online: https://clinicaltrials.gov/study/NCT05143112?cond=Non-Hodgkin%20Lymphoma&intr=CAR-T&distance=50&aggFilters=ages:child,status:rec&page=4&rank=34 (accessed on 27 September 2023).
- ENABLE (Engaging Toll-like Receptor Signalling for B-Cell Lymphoma Chimeric Antigen Receptor Therapy) (ENABLE). Available online: https://clinicaltrials.gov/study/NCT04049513?cond=Non-Hodgkin%20Lymphoma&intr=CAR-T&distance=50&aggFilters=ages:child,status:rec&page=4&rank=35&tab=table (accessed on 27 September 2023).
- CD19-CAR_Lenti T Cells in Pediatric Patients Affected by Relapsed/Refractory CD19+ ALL and DLBCL or PML. Available online: https://clinicaltrials.gov/study/NCT04787263?cond=Non-Hodgkin%20Lymphoma&intr=CAR-T&distance=50&aggFilters=ages:child,status:rec&page=4&rank=36 (accessed on 27 September 2023).
- UCD19 CarT in Treatment of Pediatric B-ALL and B-NHL. Available online: https://clinicaltrials.gov/study/NCT04544592?cond=Non-Hodgkin%20Lymphoma&intr=CAR-T&distance=50&aggFilters=ages:child,status:rec&page=4&rank=38 (accessed on 27 September 2023).
- A Study of CT-RD06 Cell Injection in Patients with Relapsed or Refractory CD19+ B-Cell Hematological Malignancy. Available online: https://clinicaltrials.gov/study/NCT04226989?cond=Non-Hodgkin%20Lymphoma&intr=CAR-T&distance=50&aggFilters=ages:child,status:rec&page=4&rank=41 (accessed on 27 September 2023).
- MB-CART19.1 r/r CD19+ B-Cell Malignancies (BCM). Available online: https://clinicaltrials.gov/study/NCT03853616?cond=Non-Hodgkin%20Lymphoma&intr=CAR-T&distance=50&aggFilters=ages:child,status:rec&page=4&rank=42 (accessed on 27 September 2023).
- A Study to Evaluate the Safety and Efficacy of JCAR017 in Pediatric Subjects with Relapsed/Refractory (r/r) B-Cell Acute Lymphoblastic Leukemia (B-ALL) and B-Cell Non-Hodgkin Lymphoma (B-NHL). Available online: https://clinicaltrials.gov/study/NCT03743246?cond=Non-Hodgkin%20Lymphoma&intr=CAR-T&distance=50&aggFilters=ages:child,status:rec&page=4&rank=45 (accessed on 27 September 2023).
- Chidamide Bridging for CAR-T Therapy. Available online: https://clinicaltrials.gov/study/NCT05370547?distance=50&cond=Non-Hodgkin%20Lymphoma&intr=CAR-T&aggFilters=ages:child,status:rec&fbclid=IwAR2N4dmBF0CHpOhuE23F_Q_XnpqkD2rVukfgKVhRBeqdxnrH4PN7EITI_hE&rank=5 (accessed on 27 September 2023).
- Activated T Lymphocytes Expressing CARs, Relapsed CD19+ Malignancies Post-Allo HSCT(CARPASCIO) (CARPASCIO). Available online: https://clinicaltrials.gov/study/NCT02050347?distance=50&cond=Non-Hodgkin%20Lymphoma&intr=CAR-T&aggFilters=ages:child,status:rec&fbclid=IwAR2N4dmBF0CHpOhuE23F_Q_XnpqkD2rVukfgKVhRBeqdxnrH4PN7EITI_hE&page=3&rank=24 (accessed on 27 September 2023).
- CD19.CAR Allogeneic NKT for Patients with Relapsed or Refractory B-Cell Malignancies (ANCHOR). Available online: https://clinicaltrials.gov/study/NCT03774654?distance=50&cond=Non-Hodgkin%20Lymphoma&intr=CAR-T&aggFilters=ages:child,status:rec&fbclid=IwAR2N4dmBF0CHpOhuE23F_Q_XnpqkD2rVukfgKVhRBeqdxnrH4PN7EITI_hE&page=3&rank=25 (accessed on 27 September 2023).
- Allogeneic NK T-Cells Expressing CD19 Specific CAR in B-Cell Malignancies (ANCHOR2). Available online: https://clinicaltrials.gov/study/NCT05487651?cond=Non-Hodgkin%20Lymphoma&intr=CAR-T&distance=50&aggFilters=ages:child,status:rec&page=4&rank=33 (accessed on 27 September 2023).
- Preliminary Safety and Tolerability of CD19x22 CAR T Cells in Adolescent and Adult R/R B-NHL Patients. Available online: https://clinicaltrials.gov/study/NCT05098613?distance=50&cond=Non-Hodgkin%20Lymphoma&intr=CAR-T&aggFilters=ages:child,status:rec&fbclid=IwAR2N4dmBF0CHpOhuE23F_Q_XnpqkD2rVukfgKVhRBeqdxnrH4PN7EITI_hE&rank=2 (accessed on 27 September 2023).
- Clinical Study of SL19 + 22 CAR-T Cells for Relapsed or Refractory Non-Hodgkin Lymphoma. Available online: https://clinicaltrials.gov/study/NCT05206071?distance=50&cond=Non-Hodgkin%20Lymphoma&intr=CAR-T&aggFilters=ages:child,status:rec&fbclid=IwAR2N4dmBF0CHpOhuE23F_Q_XnpqkD2rVukfgKVhRBeqdxnrH4PN7EITI_hE&rank=3 (accessed on 27 September 2023).
- Targeting CD19 and CD22 CAR-T Cells Immunotherapy in Patients with Relapsed or Refractory B Cell Lymphoma. Available online: https://clinicaltrials.gov/study/NCT04715217?distance=50&cond=Non-Hodgkin%20Lymphoma&intr=CAR-T&aggFilters=ages:child,status:rec&fbclid=IwAR2N4dmBF0CHpOhuE23F_Q_XnpqkD2rVukfgKVhRBeqdxnrH4PN7EITI_hE&page=2&rank=17 (accessed on 27 September 2023).
- A Clinical Research of CD19 and CD22 Targeted Prime CAR-T Cell in Relapsed/Refractory B Cell Lymphoma. Available online: https://clinicaltrials.gov/study/NCT04782193?distance=50&cond=Non-Hodgkin%20Lymphoma&intr=CAR-T&aggFilters=ages:child,status:rec&fbclid=IwAR2N4dmBF0CHpOhuE23F_Q_XnpqkD2rVukfgKVhRBeqdxnrH4PN7EITI_hE&page=2&rank=18 (accessed on 27 September 2023).
- Safety and Efficacy of CD19 and CD22 Targeted CAR-T Therapy for Relapsed/Refractory B Cell Leukemia and Lymphoma. Available online: https://clinicaltrials.gov/study/NCT04648475?distance=50&cond=Non-Hodgkin%20Lymphoma&intr=CAR-T&aggFilters=ages:child,status:rec&fbclid=IwAR2N4dmBF0CHpOhuE23F_Q_XnpqkD2rVukfgKVhRBeqdxnrH4PN7EITI_hE&page=3&rank=22 (accessed on 27 September 2023).
- CD19 and CD22 Targeted CAR-T Cell Therapy for Relapsed/Refractory B Cell Leukemia and Lymphoma. Available online: https://clinicaltrials.gov/study/NCT04649983?distance=50&cond=Non-Hodgkin%20Lymphoma&intr=CAR-T&aggFilters=ages:child,status:rec&fbclid=IwAR2N4dmBF0CHpOhuE23F_Q_XnpqkD2rVukfgKVhRBeqdxnrH4PN7EITI_hE&page=3&rank=23 (accessed on 27 September 2023).
- CD19/CD22 Chimeric Antigen Receptor (CAR) T Cells in Children and Young Adults with Recurrent or Refractory CD19/CD22-Expressing B Cell Malignancies. Available online: https://clinicaltrials.gov/study/NCT03448393?distance=50&cond=Non-Hodgkin%20Lymphoma&intr=CAR-T&aggFilters=ages:child,status:rec&fbclid=IwAR2N4dmBF0CHpOhuE23F_Q_XnpqkD2rVukfgKVhRBeqdxnrH4PN7EITI_hE&page=3&rank=29 (accessed on 27 September 2023).
- A Multicenter Clinical Study on the Safety and Efficacy of CAR-T in the Treatment of Relapsed/Refractory Non Hodgkin’s Lymphoma. Available online: https://clinicaltrials.gov/study/NCT04666168?distance=50&cond=Non-Hodgkin%20Lymphoma&intr=CAR-T&aggFilters=ages:child,status:rec&fbclid=IwAR2N4dmBF0CHpOhuE23F_Q_XnpqkD2rVukfgKVhRBeqdxnrH4PN7EITI_hE&rank=4 (accessed on 27 September 2023).
- Multi-CAR-T Cells Targeting B Cell Lymphomas. Available online: https://clinicaltrials.gov/study/NCT04429438?cond=Non-Hodgkin%20Lymphoma&intr=CAR-T&distance=50&aggFilters=ages:child,status:rec&page=4&rank=37 (accessed on 27 September 2023).
- CD30 CAR T Cells, Relapsed CD30 Expressing Lymphoma (RELY-30) (RELY-30). Available online: https://clinicaltrials.gov/study/NCT02917083?distance=50&cond=Non-Hodgkin%20Lymphoma&intr=CAR-T&aggFilters=ages:child,status:rec&fbclid=IwAR2N4dmBF0CHpOhuE23F_Q_XnpqkD2rVukfgKVhRBeqdxnrH4PN7EITI_hE&rank=1 (accessed on 27 September 2023).
- CD30 Targeted CAR-T in Treating CD30-Expressing Lymphomas. Available online: https://clinicaltrials.gov/study/NCT03383965?distance=50&cond=Non-Hodgkin%20Lymphoma&intr=CAR-T&aggFilters=ages:child,status:rec&fbclid=IwAR2N4dmBF0CHpOhuE23F_Q_XnpqkD2rVukfgKVhRBeqdxnrH4PN7EITI_hE&page=2&rank=20 (accessed on 27 September 2023).
- CD30-Directed Chimeric Antigen Receptor T (CART30) Therapy in Relapsed and Refractory CD30 Positive Lymphomas (CART30). Available online: https://clinicaltrials.gov/study/NCT02259556?cond=Non-Hodgkin%20Lymphoma&intr=CAR-T&distance=50&aggFilters=ages:child,status:rec&page=4&rank=31 (accessed on 27 September 2023).
- Study of CD30 CAR for Relapsed/Refractory CD30+ HL and CD30+ NHL. Available online: https://clinicaltrials.gov/study/NCT02690545?cond=Non-Hodgkin%20Lymphoma&intr=CAR-T&distance=50&aggFilters=ages:child,status:rec&page=4&rank=40 (accessed on 27 September 2023).
- Allogeneic CD30. CAR-EBVSTs in Patients with Relapsed or Refractory CD30-Positive Lymphomas. Available online: https://clinicaltrials.gov/study/NCT04288726?distance=50&cond=Non-Hodgkin%20Lymphoma&intr=CAR-T&aggFilters=ages:child,status:rec&fbclid=IwAR2N4dmBF0CHpOhuE23F_Q_XnpqkD2rVukfgKVhRBeqdxnrH4PN7EITI_hE&page=3&rank=21 (accessed on 27 September 2023).
- Anti-CD5 CAR T Cells for Relapsed/Refractory T Cell Malignancies (CD5CAR-T). Available online: https://clinicaltrials.gov/study/NCT04594135?distance=50&cond=Non-Hodgkin%20Lymphoma&intr=CAR-T&aggFilters=ages:child,status:rec&fbclid=IwAR2N4dmBF0CHpOhuE23F_Q_XnpqkD2rVukfgKVhRBeqdxnrH4PN7EITI_hE&rank=6 (accessed on 27 September 2023).
- Autologous T-Cells Expressing a Second Generation CAR for Treatment of T-Cell Malignancies Expressing CD5 Antigen (MAGENTA). Available online: https://clinicaltrials.gov/study/NCT03081910?distance=50&cond=Non-Hodgkin%20Lymphoma&intr=CAR-T&aggFilters=ages:child,status:rec&fbclid=IwAR2N4dmBF0CHpOhuE23F_Q_XnpqkD2rVukfgKVhRBeqdxnrH4PN7EITI_hE&page=3&rank=30 (accessed on 27 September 2023).
- Anti-CD7 CAR-T Cell Therapy for Relapse and Refractory CD7 Positive T Cell Malignancies. Available online: https://clinicaltrials.gov/study/NCT05290155?distance=50&cond=Non-Hodgkin%20Lymphoma&intr=CAR-T&aggFilters=ages:child,status:rec&fbclid=IwAR2N4dmBF0CHpOhuE23F_Q_XnpqkD2rVukfgKVhRBeqdxnrH4PN7EITI_hE&page=2&rank=16 (accessed on 27 September 2023).
- Cell Therapy for High Risk T-Cell Malignancies Using CD7-Specific CAR Expressed on Autologous T Cells. Available online: https://clinicaltrials.gov/study/NCT03690011?distance=50&cond=Non-Hodgkin%20Lymphoma&intr=CAR-T&aggFilters=ages:child,status:rec&fbclid=IwAR2N4dmBF0CHpOhuE23F_Q_XnpqkD2rVukfgKVhRBeqdxnrH4PN7EITI_hE&page=3&rank=27 (accessed on 27 September 2023).
- Safety and Efficacy of ThisCART7 in Patients with Refractory or Relapsed T Cell Malignancies. Available online: https://clinicaltrials.gov/study/NCT05127135?cond=Non-Hodgkin%20Lymphoma&intr=CAR-T&distance=50&aggFilters=ages:child,status:rec&page=4&rank=32 (accessed on 27 September 2023).
- Anti-CD7 CAR-Engineered T Cells for T Lymphoid Malignancies Malignancies. Available online: https://clinicaltrials.gov/study/NCT04823091?cond=Non-Hodgkin%20Lymphoma&intr=CAR-T&distance=50&aggFilters=ages:child,status:rec&page=4&rank=39 (accessed on 27 September 2023).
- CD 70 CAR T for Patients with CD70 Positive Malignant Hematologic Diseases. Available online: https://clinicaltrials.gov/study/NCT04662294?distance=50&cond=Non-Hodgkin%20Lymphoma&intr=CAR-T&aggFilters=ages:child,status:rec&fbclid=IwAR2N4dmBF0CHpOhuE23F_Q_XnpqkD2rVukfgKVhRBeqdxnrH4PN7EITI_hE&rank=7 (accessed on 27 September 2023).
- CAR-T Cells in the Treatment of Malignant Hematological Tumors. Available online: https://clinicaltrials.gov/study/NCT05619861?distance=50&cond=Non-Hodgkin%20Lymphoma&intr=CAR-T&aggFilters=ages:child,status:rec&fbclid=IwAR2N4dmBF0CHpOhuE23F_Q_XnpqkD2rVukfgKVhRBeqdxnrH4PN7EITI_hE&rank=8 (accessed on 27 September 2023).
- Clinical Study on CAR-T Targeting Igβ Targets in Refractory Relapsed Non-Hodgkin’s Lymphoma. Available online: https://clinicaltrials.gov/study/NCT05312476?distance=50&cond=Non-Hodgkin%20Lymphoma&intr=CAR-T&aggFilters=ages:child,status:rec&fbclid=IwAR2N4dmBF0CHpOhuE23F_Q_XnpqkD2rVukfgKVhRBeqdxnrH4PN7EITI_hE&rank=9 (accessed on 27 September 2023).
- Logue, J.M.; Peres, L.C.; Hashmi, H.; Colin-Leitzinger, C.M.; Shrewsbury, A.M.; Hosoya, H.; Gonzalez, R.M.; Copponex, C.; Kottra, K.H.; Hovanky, V.; et al. Early cytopenias and infections after standard of care idecabtagene vicleucel in relapsed or refractory multiple myeloma. Blood Adv. 2022, 6, 6109–6119. [Google Scholar] [CrossRef]
- Grigor, E.J.M.; Fergusson, D.; Kekre, N.; Montroy, J.; Atkins, H.; Seftel, M.D.; Daugaard, M.; Presseau, J.; Thavorn, K.; Hutton, B.; et al. Risks and Benefits of Chimeric Antigen Receptor T-Cell (CAR-T) Therapy in Cancer: A Systematic Review and Meta-Analysis. Transfus. Med. Rev. 2019, 33, 98–110. [Google Scholar] [CrossRef]
- Gauthier, J.; Turtle, C.J. Insights into cytokine release syndrome and neurotoxicity after CD19-specific CAR-T cell therapy. Curr. Res. Transl. Med. 2018, 66, 50–52. [Google Scholar] [CrossRef] [PubMed]
- Frey, N.; Porter, D. Cytokine Release Syndrome with Chimeric Antigen Receptor T Cell Therapy. Biol. Blood Marrow Transplant. 2019, 25, e123–e127. [Google Scholar] [CrossRef] [PubMed]
- Riches, J.C.; Gribben, J.G. Understanding the immunodeficiency in chronic lymphocytic leukemia: Potential clinical implications. Hematol. Oncol. Clin. N. Am. 2013, 27, 207–235. [Google Scholar] [CrossRef] [PubMed]
- Park, J.H.; Rivière, I.; Gonen, M.; Wang, X.; Sénéchal, B.; Curran, K.J.; Sauter, C.; Wang, Y.; Santomasso, B.; Mead, E.; et al. Long-Term Follow-up of CD19 CAR Therapy in Acute Lymphoblastic Leukemia. N. Engl. J. Med. 2018, 378, 449–459. [Google Scholar] [CrossRef] [PubMed]
- Owusu, K.A.; Schiffer, M.; Perreault, S. Chimeric Antigen Receptor T Cells: Toxicity and Management Considerations. AACN Adv. Crit. Care 2022, 33, 301–307. [Google Scholar] [CrossRef]
- Lee, D.W.; Kochenderfer, J.N.; Stetler-Stevenson, M.; Cui, Y.K.; Delbrook, C.; Feldman, S.A.; Fry, T.J.; Orentas, R.; Sabatino, M.; Shah, N.N.; et al. T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: A phase 1 dose-escalation trial. Lancet 2015, 385, 517–528. [Google Scholar] [CrossRef]
- Grupp, S.A.; Kalos, M.; Barrett, D.; Aplenc, R.; Porter, D.L.; Rheingold, S.R.; Teachey, D.T.; Chew, A.; Hauck, B.; Wright, J.F.; et al. Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N. Engl. J. Med. 2013, 368, 1509–1518. [Google Scholar] [CrossRef] [PubMed]
- Neelapu, S.S.; Locke, F.L.; Bartlett, N.L.; Lekakis, L.J.; Miklos, D.B.; Jacobson, C.A.; Braunschweig, I.; Oluwole, O.O.; Siddiqi, T.; Lin, Y.; et al. Axicabtagene Ciloleucel CAR T-Cell Therapy in Refractory Large B-Cell Lymphoma. N. Engl. J. Med. 2017, 377, 2531–2544. [Google Scholar] [CrossRef] [PubMed]
- Caimi, P.F.; Pacheco Sanchez, G.; Sharma, A.; Otegbeye, F.; Ahmed, N.; Rojas, P.; Patel, S.; Kleinsorge Block, S.; Schiavone, J.; Zamborsky, K.; et al. Prophylactic Tocilizumab Prior to Anti-CD19 CAR-T Cell Therapy for Non-Hodgkin Lymphoma. Front. Immunol. 2021, 12, 745320. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Liu, L.; Guo, T.; Wu, Y.; Ai, L.; Deng, J.; Dong, J.; Mei, H.; Hu, Y. Improving the safety of CAR-T cell therapy by controlling CRS-related coagulopathy. Ann. Hematol. 2019, 98, 1721–1732. [Google Scholar] [CrossRef] [PubMed]
- Jess, J.; Yates, B.; Dulau-Florea, A.; Parker, K.; Inglefield, J.; Lichtenstein, D.; Schischlik, F.; Ongkeko, M.; Wang, Y.; Shahani, S.; et al. CD22 CAR T-cell associated hematologic toxicities, endothelial activation and relationship to neurotoxicity. J. Immunother. Cancer 2023, 11, e005898. [Google Scholar] [CrossRef] [PubMed]
- Gust, J.; Hay, K.A.; Hanafi, L.A.; Li, D.; Myerson, D.; Gonzalez-Cuyar, L.F.; Yeung, C.; Liles, W.C.; Wurfel, M.; Lopez, J.A.; et al. Endothelial Activation and Blood-Brain Barrier Disruption in Neurotoxicity after Adoptive Immunotherapy with CD19 CAR-T Cells. Cancer Discov. 2017, 7, 1404–1419. [Google Scholar] [CrossRef]
- Wang, Z.; Guo, Y.; Han, W. Current status and perspectives of chimeric antigen receptor modified T cells for cancer treatment. Protein Cell 2017, 8, 896–925. [Google Scholar] [CrossRef]
- Mahadeo, K.M.; Khazal, S.J.; Abdel-Azim, H.; Fitzgerald, J.C.; Taraseviciute, A.; Bollard, C.M.; Tewari, P.; Duncan, C.; Traube, C.; McCall, D.; et al. Management guidelines for paediatric patients receiving chimeric antigen receptor T cell therapy. Nat. Rev. Clin. Oncol. 2019, 16, 45–63. [Google Scholar] [CrossRef]
- Traube, C.; Silver, G.; Kearney, J.; Patel, A.; Atkinson, T.M.; Yoon, M.J.; Halpert, S.; Augenstein, J.; Sickles, L.E.; Li, C.; et al. Cornell Assessment of Pediatric Delirium: A valid, rapid, observational tool for screening delirium in the PICU*. Crit. Care Med. 2014, 42, 656–663. [Google Scholar] [CrossRef]
- Hayden, P.J.; Roddie, C.; Bader, P.; Basak, G.W.; Bonig, H.; Bonini, C.; Chabannon, C.; Ciceri, F.; Corbacioglu, S.; Ellard, R.; et al. Management of adults and children receiving CAR T-cell therapy: 2021 best practice recommendations of the European Society for Blood and Marrow Transplantation (EBMT) and the Joint Accreditation Committee of ISCT and EBMT (JACIE) and the European Haematology Association (EHA). Ann. Oncol. 2022, 33, 259–275. [Google Scholar] [CrossRef]
- Pehlivan, K.C.; Duncan, B.B.; Lee, D.W. CAR-T Cell Therapy for Acute Lymphoblastic Leukemia: Transforming the Treatment of Relapsed and Refractory Disease. Curr. Hematol. Malig. Rep. 2018, 13, 396–406. [Google Scholar] [CrossRef] [PubMed]
- Ruark, J.; Mullane, E.; Cleary, N.; Cordeiro, A.; Bezerra, E.D.; Wu, V.; Voutsinas, J.; Shaw, B.E.; Flynn, K.E.; Lee, S.J.; et al. Patient-Reported Neuropsychiatric Outcomes of Long-Term Survivors after Chimeric Antigen Receptor T Cell Therapy. Biol. Blood Marrow Transplant. 2020, 26, 34–43. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Huang, W.; Wang, M.; Lv, R.; Li, J.; Wang, Y.; Deng, S.; Yi, S.; Liu, H.; Rao, Q.; et al. Risk of hepatitis B reactivation is controllable in patients with B-cell lymphoma receiving anti-CD19 CAR T cell therapy. Br. J. Haematol. 2020, 191, 126–129. [Google Scholar] [CrossRef]
- Drugs@FDA: FDA-Approved Drugs. Available online: https://www.accessdata.fda.gov/scripts/cder/daf/ (accessed on 27 September 2023).
- Los-Arcos, I.; Iacoboni, G.; Aguilar-Guisado, M.; Alsina-Manrique, L.; Díaz de Heredia, C.; Fortuny-Guasch, C.; García-Cadenas, I.; García-Vidal, C.; González-Vicent, M.; Hernani, R.; et al. Recommendations for screening, monitoring, prevention, and prophylaxis of infections in adult and pediatric patients receiving CAR T-cell therapy: A position paper. Infection 2021, 49, 215–231. [Google Scholar] [CrossRef]
- Canna, S.W.; Marsh, R.A. Pediatric hemophagocytic lymphohistiocytosis. Blood 2020, 135, 1332–1343. [Google Scholar] [CrossRef] [PubMed]
- Maude, S.L.; Laetsch, T.W.; Buechner, J.; Rives, S.; Boyer, M.; Bittencourt, H.; Bader, P.; Verneris, M.R.; Stefanski, H.E.; Myers, G.D.; et al. Tisagenlecleucel in Children and Young Adults with B-Cell Lymphoblastic Leukemia. N. Engl. J. Med. 2018, 378, 439–448. [Google Scholar] [CrossRef] [PubMed]
- Sharma, N.; Reagan, P.M.; Liesveld, J.L. Cytopenia after CAR-T Cell Therapy-A Brief Review of a Complex Problem. Cancers 2022, 14, 1501. [Google Scholar] [CrossRef]
- Morales-Mantilla, D.E.; King, K.Y. The Role of Interferon-Gamma in Hematopoietic Stem Cell Development, Homeostasis, and Disease. Curr. Stem. Cell Rep. 2018, 4, 264–271. [Google Scholar] [CrossRef]
- Jain, T.; Knezevic, A.; Pennisi, M.; Chen, Y.; Ruiz, J.D.; Purdon, T.J.; Devlin, S.M.; Smith, M.; Shah, G.L.; Halton, E.; et al. Hematopoietic recovery in patients receiving chimeric antigen receptor T-cell therapy for hematologic malignancies. Blood Adv. 2020, 4, 3776–3787. [Google Scholar] [CrossRef]
- Fried, S.; Avigdor, A.; Bielorai, B.; Meir, A.; Besser, M.J.; Schachter, J.; Shimoni, A.; Nagler, A.; Toren, A.; Jacoby, E. Early and late hematologic toxicity following CD19 CAR-T cells. Bone Marrow Transplant. 2019, 54, 1643–1650. [Google Scholar] [CrossRef]
- Santomasso, B.D.; Nastoupil, L.J.; Adkins, S.; Lacchetti, C.; Schneider, B.J.; Anadkat, M.; Atkins, M.B.; Brassil, K.J.; Caterino, J.M.; Chau, I.; et al. Management of Immune-Related Adverse Events in Patients Treated with Chimeric Antigen Receptor T-Cell Therapy: ASCO Guideline. J. Clin. Oncol. 2021, 39, 3978–3992. [Google Scholar] [CrossRef]
- Yakoub-Agha, I.; Chabannon, C.; Bader, P.; Basak, G.W.; Bonig, H.; Ciceri, F.; Corbacioglu, S.; Duarte, R.F.; Einsele, H.; Hudecek, M.; et al. Management of adults and children undergoing chimeric antigen receptor T-cell therapy: Best practice recommendations of the European Society for Blood and Marrow Transplantation (EBMT) and the Joint Accreditation Committee of ISCT and EBMT (JACIE). Haematologica 2020, 105, 297–316. [Google Scholar] [CrossRef]
- Strati, P.; Ahmed, S.; Kebriaei, P.; Nastoupil, L.J.; Claussen, C.M.; Watson, G.; Horowitz, S.B.; Brown, A.R.T.; Do, B.; Rodriguez, M.A.; et al. Clinical efficacy of anakinra to mitigate CAR T-cell therapy-associated toxicity in large B-cell lymphoma. Blood Adv. 2020, 4, 3123–3127. [Google Scholar] [CrossRef]
- Lee, N.Y.; Jo, S.; Yoo, J.W.; Kim, S.; Lee, J.W.; Chung, N.G.; Cho, A.B. Anakinra to Mitigate Hemophagocytic Lymphohistiocytosis-Like Toxicity Following Chimeric Antigen Receptor T-cell Therapy in Pediatric B-cell ALL. Clin. Pediatr. Hematol. Oncol. 2022, 29, 92–96. [Google Scholar] [CrossRef]
- Neelapu, S.S.; Tummala, S.; Kebriaei, P.; Wierda, W.; Gutierrez, C.; Locke, F.L.; Komanduri, K.V.; Lin, Y.; Jain, N.; Daver, N.; et al. Chimeric antigen receptor T-cell therapy—Assessment and management of toxicities. Nat. Rev. Clin. Oncol. 2018, 15, 47–62. [Google Scholar] [CrossRef] [PubMed]
- Goldman, S.C.; Holcenberg, J.S.; Finklestein, J.Z.; Hutchinson, R.; Kreissman, S.; Johnson, F.L.; Tou, C.; Harvey, E.; Morris, E.; Cairo, M.S. A randomized comparison between rasburicase and allopurinol in children with lymphoma or leukemia at high risk for tumor lysis. Blood 2001, 97, 2998–3003. [Google Scholar] [CrossRef] [PubMed]
- Cairo, M.S.; Coiffier, B.; Reiter, A.; Younes, A. TLS Expert Panel. Recommendations for the evaluation of risk and prophylaxis of tumour lysis syndrome (TLS) in adults and children with malignant diseases: An expert TLS panel consensus. Br. J. Haematol. 2010, 149, 578–586. [Google Scholar] [CrossRef]
- Galardy, P.J.; Hochberg, J.; Perkins, S.L.; Harrison, L.; Goldman, S.; Cairo, M.S. Rasburicase in the prevention of laboratory/clinical tumour lysis syndrome in children with advanced mature B-NHL: A Children’s Oncology Group Report. Br. J. Haematol. 2013, 163, 365–372. [Google Scholar] [CrossRef]
- Maus, M.V.; Haas, A.R.; Beatty, G.L.; Albelda, S.M.; Levine, B.L.; Liu, X.; Zhao, Y.; Kalos, M.; June, C.H. T cells expressing chimeric antigen receptors can cause anaphylaxis in humans. Cancer Immunol. Res. 2013, 1, 26–31. [Google Scholar] [CrossRef]
- Brudno, J.N.; Lam, N.; Vanasse, D.; Shen, Y.W.; Rose, J.J.; Rossi, J.; Xue, A.; Bot, A.; Scholler, N.; Mikkilineni, L.; et al. Safety and feasibility of anti-CD19 CAR T cells with fully human binding domains in patients with B-cell lymphoma. Nat. Med. 2020, 26, 270–280. [Google Scholar] [CrossRef]
- Miao, L.; Zhang, Z.; Ren, Z.; Li, Y. Reactions Related to CAR-T Cell Therapy. Front. Immunol. 2021, 12, 663201. [Google Scholar] [CrossRef] [PubMed]
- Gardner, R.A.; Finney, O.; Annesley, C.; Brakke, H.; Summers, C.; Leger, K.; Bleakley, M.; Brown, C.; Mgebroff, S.; Kelly-Spratt, K.S.; et al. Intent-to-treat leukemia remission by CD19 CAR T cells of defined formulation and dose in children and young adults. Blood 2017, 129, 3322–3331. [Google Scholar] [CrossRef] [PubMed]
- Johnson, P.C.; Abramson, J.S. Patient selection for chimeric antigen receptor (CAR) T-cell therapy for aggressive B-cell non-Hodgkin lymphomas. Leuk. Lymphoma 2020, 61, 2561–2567. [Google Scholar] [CrossRef] [PubMed]
- Amini, L.; Silbert, S.K.; Maude, S.L.; Nastoupil, L.J.; Ramos, C.A.; Brentjens, R.J.; Sauter, C.S.; Shah, N.N.; Abou-El-Enein, M. Preparing for CAR T cell therapy: Patient selection, bridging therapies and lymphodepletion. Nat. Rev. Clin. Oncol. 2022, 19, 342–355. [Google Scholar] [CrossRef] [PubMed]
- FDA Approves CAR-T Cell Therapy to Treat Adults with Certain Types of Large B-Cell Lymphoma. Available online: https://www.fda.gov/news-events/press-announcements/fda-approves-car-t-cell-therapy-treat-adults-certain-types-large-b-cell-lymphoma (accessed on 27 September 2023).
- Blache, U.; Popp, G.; Dünkel, A.; Koehl, U.; Fricke, S. Potential solutions for manufacture of CAR T cells in cancer immunotherapy. Nat. Commun. 2022, 13, 5225. [Google Scholar] [CrossRef]
- Caffrey, M. with Approval of CAR T-Cell Therapy Comes the Next Challenge: Payer Coverage. Am. J. Manag. Care 2018, 24, SP35–SP36. [Google Scholar]
- Das, R.K.; Storm, J.; Barrett, D.M. T cell dysfunction in pediatric cancer patients at diagnosis and after chemotherapy can limit chimeric antigen receptor potential. Cancer Res. 2018, 78 (Suppl. S13), 1631. [Google Scholar] [CrossRef]
- Stadtmauer, E.A.; Fraietta, J.A.; Davis, M.M.; Cohen, A.D.; Weber, K.L.; Lancaster, E.; Mangan, P.A.; Kulikovskaya, I.; Gupta, M.; Chen, F.; et al. CRISPR-engineered T cells in patients with refractory cancer. Science 2020, 367, eaba7365. [Google Scholar] [CrossRef]
- Rafiq, S.; Hackett, C.S.; Brentjens, R.J. Engineering strategies to overcome the current roadblocks in CAR T cell therapy. Nat. Rev. Clin. Oncol. 2020, 17, 147–167. [Google Scholar] [CrossRef]
- Turtle, C.J.; Hanafi, L.A.; Berger, C.; Gooley, T.A.; Cherian, S.; Hudecek, M.; Sommermeyer, D.; Melville, K.; Pender, B.; Budiarto, T.M.; et al. CD19 CAR-T cells of defined CD4+:CD8+ composition in adult B cell ALL patients. J. Clin. Investig. 2016, 126, 2123–2138. [Google Scholar] [CrossRef]
- Sotillo, E.; Barrett, D.M.; Black, K.L.; Bagashev, A.; Oldridge, D.; Wu, G.; Sussman, R.; Lanauze, C.; Ruella, M.; Gazzara, M.R.; et al. Convergence of Acquired Mutations and Alternative Splicing of CD19 Enables Resistance to CART-19 Immunotherapy. Cancer Discov. 2015, 5, 1282–1295. [Google Scholar] [CrossRef]
- Braig, F.; Brandt, A.; Goebeler, M.; Tony, H.P.; Kurze, A.K.; Nollau, P.; Bumm, T.; Böttcher, S.; Bargou, R.C.; Binder, M. Resistance to anti-CD19/CD3 BiTE in acute lymphoblastic leukemia may be mediated by disrupted CD19 membrane trafficking. Blood 2017, 129, 100–104. [Google Scholar] [CrossRef] [PubMed]
- van der Schans, J.J.; van de Donk, N.W.C.J.; Mutis, T. Dual Targeting to Overcome Current Challenges in Multiple Myeloma CAR T-Cell Treatment. Front. Oncol. 2020, 10, 1362. [Google Scholar] [CrossRef] [PubMed]
- Pan, J.; Zuo, S.; Deng, B.; Xu, X.; Li, C.; Zheng, Q.; Ling, Z.; Song, W.; Xu, J.; Duan, J.; et al. Sequential CD19-22 CAR T therapy induces sustained remission in children with r/r B-ALL. Blood 2020, 135, 387–391. [Google Scholar] [CrossRef] [PubMed]
- Lemoine, J.; Ruella, M.; Houot, R. Born to survive: How cancer cells resist CAR T cell therapy. J. Hematol. Oncol. 2021, 14, 199. [Google Scholar] [CrossRef] [PubMed]
- Avanzi, M.P.; Yeku, O.; Li, X.; Wijewarnasuriya, D.P.; van Leeuwen, D.G.; Cheung, K.; Park, H.; Purdon, T.J.; Daniyan, A.F.; Spitzer, M.H.; et al. Engineered Tumor-Targeted T Cells Mediate Enhanced Anti-Tumor Efficacy Both Directly and through Activation of the Endogenous Immune System. Cell Rep. 2018, 23, 2130–2141. [Google Scholar] [CrossRef] [PubMed]
- Stephan, M.T.; Ponomarev, V.; Brentjens, R.J.; Chang, A.H.; Dobrenkov, K.V.; Heller, G.; Sadelain, M. T cell-encoded CD80 and 4-1BBL induce auto- and transcostimulation, resulting in potent tumor rejection. Nat. Med. 2007, 13, 1440–1449. [Google Scholar] [CrossRef]
- Anderson, N.M.; Simon, M.C. The tumor microenvironment. Curr. Biol. 2020, 30, R921–R925. [Google Scholar] [CrossRef]
- Wang, L.; Li, L.R. R-CHOP resistance in diffuse large B-cell lymphoma: Biological and molecular mechanisms. Chin. Med. J. 2020, 134, 253–260. [Google Scholar] [CrossRef]
- Xu-Monette, Z.Y.; Xiao, M.; Au, Q.; Padmanabhan, R.; Xu, B.; Hoe, N.; Rodríguez-Perales, S.; Torres-Ruiz, R.; Manyam, G.C.; Visco, C.; et al. Immune Profiling and Quantitative Analysis Decipher the Clinical Role of Immune-Checkpoint Expression in the Tumor Immune Microenvironment of DLBCL. Cancer Immunol. Res. 2019, 7, 644–657. [Google Scholar] [CrossRef]
- Yan, Z.X.; Li, L.; Wang, W.; OuYang, B.S.; Cheng, S.; Wang, L.; Wu, W.; Xu, P.P.; Muftuoglu, M.; Hao, M.; et al. Clinical Efficacy and Tumor Microenvironment Influence in a Dose-Escalation Study of Anti-CD19 Chimeric Antigen Receptor T Cells in Refractory B-Cell Non-Hodgkin’s Lymphoma. Clin. Cancer Res. 2019, 25, 6995–7003. [Google Scholar] [CrossRef]
- Rodríguez-Lobato, L.G.; Ganzetti, M.; Fernández de Larrea, C.; Hudecek, M.; Einsele, H.; Danhof, S. CAR T-Cells in Multiple Myeloma: State of the Art and Future Directions. Front. Oncol. 2020, 10, 1243. [Google Scholar] [CrossRef] [PubMed]
- Faramand, R.; Jain, M.; Staedtke, V.; Kotani, H.; Bai, R.; Reid, K.; Lee, S.B.; Spitler, K.; Wang, X.; Cao, B.; et al. Tumor Microenvironment Composition and Severe Cytokine Release Syndrome (CRS) Influence Toxicity in Patients with Large B-Cell Lymphoma Treated with Axicabtagene Ciloleucel. Clin. Cancer Res. 2020, 26, 4823–4831. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Li, J.; Ni, F.; Yang, Z.; Gui, X.; Bao, Z.; Zhao, H.; Wei, G.; Wang, Y.; Zhang, M.; et al. CAR-T cell therapy-related cytokine release syndrome and therapeutic response is modulated by the gut microbiome in hematologic malignancies. Nat. Commun. 2022, 13, 5313. [Google Scholar] [CrossRef] [PubMed]
- He, F.; Morita, H.; Hashimoto, H.; Hosoda, M.; Kurisaki, J.; Ouwehand, A.C.; Isolauri, E.; Benno, Y.; Salminen, S. Intestinal Bifidobacterium species induce varying cytokine production. J. Allergy Clin. Immunol. 2002, 109, 1035–1036. [Google Scholar] [CrossRef] [PubMed]
- Schirmer, M.; Smeekens, S.P.; Vlamakis, H.; Jaeger, M.; Oosting, M.; Franzosa, E.A.; Horst, R.T.; Jansen, T.; Jacobs, L.; Bonder, M.J.; et al. Linking the Human Gut Microbiome to Inflammatory Cytokine Production Capacity. Cell 2016, 167, 1897. [Google Scholar] [CrossRef]
- Grohmann, U.; Bronte, V. Control of immune response by amino acid metabolism. Immunol. Rev. 2010, 236, 243–264. [Google Scholar] [CrossRef]
- Faruqi, A.J.; Ligon, J.A.; Borgman, P.; Steinberg, S.M.; Foley, T.; Little, L.; Mackall, C.L.; Lee, D.W.; Fry, T.J.; Shalabi, H.; et al. The impact of race, ethnicity, and obesity on CAR T-cell therapy outcomes. Blood Adv. 2022, 6, 6040–6050. [Google Scholar] [CrossRef]
- Locke, F.L.; Rossi, J.M.; Neelapu, S.S.; Jacobson, C.A.; Miklos, D.B.; Ghobadi, A.; Oluwole, O.O.; Reagan, P.M.; Lekakis, L.J.; Lin, Y.; et al. Tumor burden, inflammation, and product attributes determine outcomes of axicabtagene ciloleucel in large B-cell lymphoma. Blood Adv. 2020, 4, 4898–4911. [Google Scholar] [CrossRef]
- Belsky, J.A.; Hochberg, J.; Giulino-Roth, L. Diagnosis and management of Hodgkin lymphoma in children, adolescents, and young adults. Best. Pract. Res. Clin. Haematol. 2023, 36, 101445. [Google Scholar] [CrossRef]
- Ramos, C.A.; Grover, N.S.; Beaven, A.W.; Lulla, P.D.; Wu, M.F.; Ivanova, A.; Wang, T.; Shea, T.C.; Rooney, C.M.; Dittus, C.; et al. Anti-CD30 CAR-T Cell Therapy in Relapsed and Refractory Hodgkin Lymphoma. J. Clin. Oncol. 2020, 38, 3794–3804. [Google Scholar] [CrossRef] [PubMed]
WHO Classification | Immunophenotype | Chromosome Abnormalities | Affected Genes | Clinical Display |
---|---|---|---|---|
Burkitt’s lymphoma | Mature B-cell | t(8;14)(q24;q32), t(2;8)(p11;q24), t(8;22)(q24;q11) | MYC, TCF3, ID3, CCND3, TP53 | Intra-abdominal (sporadic), head and neck (non-jaw, sporadic), jaw (endemic), bone marrow, CNS |
DLBCL | Mature B-cell | No regular cytogenetic abnormality identified | BCL2, MYC, SOCS1, KMT2D | Nodal, abdominal, bone, primary CNS (when associated with immunodeficiency), mediastinal |
T-lymphoblastic lymphoma | T lymphoblasts (TdT, CD2, CD3, CD7, CD4, CD8) | Loss of heterozygosity at 6q, deletions of CDKN2A in 9p21 | NOTCH1, FBXW7, CDKN2A, PTEN, KMT2D | Mediastinal mass, bone marrow |
B-lymphoblastic lymphoma | B lymphoblasts (CD19, CD79a, CD22, CD10, TdT) | Gene deletions | CDKN2A, IKZF1, and PAX5 | Skin, soft tissue, bone, lymph nodes, bone marrow |
Anaplastic large cell lymphoma | T-cell or null-cell expressing CD30 | t(2;5)(p23;q35); less common variant translocations involving ALK | ALK, NPM | Generalized lymphadenopathy, bone marrow in 25% |
Primary mediastinal (thymic) large B-cell lymphoma | Mature B cell, often CD30+ | 9p and 2p gains | CIITA, TNFAIP3, SOCS1, PTPN11, STAT6 | Usually mediastinal; may also present with other nodal or extranodal disease |
Drug | Other Terms | Construction | Dose |
---|---|---|---|
Axicabtagene ciloleucel | axi-cel, Yescarta, KTE-CD19 | CD19-CD28-CD3ζ | 2 × 106 cell per kg |
Tisagenlecleucel | tisa-cel, Kymriah, CTL019 | CD19–4-1BB-CD3ζ | (0.1–6) × 108 cells |
Brexucabtagene autoleucel | Tecartus, KTE-X19 | CD19-CD28-CD3ζ | 2 × 106 cell per kg |
Lisocabtagene maraleucel | liso-cel, Breyanzi, JCAR017 | CD19–4-1BB-CD3ζ | 50 × 106, 100 × 106 and 150 × 106 cells |
Drug | ClinicalTrials.gov Identifier | Phase of Clinical Study | Estimated Numbers of Patients | Studied Patient Population (Diagnose, Age) | Dosage | References |
---|---|---|---|---|---|---|
CD19 CAR-T cells | NCT04532203 | Early phase 1 | 72 | CNS Involvement of R/R CD19+ B-NHL/B-ALL, 3–75 y.o. | - | [66] |
CD19 CAR-T cells (SAGAN) | NCT01853631 | Phase 1 | 64 | CD19+ BCL/leukemia ≤ 75 y.o. | Three dose levels— DL1: 1 × 106 cells/m2, DL2: 5 × 106 cells/m2, DL3: 2 × 107 cells/m2 | [67] |
murine CD19 CAR-T cells | NCT04532281 | Early phase 1 | 120 | R/R CD19+ B-NHL/B-ALL, no age restrictions | - | [68] |
humanized CD19 CAR-T cells | NCT04532268 | Early phase 1 | 72 | R/R CD19+ B-NHL/B-ALL, 3–75 y.o. | - | [69] |
CD19 CAR-T cells | NCT04271410 | Phase 1/2 | 80 | R/R CD19+ B-NHL/B-ALL/B-CLL, 2–75 y.o. | - | [70] |
CD19 CAR-T cells | NCT02935257 | Phase 1 | 60 | R/R CD19+ DLBCL/FL/MCL/B-ALL/CLL/SLL, ≥16 y.o. | - | [71] |
CD19 CAR-T cells | NCT06027957 | Phase 1 | 16 | R/R CD19+ NHL/ALL, 1–60 y.o. | 1–2 × 106 cells/kg | [72] |
CD19 CAR-T cells | NCT03938987 | Phase 1b/2 | 63 | R/R CD19+ NHL/ALL, 2–70 y.o. | Three dose levels— DL1: 0.5 × 106 cells/kg, DL2: 1.0 × 106 cells/kg, DL3: 2.0 × 106 cells/kg | [73] |
CD19 CAR-T cells (PL001) | NCT05326243 | Phase 1/2 | 49 | CD19+ DLBCL/PMLBCL/FL, 14–70 y.o. | 0.1–9 × 106 cells/kg | [74] |
CD19 CAR-T cells | NCT05143112 | Phase 1/2 | 20 | R/R CD19+ B-NHL, 14–70 y.o. | - | [75] |
CD19 CAR-T cells (WZTL-002) | NCT04049513 | Phase 1 | 30 | R/R CD19+ B-NHL, 16–75 y.o. | Four dose levels— DL1: 5 × 104 cells/kg, DL2, DL3, DL4: not specified | [76] |
CD19 CAR-T cells | NCT04787263 | Phase 1/2 | 32 | R/R CD19+ DLBCL/PMLBCL/B-ALL, 1–25 y.o. | 1–3 × 106 cells/kg | [77] |
CD19 CAR-T cells | NCT04544592 | Phase 1/2 | 50 | R/R CD19+ B-NHL/B-ALL, 30 days–25 y.o. | - | [78] |
CD19 CAR-T cells (CT-RD06) | NCT04226989 | Early phase 1 | 72 | R/R CD19+ B-NHL/B-ALL, 3–70 y.o. | - | [79] |
CD19 CAR-T cells | NCT03853616 | Phase 1/2 | 48 | R/R CD19+ B-NHL/B-ALL/B-CLL, ≥1 y.o. | Four dose levels— DL0: 1 × 105 cells/kg, DL1: 5 × 105 cells/kg, DL2: 1 × 106 cells/kg, DL3: 3 × 106 cells/kg | [80] |
CD19 CAR-T cells (Brexucabtagene Autoleucel, KTE-X19) (ZUMA4) | NCT02625480 | Phase 1/2 | 116 | R/R B-NHL/B-ALL, ≤21 y.o. | Two dose levels— DL1: 1 × 106 cells/kg, DL2: 2 × 106 cells/kg | [36] |
CD19 CAR-T cells (JCAR017) | NCT03743246 | Phase 1/2 | 121 | R/R CD19+ B-NHL/B-ALL, ≤25 y.o. | Five dose levels— DL1: 0.05–0.75 × 106 cells/kg, DL2, DL3, DL4, DL5: not specified | [81] |
CD19 CAR-T cells/chidamide bridging + CD19 CAR-T cells | NCT05370547 | Phase 1/2 | 120 | R/R CD19+ B-NHL, 16–75 y.o. | - | [82] |
allo-HSCT + CD19 CAR-T cells | NCT02050347 | Phase 1 | 40 | CD19+ B-NHL/B-ALL/B-CLL, no age restrictions | Three dose levels— DL1: 1 × 105 cells/kg, DL2: 5 × 105 cells/kg, DL3: 1 × 106 cells/kg (dose escalation 1) or DL1: 5 × 105 cells/kg, DL2: 1 × 106 cells/kg, DL3: 5 × 106 cells/kg (dose escalation 2) | [83] |
CD19 CAR-NKT cells (ANCHOR) | NCT03774654 | Phase 2 | 48 | R/R CD19+ B-NHL/B-ALL/B-CLL 3–75 y.o. | Three dose levels— DL1: 1 × 107/m2, DL2: 3 × 107/m2, DL3: 1 × 108/m2 | [84] |
CD19 CAR-NKT cells (KUR-502) (ANCHOR2) | NCT05487651 | Phase 1 | 36 | R/R CD19+ B-NHL/B-ALL/B-CLL, 3–75 y.o. | Three dose levels— DL1: 1 × 107 cells/m2, DL2: 3 × 107 cells/m2, DL3: 1 × 108 cells/m2 | [85] |
CD19/CD22 CAR-T cells | NCT05098613 | Phase 1/1b | 20 | R/R B-NHL/HL, ≥16 y.o. | - | [86] |
CD19/CD22 CAR-T cells (SL19+22) | NCT05206071 | Not applicable | 100 | R/R CD19+ and/or CD22+ NHL, 3–75 y.o. | - | [87] |
CD19/CD22 CAR-T cells | NCT04715217 | Phase 1/2 | 24 | R/R CD19+ and/or CD22+ BCL, 6–70 y.o. | Three dose levels— DL1: 0.5 × 106 cells/kg, DL2: 1 × 106 cells/kg, DL3: 2 × 106 cells/kg | [88] |
CD19/CD22 CAR-T cells | NCT04782193 | Phase 1/2 | 40 | R/R CD19+ and/or CD22+ BCL, 2–75 y.o. | - | [89] |
CD19/CD22 CAR-T cells | NCT04648475 | Phase 1/2 | 40 | R/R CD19+ and CD22+ BCL/leukemia, 3–75 y.o. | - | [90] |
CD19/CD22 CAR-T cells | NCT04649983 | Phase 1/2 | 40 | R/R CD19+ and CD22+ BCL/leukemia, 2–75 y.o. | - | [91] |
CD19/CD22 CAR-T cells | NCT03448393 | Phase 1 | 140 | R/R CD19+/CD22+ B-NHL/B-ALL/isolated CNS ALL, 3–39 y.o. | Five dose levels— DL1: 1 × 105 cells/kg, DL2: 3 × 105 cells/kg, DL3: 1 × 106 cells/kg, DL4: 3 × 106 cells/kg, DL5: 1 × 107 cells/kg | [92] |
CD19/CD22/CD30/CD7/CD79 CAR-T cells | NCT04666168 | Not applicable | 200 | R/R CD19+ or CD22+/CD30+/CD7+/ CD79+ NHL, 14–75 y.o. | - | [93] |
CD19/CD20/CD22/CD70/PSMA/ CD13/CD79b/GD2 CAR-T cells | NCT04429438 | Phase 1/2 | 11 | CD19+ and/or CD22+/CD70+/PSMA+/CD13+/CD79b+/GD2+ PMBCL/ BCL involving CNS, 6 mths–75 y.o. | - | [94] |
CD30 CAR-T cells | NCT02917083 | Phase 1 | 60 | R/R CD30+ NHL/HL, 12–75 y.o. | - | [95] |
CD30 CAR-T cells | NCT03383965 | Phase 1 | 20 | CD30+ ALCL/HL, 2–80 y.o. | - | [96] |
CD30 CAR-T cells | NCT02259556 | Phase 1/2 | 40 | CD30+ NHL/HL, 16–18 y.o. | - | [97] |
CD30 CAR-T cells | NCT02690545 | Phase 1/2 | 40 | R/R CD30+ NHL/HL, 3–17 y.o. | Two dose levels— DL1: 1 × 108 cells/m2, DL2: 2 × 108 cells/m2 | [98] |
CD30 CAR-EBVST cells (Epstein–Barr virus-specific T cells) | NCT04288726 | Phase 1 | 18 | CD30+ DLBCL/NK/TL/HL, 12–75 y.o. | Three dose levels— DL1: 4 × 107 cells/m2, DL2: 1 108 cells/m2, DL3: 4 × 108 cells/m2 | [99] |
CD5 CAR-T cells | NCT04594135 | Phase 1 | 20 | R/R T-LLy/T-ALL, ≥ 8 y.o. | - | [100] |
CD5 CAR-T cells (MAGENTA) | NCT03081910 | Phase 1 | 42 | R/R CD5+ T-ALL/T-LLy/T-NHL, ≤ 75 y.o. | Three dose levels— DL1: 1 × 107 cells/m2, DL2: 5 × 107 cells/m2, DL3: 1 × 108 cells/m2 | [101] |
CD7 CAR-T cells | NCT05290155 | Phase 1 | 4 | R/R CD7+ T-LLy/T-ALL, 14–70 y.o. | Three dose levels— DL1: 0.5 × 106 cells/kg, DL2: 2 × 106 cells/kg, DL3: 5 × 106 cells/kg | [102] |
CD7 CAR-T cells | NCT03690011 | Phase 1 | 21 | R/R CD7+ T-NHL/CTCL/T-ALL, ≤75 y.o. | Three dose levels— DL1: 1 × 107 cells/m2, DL2: 3 × 107 cells/m2, DL3: 1 × 108 cells/m2 | [103] |
CD7 CAR-T cells (ThisCART7) | NCT05127135 | Phase 1 | 30 | R/R CD7+ T-NHL/T-ALL/T-LBL, 3–70 y.o. | 0.5–6 × 106 cells/kg | [104] |
CD7 CAR-T cells | NCT04823091 | Phase 1 | 24 | R/R CD7+ T-NHL/T-CLL, 14–70 y.o. | Two dose levels— DL1: 1 × 106 cells/kg, DL2: 2 × 106 cells/kg | [105] |
CD70 CAR T-cells | NCT04662294 | Early phase 1 | 108 | R/R CD70+ T-NHL/T-ALL/AML/MM, no age restrictions | - | [106] |
CAR-T cells | NCT05619861 | Not applicable | 20 | R/R Hematopoietic and lymphatic tumor, 14–75 y.o. | 0.1–3 × 106 cells/kg | [107] |
Igβ CAR-T cells | NCT05312476 | Phase 2 | 12 | R/R Igβ+ NHL, ≥6 y.o. | Three dose levels— DL1: 1 × 106 cells/kg, DL2: 3 × 106 cells/kg, DL3: 6 × 106 cells/kg | [108] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ostojska, M.; Nowak, E.; Twardowska, J.; Lejman, M.; Zawitkowska, J. CAR-T Cell Therapy in the Treatment of Pediatric Non-Hodgkin Lymphoma. J. Pers. Med. 2023, 13, 1595. https://doi.org/10.3390/jpm13111595
Ostojska M, Nowak E, Twardowska J, Lejman M, Zawitkowska J. CAR-T Cell Therapy in the Treatment of Pediatric Non-Hodgkin Lymphoma. Journal of Personalized Medicine. 2023; 13(11):1595. https://doi.org/10.3390/jpm13111595
Chicago/Turabian StyleOstojska, Magdalena, Emilia Nowak, Julia Twardowska, Monika Lejman, and Joanna Zawitkowska. 2023. "CAR-T Cell Therapy in the Treatment of Pediatric Non-Hodgkin Lymphoma" Journal of Personalized Medicine 13, no. 11: 1595. https://doi.org/10.3390/jpm13111595
APA StyleOstojska, M., Nowak, E., Twardowska, J., Lejman, M., & Zawitkowska, J. (2023). CAR-T Cell Therapy in the Treatment of Pediatric Non-Hodgkin Lymphoma. Journal of Personalized Medicine, 13(11), 1595. https://doi.org/10.3390/jpm13111595