A Linear Predictor Based on FTIR Spectral Biomarkers Improves Disease Diagnosis Classification: An Application to Multiple Sclerosis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Biological Samples and Spectral Acquisition
2.2. Computational Analysis
3. Results
3.1. ATR-FTIR Spectra of MS and HC Plasma Samples: Identification of the Spectral Biomarkers
3.2. Linear Predictor for Classification
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- GBD 2016 Multiple Sclerosis Collaborators. Global, Regional, and National Burden of Multiple Sclerosis 1990-2016: A Systematic Analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019, 18, 269–285. [Google Scholar] [CrossRef]
- Walton, C.; King, R.; Rechtman, L.; Kaye, W.; Leray, E.; Marrie, R.A.; Robertson, N.; La Rocca, N.; Uitdehaag, B.; van der Mei, I.; et al. Rising Prevalence of Multiple Sclerosis Worldwide: Insights from the Atlas of MS, Third Edition. Mult. Scler. 2020, 26, 1816–1821. [Google Scholar] [CrossRef] [PubMed]
- Olsson, T.; Barcellos, L.F.; Alfredsson, L. Interactions between Genetic, Lifestyle and Environmental Risk Factors for Multiple Sclerosis. Nat. Rev. Neurol. 2017, 13, 25–36. [Google Scholar] [CrossRef]
- Reich, D.S.; Lucchinetti, C.F.; Calabresi, P.A. Multiple Sclerosis. N. Engl. J. Med. 2018, 378, 169–180. [Google Scholar] [CrossRef]
- Macaron, G.; Ontaneda, D. Diagnosis and Management of Progressive Multiple Sclerosis. Biomedicines 2019, 7, 56. [Google Scholar] [CrossRef] [PubMed]
- Milo, R. Effectiveness of Multiple Sclerosis Treatment with Current Immunomodulatory Drugs. Expert Opin. Pharmacother. 2015, 16, 659–673. [Google Scholar] [CrossRef] [PubMed]
- Thompson, A.J.; Banwell, B.L.; Barkhof, F.; Carroll, W.M.; Coetzee, T.; Comi, G.; Correale, J.; Fazekas, F.; Filippi, M.; Freedman, M.S.; et al. Diagnosis of Multiple Sclerosis: 2017 Revisions of the McDonald Criteria. Lancet Neurol. 2018, 17, 162–173. [Google Scholar] [CrossRef]
- Gebregiworgis, T.; Powers, R. Application of NMR Metabolomics to Search for Human Disease Biomarkers. Comb. Chem. High Throughput Screen 2012, 15, 595–610. [Google Scholar] [CrossRef]
- Emwas, A.-H.; Roy, R.; McKay, R.T.; Tenori, L.; Saccenti, E.; Gowda, G.A.N.; Raftery, D.; Alahmari, F.; Jaremko, L.; Jaremko, M.; et al. NMR Spectroscopy for Metabolomics Research. Metabolites 2019, 9, 123. [Google Scholar] [CrossRef]
- Crutchfield, C.A.; Thomas, S.N.; Sokoll, L.J.; Chan, D.W. Advances in Mass Spectrometry-Based Clinical Biomarker Discovery. Clin. Proteom. 2016, 13, 1. [Google Scholar] [CrossRef]
- Rodrigo, A.; Ojeda, J.L.; Vega, S.; Sanchez-Gracia, O.; Lanas, A.; Isla, D.; Velazquez-Campoy, A.; Abian, O. Thermal Liquid Biopsy (TLB): A Predictive Score Derived from Serum Thermograms as a Clinical Tool for Screening Lung Cancer Patients. Cancers 2019, 11, 1012. [Google Scholar] [CrossRef] [PubMed]
- Annesi, F.; Hermoso-Durán, S.; Rizzuti, B.; Bruno, R.; Pirritano, D.; Petrone, A.; Del Giudice, F.; Ojeda, J.; Vega, S.; Sanchez-Gracia, O.; et al. Thermal Liquid Biopsy (TLB) of Blood Plasma as a Potential Tool to Help in the Early Diagnosis of Multiple Sclerosis. J. Pers. Med. 2021, 11, 295. [Google Scholar] [CrossRef]
- Garbett, N.C.; Miller, J.J.; Jenson, A.B.; Chaires, J.B. Calorimetry Outside the Box: A New Window into the Plasma Proteome. Biophys. J. 2008, 94, 1377–1383. [Google Scholar] [CrossRef] [PubMed]
- Baker, M.J.; Hussain, S.R.; Lovergne, L.; Untereiner, V.; Hughes, C.; Lukaszewski, R.A.; Thiéfin, G.; Sockalingum, G.D. Developing and Understanding Biofluid Vibrational Spectroscopy: A Critical Review. Chem. Soc. Rev. 2016, 45, 1803–1818. [Google Scholar] [CrossRef] [PubMed]
- Baker, M.J.; Trevisan, J.; Bassan, P.; Bhargava, R.; Butler, H.J.; Dorling, K.M.; Fielden, P.R.; Fogarty, S.W.; Fullwood, N.J.; Heys, K.A.; et al. Using Fourier Transform IR Spectroscopy to Analyze Biological Materials. Nat. Protoc. 2014, 9, 1771–1791. [Google Scholar] [CrossRef] [PubMed]
- Naumann, D. Ft-Infrared and Ft-Raman Spectroscopy in Biomedical Research. Appl. Spectrosc. Rev. 2001, 36, 239–298. [Google Scholar] [CrossRef]
- Theakstone, A.G.; Rinaldi, C.; Butler, H.J.; Cameron, J.M.; Confield, L.R.; Rutherford, S.H.; Sala, A.; Sangamnerkar, S.; Baker, M.J. Fourier-Transform Infrared Spectroscopy of Biofluids: A Practical Approach. Transl. Biophotonics 2021, 3, e202000025. [Google Scholar] [CrossRef]
- Sala, A.; Anderson, D.J.; Brennan, P.M.; Butler, H.J.; Cameron, J.M.; Jenkinson, M.D.; Rinaldi, C.; Theakstone, A.G.; Baker, M.J. Biofluid Diagnostics by FTIR Spectroscopy: A Platform Technology for Cancer Detection. Cancer Lett. 2020, 477, 122–130. [Google Scholar] [CrossRef]
- Giamougiannis, P.; Morais, C.L.M.; Rodriguez, B.; Wood, N.J.; Martin-Hirsch, P.L.; Martin, F.L. Detection of Ovarian Cancer (± Neo-Adjuvant Chemotherapy Effects) via ATR-FTIR Spectroscopy: Comparative Analysis of Blood and Urine Biofluids in a Large Patient Cohort. Anal. Bioanal. Chem. 2021, 413, 5095–5107. [Google Scholar] [CrossRef]
- Banerjee, A.; Gokhale, A.; Bankar, R.; Palanivel, V.; Salkar, A.; Robinson, H.; Shastri, J.S.; Agrawal, S.; Hartel, G.; Hill, M.M.; et al. Rapid Classification of COVID-19 Severity by ATR-FTIR Spectroscopy of Plasma Samples. Anal. Chem. 2021, 93, 10391–10396. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Cuazitl, A.; Vazquez-Zapien, G.J.; Sanchez-Brito, M.; Limon-Pacheco, J.H.; Guerrero-Ruiz, M.; Garibay-Gonzalez, F.; Delgado-Macuil, R.J.; de Jesus, M.G.G.; Corona-Perezgrovas, M.A.; Pereyra-Talamantes, A.; et al. ATR-FTIR Spectrum Analysis of Saliva Samples from COVID-19 Positive Patients. Sci. Rep. 2021, 11, 19980. [Google Scholar] [CrossRef]
- Barauna, V.G.; Singh, M.N.; Barbosa, L.L.; Marcarini, W.D.; Vassallo, P.F.; Mill, J.G.; Ribeiro-Rodrigues, R.; Campos, L.C.G.; Warnke, P.H.; Martin, F.L. Ultrarapid On-Site Detection of SARS-CoV-2 Infection Using Simple ATR-FTIR Spectroscopy and an Analysis Algorithm: High Sensitivity and Specificity. Anal. Chem. 2021, 93, 2950–2958. [Google Scholar] [CrossRef] [PubMed]
- Ami, D.; Lavatelli, F.; Rognoni, P.; Palladini, G.; Raimondi, S.; Giorgetti, S.; Monti, L.; Doglia, S.M.; Natalello, A.; Merlini, G. In Situ Characterization of Protein Aggregates in Human Tissues Affected by Light Chain Amyloidosis: A FTIR Microspectroscopy Study. Sci. Rep. 2016, 6, 29096. [Google Scholar] [CrossRef] [PubMed]
- Mordechai, S.; Shufan, E.; Katz, B.S.P.; Salman, A. Early Diagnosis of Alzheimer’s Disease Using Infrared Spectroscopy of Isolated Blood Samples Followed by Multivariate Analyses. Analyst 2017, 142, 1276–1284. [Google Scholar] [CrossRef]
- Paraskevaidi, M.; Morais, C.L.M.; Lima, K.M.G.; Snowden, J.S.; Saxon, J.A.; Richardson, A.M.T.; Jones, M.; Mann, D.M.A.; Allsop, D.; Martin-Hirsch, P.L.; et al. Differential Diagnosis of Alzheimer’s Disease Using Spectrochemical Analysis of Blood. Proc. Natl. Acad. Sci. USA 2017, 114, E7929–E7938. [Google Scholar] [CrossRef] [PubMed]
- Cameron, J.M.; Butler, H.J.; Anderson, D.J.; Christie, L.; Confield, L.; Spalding, K.E.; Finlayson, D.; Murray, S.; Panni, Z.; Rinaldi, C.; et al. Exploring Pre-Analytical Factors for the Optimisation of Serum Diagnostics: Progressing the Clinical Utility of ATR-FTIR Spectroscopy. Vib. Spectrosc. 2020, 109, 103092. [Google Scholar] [CrossRef]
- Butler, H.J.; Smith, B.R.; Fritzsch, R.; Radhakrishnan, P.; Palmer, D.S.; Baker, M.J. Optimised Spectral Pre-Processing for Discrimination of Biofluids via ATR-FTIR Spectroscopy. Analyst 2018, 143, 6121–6134. [Google Scholar] [CrossRef] [PubMed]
- Crocco, M.C.; Moyano, M.F.H.; Annesi, F.; Bruno, R.; Pirritano, D.; Del Giudice, F.; Petrone, A.; Condino, F.; Guzzi, R. ATR-FTIR Spectroscopy of Plasma Supported by Multivariate Analysis Discriminates Multiple Sclerosis Disease. Sci. Rep. 2023, 13, 2565. [Google Scholar] [CrossRef]
- Yonar, D.; Ocek, L.; Tiftikcioglu, B.I.; Zorlu, Y.; Severcan, F. Relapsing-Remitting Multiple Sclerosis Diagnosis from Cerebrospinal Fluids via Fourier Transform Infrared Spectroscopy Coupled with Multivariate Analysis. Sci. Rep. 2018, 8, 1025. [Google Scholar] [CrossRef]
- Kołodziej, M.; Chrabąszcz, K.; Pięta, E.; Piergies, N.; Rudnicka-Czerwiec, J.; Bartosik-Psujek, H.; Paluszkiewicz, C.; Cholewa, M.; Kwiatek, W.M. Spectral Signature of Multiple Sclerosis. Preliminary Studies of Blood Fraction by ATR FTIR Technique. Biochem. Biophys. Res. Commun. 2022, 593, 40–45. [Google Scholar] [CrossRef]
- Ozek, N.S.; Tuna, S.; Erson-Bensan, A.E.; Severcan, F. Characterization of microRNA-125b Expression in MCF7 Breast Cancer Cells by ATR-FTIR Spectroscopy. Analyst 2010, 135, 3094–3102. [Google Scholar] [CrossRef]
- Agresti, A. Categorical Data Analysis; Wiley Series in Probability and Statistics, 1st ed.; Wiley: Hoboken, NJ, USA, 2002; ISBN 978-0-471-36093-3. [Google Scholar]
- Freitas, D.L.D.; Câmara, I.M.; Silva, P.P.; Wanderley, N.R.S.; Alves, M.B.C.; Morais, C.L.M.; Martin, F.L.; Lajus, T.B.P.; Lima, K.M.G. Spectrochemical Analysis of Liquid Biopsy Harnessed to Multivariate Analysis towards Breast Cancer Screening. Sci. Rep. 2020, 10, 12818. [Google Scholar] [CrossRef]
- van Horssen, J.; Witte, M.E.; Schreibelt, G.; de Vries, H.E. Radical Changes in Multiple Sclerosis Pathogenesis. Biochim. Et Biophys. Acta. (BBA)-Mol. Basis Dis. 2011, 1812, 141–150. [Google Scholar] [CrossRef] [PubMed]
- Hollen, C.; Neilson, L.E.; Barajas, R.F.; Greenhouse, I.; Spain, R.I. Oxidative Stress in Multiple Sclerosis—Emerging Imaging Techniques. Front. Neurol. 2023, 13, 1025659. [Google Scholar] [CrossRef] [PubMed]
- LeVine, S.M. Albumin and Multiple Sclerosis. BMC Neurol. 2016, 16, 47. [Google Scholar] [CrossRef]
- Puthenparampil, M.; Tomas-Ojer, P.; Hornemann, T.; Lutterotti, A.; Jelcic, I.; Ziegler, M.; Hülsmeier, A.J.; Cruciani, C.; Faigle, W.; Martin, R.; et al. Altered CSF Albumin Quotient Links Peripheral Inflammation and Brain Damage in MS. Neurol.-Neuroimmunol. Neuroinflamm. 2021, 8, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Pedhazur, E.J. Multiple Regression in Behavioral Research: Explanation and Prediction, 3rd ed.; Belmont: Wadsworth, CA, USA, 1997; ISBN 978-0-03-072831-0. [Google Scholar]
- Agresti, A. Statistical Methods for the Social Sciences/Alan Agresti and Barbara Finlay, 4th ed.; Pearson Prentice Hall: Upper Saddle River, NJ, USA, 2009; ISBN 978-0-13-713150-1. [Google Scholar]
- Blystad, I.; Håkansson, I.; Tisell, A.; Ernerudh, J.; Smedby, Ö.; Lundberg, P.; Larsson, E.-M. Quantitative MRI for Analysis of Active Multiple Sclerosis Lesions without Gadolinium-Based Contrast Agent. AJNR Am. J. Neuroradiol. 2016, 37, 94–100. [Google Scholar] [CrossRef]
- Khoury, Y.E.; Collongues, N.; Sèze, J.D.; Gulsari, V.; Patte-Mensah, C.; Marcou, G.; Varnek, A.; Mensah-Nyagan, A.G.; Hellwig, P. Serum-Based Differentiation between Multiple Sclerosis and Amyotrophic Lateral Sclerosis by Random Forest Classification of FTIR Spectra. Analyst 2019, 144, 4647–4652. [Google Scholar] [CrossRef]
HC | MS | p-Value | Refs | |
---|---|---|---|---|
AHR/Aamide I + amide II | 1.0552 ± 0.0107 | 1.0621 ± 0.0114 | 0.005 | [25,28,31] |
AC=O/AHR | 0.0036 ± 0.0009 | 0.0042 ± 0.0013 | 0.028 | [29] |
AC=O/A1453 | 0.0341 ± 0.0080 | 0.0388 ± 0.0120 | 0.038 | [28] |
AHR+C=O/Aamide I + amide II | 1.0591 ± 0.0112 | 1.0666 ± 0.0122 | 0.004 | [29] |
ACH2asym/ACH2sym + CH2asym | 0.8750 ± 0.0068 | 0.8744 ± 0.0101 | 0.776 | [31] |
ACH2asym/AHR | 0.4423 ± 0.0059 | 0.4402 ± 0.0097 | 0.230 | [29] |
AOlefinic/AHR | 0.0110 ± 0.0012 | 0.0115 ± 0.0015 | 0.106 | [29] |
Aamide I/Aamide II | 0.7250 ± 0.0165 | 0.7115 ± 0.0136 | <0.001 | [29] |
I1453/I1650 | 0.3719 ± 0.0166 | 0.3834 ± 0.0148 | 0.001 | [25,28] |
I1739/I1468 | 0.0702 ± 0.0158 | 0.0796 ± 0.0229 | 0.034 | [28] |
BandwidthC=O | 16.0404 ± 1.1338 | 15.9344 ± 1.0337 | 0.653 | [28] |
Bandwidthamide I | 36.5558 ± 0.7052 | 36.3905 ± 0.7795 | 0.310 | [28] |
I1320 | 0.0342 ± 0.0012 | 0.0349 ± 0.0010 | 0.003 | [28] |
I1510 | 0.0559 ± 0.0010 | 0.0563 ± 0.0008 | 0.024 | [25,28] |
I2860 | 0.0597 ± 0.0030 | 0.0616 ± 0.0031 | 0.004 | [28] |
I3016 | 0.0120 ± 0.0013 | 0.0128 ± 0.0016 | 0.016 | [28] |
S.E. | z | p-Value | ||
---|---|---|---|---|
ACH2asym/ACH2sym + CH2asym | 659.218 | 177.363 | 13.814 | <0.001 |
Aamide I/Aamide II | −200.233 | 53.352 | 14.086 | <0.001 |
I1453/I1650 | 58.460 | 24.677 | 5.612 | 0.018 |
I1320 | −1897.473 | 710.464 | 7.133 | 0.008 |
I1510 | −2128.135 | 670.065 | 9.821 | 0.002 |
I2860 | 1618.604 | 498.808 | 19.530 | 0.001 |
Constant | −367.473 | 139.994 | 6.890 | 0.009 |
Sensitivity (%) | Specificity (%) | Accuracy (%) | AUC | ||
---|---|---|---|---|---|
80.00 | 92.50 | 85.88 | 0.90 | ||
EDSS | 0.5–3.0 | 81.25 | 92.50 | 87.50 | 0.90 |
3.5–7.0 | 76.90 | 92.50 | 88.70 | 0.89 | |
Disease Duration | ≤10y | 81.50 | 92.50 | 88.10 | 0.87 |
>10y | 77.70 | 92.50 | 87.90 | 0.94 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Condino, F.; Crocco, M.C.; Pirritano, D.; Petrone, A.; Del Giudice, F.; Guzzi, R. A Linear Predictor Based on FTIR Spectral Biomarkers Improves Disease Diagnosis Classification: An Application to Multiple Sclerosis. J. Pers. Med. 2023, 13, 1596. https://doi.org/10.3390/jpm13111596
Condino F, Crocco MC, Pirritano D, Petrone A, Del Giudice F, Guzzi R. A Linear Predictor Based on FTIR Spectral Biomarkers Improves Disease Diagnosis Classification: An Application to Multiple Sclerosis. Journal of Personalized Medicine. 2023; 13(11):1596. https://doi.org/10.3390/jpm13111596
Chicago/Turabian StyleCondino, Francesca, Maria Caterina Crocco, Domenico Pirritano, Alfredo Petrone, Francesco Del Giudice, and Rita Guzzi. 2023. "A Linear Predictor Based on FTIR Spectral Biomarkers Improves Disease Diagnosis Classification: An Application to Multiple Sclerosis" Journal of Personalized Medicine 13, no. 11: 1596. https://doi.org/10.3390/jpm13111596
APA StyleCondino, F., Crocco, M. C., Pirritano, D., Petrone, A., Del Giudice, F., & Guzzi, R. (2023). A Linear Predictor Based on FTIR Spectral Biomarkers Improves Disease Diagnosis Classification: An Application to Multiple Sclerosis. Journal of Personalized Medicine, 13(11), 1596. https://doi.org/10.3390/jpm13111596