“Boot Sign” of Anterior Femoral Condylar Resectional Shape during Total Knee Arthroplasty Is More Frequent in Asian Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Radiographic Measurements
2.2. Surgical Technique
2.3. Measurement of the Intraoperative Anterior Resected Surface Morphology of the Distal Femur
2.4. Statistical Analyses
3. Results
3.1. Patients’ Demographics and Parameters, Including the Morphological Shape
3.2. Factors Associated with Anterior Femoral Resectional Morphological Shape (MD/LD Ratio)
4. Discussion
5. Conclusions
- The shape of the anterior resection surface of the femur in TKA was correlated with the femoral rotation angle, distal femoral cutting angle, and FLAP.
- Furthermore, the shape of the anterior resection surface was frequently found as a “boot sign” rather than a “grand-piano sign” in Korean ethnics owing to the asymmetric morphology of the femoral condyles.
- Differences owing to ethnicity, including distal femoral morphology, should be considered when evaluating the shape of the anterior femoral resection surface for assessment of the femoral rotation angle.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kim, K.; Kim, J.; Lee, D.; Lim, S.; Eom, J. The Accuracy of Alignment Determined by Patient-Specific Instrumentation System in Total Knee Arthroplasty. Knee Surg. Relat. Res. 2019, 31, 19–24. [Google Scholar] [CrossRef]
- Ko, D.O.; Lee, S.; Kim, J.H.; Hwang, I.C.; Jang, S.J.; Jung, J. The Influence of Femoral Internal Rotation on Patellar Tracking in Total Knee Arthroplasty using Gap Technique. Clin. Orthop. Surg. 2021, 13, 352. [Google Scholar] [CrossRef]
- Choi, Y.J.; Seo, D.K.; Lee, K.W.; Ra, H.J.; Kang, H.W.; Kim, J.K. Results of total knee arthroplasty for painless, stiff knees. Knee Surg. Relat. Res. 2020, 32, 61. [Google Scholar] [CrossRef]
- Goto, K.; Katsuragawa, Y.; Miyamoto, Y. Outcomes and component-positioning in total knee arthroplasty may be comparable between supervised trained surgeons and their supervisor. Knee Surg. Relat. Res. 2020, 32, 3. [Google Scholar] [CrossRef]
- Song, S.J.; Kim, K.I.; Suh, D.U.; Park, C.H. Comparison of Patellofemoral-Specific Clinical and Radiographic Results after Total Knee Arthroplasty Using a Patellofemoral Design-Modified Prosthesis and Its Predecessor. Clin. Orthop. Surg. 2021, 13, 175–184. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, A.D.; Brien, H.J.; Dunning, C.E.; King, G.J.; Johnson, J.A.; Chess, D.G. Patellar position after total knee arthroplasty: Influence of femoral component malposition. J. Arthroplast. 2003, 18, 458–465. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.; Koo, J.; Moon, S.W.; Yang, Y.; Son, J. Long-term Follow-up of Patellar Nonresurfacing in Total Knee Arthroplasty. Clin. Orthop. Surg. 2020, 12, 49–54. [Google Scholar] [CrossRef] [PubMed]
- Abdelnasser, M.K.; Elsherif, M.E.; Bakr, H.; Mahran, M.; Othman, M.H.M.; Khalifa, Y. All types of component malrotation affect the early patient-reported outcome measures after total knee arthroplasty. Knee Surg. Relat. Res. 2019, 31, 5. [Google Scholar] [CrossRef]
- Chon, J.; Jeon, T.; Yoon, J.; Jung, D.; An, C.H. Influence of Patellar Tilt Angle in Merchant View on Postoperative Range of Motion in Posterior Cruciate Ligament-Substituting Fixed-Bearing Total Knee Arthroplasty. Clin. Orthop. Surg. 2019, 11, 416–421. [Google Scholar] [CrossRef] [PubMed]
- Siston, R.A.; Patel, J.J.; Goodman, S.B.; Delp, S.L.; Giori, N.J. The variability of femoral rotational alignment in total knee arthroplasty. J. Bone Joint Surg. Am. 2005, 87, 2276–2280. [Google Scholar] [PubMed]
- Satit, T.; Pinyong, U.; Chaipipathn, S.; Natthapong, H.; Revit, T. Imageless robotic-assisted total knee arthroplasty accurately restores the radiological alignment with a short learning curve: A randomized controlled trial. Int. Orthop. 2021, 45, 2851–2858. [Google Scholar]
- Victor, J. Rotational alignment of the distal femur: A literature review. Orthop. Traumatol. Surg. Res. 2009, 95, 365–372. [Google Scholar] [CrossRef]
- Skowronek, P.; Arnold, M.; Starke, C.; Bartyzel, A.; Moser, L.B.; Hirschmann, M.T. Intra- and postoperative assessment of femoral component rotation in total knee arthroplasty: An EKA knee expert group clinical review. Knee Surg. Sports Traumatol. Arthrosc. 2021, 29, 772–782. [Google Scholar] [CrossRef] [PubMed]
- Asada, S.; Akagi, M.; Matsushita, T.; Hashimoto, K.; Mori, S.; Hamanishi, C. Effects of cartilage remnants of the posterior femoral condyles on femoral component rotation in varus knee osteoarthritis. Knee 2012, 19, 185–189. [Google Scholar] [CrossRef] [PubMed]
- Tashiro, Y.; Uemura, M.; Matsuda, S.; Okazaki, K.; Kawahara, S.; Hashizume, M.; Iwamoto, Y. Articular cartilage of the posterior condyle can affect rotational alignment in total knee arthroplasty. Knee Surg. Sports Traumatol. Arthrosc. 2012, 20, 1463–1469. [Google Scholar] [CrossRef]
- Matziolis, D.; Meiser, M.; Sieber, N.; Teichgraber, U.; Matziolis, G. Posterior Cortical Axis: A New Landmark to Control Femoral Component Rotation in Total Knee Arthroplasty. Orthopedics 2017, 40, 188–190. [Google Scholar] [CrossRef] [PubMed]
- Goki, K.; Shigeki, I.; Koki, Y.; Satoru, S.; Hiroyuki, I.; Masakazu, I.; Yu, M.; Nobuo, A. Accuracy of total knee arthroplasty using the modified gap technique based on the bone gap: An evaluation of the bone gap with a distal femoral trial component. J. Arthroplast. 2021, 3, 17. [Google Scholar]
- Silva, A.; Pinto, E.; Sampaio, R. Rotational alignment in patient-specific instrumentation in TKA: MRI or CT? Knee Surg. Sports Traumatol. Arthrosc. 2016, 24, 3648–3652. [Google Scholar] [CrossRef]
- Cui, W.Q.; Won, Y.Y.; Baek, M.H.; Kim, K.K.; Cho, J.H. Variations of the ‘grand-piano sign’ during total knee replacement. A computer-simulation study. J. Bone Joint Surg. Br. 2006, 88, 1441–1447. [Google Scholar] [CrossRef]
- Kim, J.T.; Han, J.; Shen, Q.H.; Moon, S.W.; Won, Y.Y. Morphological Patterns of Anterior Femoral Condylar Resection in Kinematically and Mechanically Aligned Total Knee Arthroplasty. J. Arthroplast. 2018, 33, 2506–2511. [Google Scholar] [CrossRef]
- Ohmori, T.; Kabata, T.; Kajino, Y.; Taga, T.; Inoue, D.; Yamamoto, T.; Takagi, T.; Yoshitani, J.; Ueno, T.; Tsuchiya, H. Usefulness of the “grand-piano sign” for determining femoral rotational alignment in total knee arthroplasty. Knee 2018, 25, 15–24. [Google Scholar] [CrossRef]
- Moser, L.B.; Hess, S.; Bargemon, J.B.; Faizan, A.; LiArno, S.; Amsler, F.; Hirschmann, M.T.; Ollivier, M. Ethnical Differences in Knee Phenotypes Indicate the Need for a More Individualized Approach in Knee Arthroplasty: A Comparison of 80 Asian Knees with 308 Caucasian Knees. J. Pers. Med. 2022, 12, 121. [Google Scholar] [CrossRef]
- Song, K.; Ran, T.; Ma, T.; Qin, Y.; Zhang, B.; Wang, M. A Morphometric Study of the Distal Femoral Resected Surface In Osteoarthritis Knees of the Patients in Southwest China and a Comparison with Femoral Components in Six Total Knee Arthroplasty Systems. Orthop. Surg. 2023, 15, 953–960. [Google Scholar]
- Kim, S.H.; Park, Y.B.; Ham, D.W.; Lee, J.S.; Song, M.K.; Lee, H.J. No influence of femoral component rotation by the lateral femoral posterior condylar cartilage remnant technique on clinical outcomes in navigation-assisted TKA. Knee Surg. Sports Traumatol. Arthrosc. 2017, 25, 3576–3584. [Google Scholar] [CrossRef] [PubMed]
- Ko, J.H.; Han, C.D.; Shin, K.H.; Nguku, L.; Yang, I.H.; Lee, W.S.; Kim, K.L.; Park, K.K. Femur bowing could be a risk factor for implant flexion in conventional total knee arthroplasty and notching in navigated total knee arthroplasty. Knee Surg. Sports Traumatol. Arthrosc. 2016, 24, 2476–2482. [Google Scholar] [CrossRef]
- Akamatsu, Y.; Kobayashi, H.; Kusayama, Y.; Kumagai, K.; Saito, T. Femoral shaft bowing in the coronal and sagittal planes on reconstructed computed tomography in women with medial compartment knee osteoarthritis: A comparison with radiograph and its predictive factors. Arch. Orthop. Trauma. Surg. 2016, 136, 1227–1232. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.H.; Lee, H.J.; Jung, H.J.; Lee, J.S.; Kim, K.S. Less femoral lift-off and better femoral alignment in TKA using computer-assisted surgery. Knee Surg. Sports Traumatol. Arthrosc. 2013, 21, 2255–2262. [Google Scholar] [CrossRef] [PubMed]
- Bellemans, J.; Carpentier, K.; Vandenneucker, H.; Vanlauwe, J.; Victor, J. The John Insall Award: Both morphotype and gender influence the shape of the knee in patients undergoing TKA. Clin. Orthop. Relat. Res. 2010, 468, 29–36. [Google Scholar] [CrossRef]
- Kim, J.B.; Lyu, S.J.; Kang, H.W. Are Western Knee Designs Dimensionally Correct for Korean Women? A Morphometric Study of Resected Femoral Surfaces during Primary Total Knee Arthroplasty. Clin. Orthop. Surg. 2016, 8, 254–261. [Google Scholar] [CrossRef]
- Kim, T.K.; Phillips, M.; Bhandari, M.; Watson, J.; Malhotra, R. What Differences in Morphologic Features of the Knee Exist Among Patients of Various Races? A Systematic Review. Clin. Orthop. Relat. Res. 2017, 475, 170–182. [Google Scholar] [CrossRef]
- Brzobohatá, H.; Krajíček, V.; Horák, Z.; Velemínská, J. Sexual Dimorphism of the Human Tibia through Time: Insights into Shape Variation Using a Surface-Based Approach. PLoS ONE 2016, 11, e0166461. [Google Scholar] [CrossRef]
- Kokubu, Y.; Kawahara, S.; Hamai, S.; Akasaki, Y.; Tsushima, H.; Miyachika, S.; Nakashima, Y. “Grand-piano sign” as a femoral rotational indicator in both varus and valgus knees: A simulation study of anterior resection surface in total knee arthroplasty. Knee Surg. Sports Traumatol. Arthrosc. 2023, 31, 3259–3267. [Google Scholar] [CrossRef]
Overall Results | |
---|---|
Patients (number) | 234 |
Sex (Male/Female) | 44:190 |
Age (y) | 71.9 ± 6.2 |
BMI | 26.4 ± 4.1 |
Degree of osteoarthritis (Kellgren & Lawrence Score) | 3.6 ± 1.2 |
Mechanical HKA angle | varus 9.4° ± 6.2 |
MPTA | 84.2° ± 3.7 |
LDFA | 82.9° ± 6.3 |
Coronal bowing | 2.8° ± 2.6 |
Sagittal bowing | 11.2° ± 3.4 |
cTEA-PCA on CT | 6.4° ± 1.8 |
FLAP | 52.9 mm ± 4.2 |
FMAP | 53.3 mm ± 4.8 |
dFAP | 0.3 mm ± 3.7 |
MD | 25.1 mm ± 5.8 |
LD | 41.6 mm ± 6.8 |
MD/LD ratio | 0.61 ± 0.13 |
Distal femoral cutting angle | Valgus 5.0° ± 0.7 |
Intra-operative femoral rotation angle | 4.9° ± 1.2 |
Group 1 | Group 2 | Group 3 | p-Value | |
---|---|---|---|---|
Patients (number) | 146 | 78 | 10 | - |
Sex (Male/Female) | 23:123 | 18:60 | 3:7 | 0.267 |
Age (y) | 71.9 ± 5.9 | 71.9 ± 6.8 | 72.5 ± 7.1 | 0.954 |
BMI | 26.1 ± 4.2 | 26.8 ± 3.9 | 26.5 ± 3.1 | 0.502 |
Degree of osteoarthritis (Kellgren & Lawrence Score) | 3.5 ± 1.6 | 3.6 ± 0.6 | 3.6 ± 0.3 | 0.853 |
Mechanical HKA angle | 9.4 ± 6.2 | 9.6 ± 6.4 | 8.3 ± 4.3 | 0.811 |
MPTA | 84.3 ± 3.6 | 83.9 ± 3.9 | 85.0 ± 2.4 | 0.633 |
LDFA | 83.2 ± 3.2 | 82.5 ± 10.0 | 83.7 ± 2.4 | 0.698 |
Coronal bowing | 2.6 ± 2.4 | 3.1 ± 2.9 | 2.7 ± 3.0 | 0.469 |
Sagittal bowing | 11.2 ± 3.2 | 11.4 ± 3.8 | 10.8 ± 3.0 | 0.816 |
cTEA-PCA on CT | 6.4 ± 1.9 | 6.4 ± 1.7 | 6.1 ± 1.8 | 0.840 |
FLAP | 52.4 ± 4.2 | 53.7 ± 4.2 | 54.9 ± 2.7 | 0.02 * |
FMAP | 52.7 ± 4.9 | 53.9 ± 4.6 | 55.4 ± 3.4 | 0.076 |
dFAP | 0.4 ± 3.8 | 0.2 ± 3.7 | 0.5 ± 2.9 | 0.933 |
MD | 22.6 ± 4.9 | 28.7 ± 4.4 | 32.5 ± 7.1 | <0.001 * |
LD | 42.8 ± 6.7 | 39.8 ± 6.2 | 37.4 ± 9.8 | <0.001 * |
MD/LD ratio | 0.53 ± 0.07 | 0.72 ± 0.04 | 0.89 ± 0.11 | <0.001 * |
Distal femoral cutting angle | 4.9 ± 0.7 | 5.1 ± 0.6 | 5.1 ± 0.3 | 0.112 |
Intra-operative femoral rotation angle | 5.0 ± 1.2 | 4.6 ± 1.1 | 4.7 ± 1.2 | 0.039 * |
Factor | Mean | ||
---|---|---|---|
β ± SE | p-Value | Adjusted R2 | |
Intercept | 0.304 | ||
FLAP | 0.005 ± 0.002 | 0.016 | 0.268 |
Distal femoral cutting angle | 0.025 ± 0.012 | 0.044 | |
Intra-operative femoral rotation angle | −0.105 ± 0.08 | 0.037 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.H.; Park, Y.-B.; Baek, S.H.; Lee, J.; Lee, H.-J. “Boot Sign” of Anterior Femoral Condylar Resectional Shape during Total Knee Arthroplasty Is More Frequent in Asian Patients. J. Pers. Med. 2023, 13, 1684. https://doi.org/10.3390/jpm13121684
Kim SH, Park Y-B, Baek SH, Lee J, Lee H-J. “Boot Sign” of Anterior Femoral Condylar Resectional Shape during Total Knee Arthroplasty Is More Frequent in Asian Patients. Journal of Personalized Medicine. 2023; 13(12):1684. https://doi.org/10.3390/jpm13121684
Chicago/Turabian StyleKim, Seong Hwan, Yong-Beom Park, Suk Ho Baek, Jeuk Lee, and Han-Jun Lee. 2023. "“Boot Sign” of Anterior Femoral Condylar Resectional Shape during Total Knee Arthroplasty Is More Frequent in Asian Patients" Journal of Personalized Medicine 13, no. 12: 1684. https://doi.org/10.3390/jpm13121684
APA StyleKim, S. H., Park, Y. -B., Baek, S. H., Lee, J., & Lee, H. -J. (2023). “Boot Sign” of Anterior Femoral Condylar Resectional Shape during Total Knee Arthroplasty Is More Frequent in Asian Patients. Journal of Personalized Medicine, 13(12), 1684. https://doi.org/10.3390/jpm13121684