Functional Assessment of Long-Term Microvascular Cardiac Allograft Vasculopathy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bolus Thermodilution
2.2. IMR
2.3. Statistical Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ACEI | ACE inhibitor |
ACR | acute cellular rejection |
ARDS | acute respiratory distress syndrome |
ASA | aspirin |
CA | calcium channel blocker |
CAV | cardiac allograft vasculopathy |
CFR | coronary flow reserve |
CI | confidence interval |
CMV | cytomegalovirus |
CMV-PCR | cytomegalovirus polymerase chain reaction |
COVID-19 | coronavirus disease 19 |
DSA | Donor-specific alloantibody |
FFR | fractional flow reserve |
HLA | human leukocyte antigen |
HTX | heart transplantation |
IMR | index of microcirculatory resistance |
ISHLT | International Society of Heart and Lung Transplantation |
IVUS | intravascular ultrasound |
LAD | left anterior descending coronary artery |
LVEF | left ventricular ejection fraction |
LVOT VTI | left ventricular outflow tract velocity time integral |
MRI | magnetic resonance imaging |
mTOR | mammalian target of rapamycin |
Pa | aortic pressure |
Pd | distal (coronary) pressure |
PET | positron emission tomography |
PITA II | Physiologic Investigation for Transplant Arteriopathy II |
RVSP | right ventricular systolic pressure |
SD | standard deviation |
TAPSE | tricuspid annular plane systolic excursion |
Tmn,hyper | hyperemic mean transit time |
Tmn,rest | resting mean transit time |
References
- Khush, K.K.; Cherikh, W.S.; Chambers, D.C.; Harhay, M.O.; Hayes, D., Jr.; Hsich, E.; Meiser, B.; Potena, L.; Robinson, A.; Rossano, J.W.; et al. The International Thoracic Organ Transplant Registry of the International Society for Heart and Lung Transplantation: Thirty-sixth adult heart transplantation report—2019; focus theme: Donor and recipient size match. J. Heart Lung Transplant. 2019, 38, 1056–1066. [Google Scholar] [CrossRef] [PubMed]
- Chih, S.; Chong, A.Y.; Mielniczuk, L.M.; Bhatt, D.L.; Beanlands, R.S. Allograft Vasculopathy: The Achilles’ Heel of Heart Transplantation. J. Am. Coll. Cardiol. 2016, 68, 80–91. [Google Scholar] [CrossRef] [PubMed]
- Sieg, A.; Weeks, P.; Krustchinsky, L.; Rajapreyar, I. Statin therapy in cardiac allograft vasculopathy progression in heart transplant patients: Does potency matter? Transplant. Rev. 2016, 30, 178–186. [Google Scholar] [CrossRef] [PubMed]
- Mehra, M.R.; Crespo-Leiro, M.G.; Dipchand, A.; Ensminger, S.M.; Hiemann, N.E.; Kobashigawa, J.A.; Madsen, J.; Parameshwar, J.; Starling, R.C.; Uber, P.A. International Society for Heart and Lung Transplantation working formulation of a standardized nomenclature for cardiac allograft vasculopathy-2010. J. Heart Lung Transplant. Off. Publ. Int. Soc. Heart Transplant. 2010, 29, 717–727. [Google Scholar] [CrossRef] [PubMed]
- Fateh-Moghadam, S.; Bocksch, W.; Wessely, R.; Jäger, G.; Hetzer, R.; Gawaz, M. Cytomegalovirus infection status predicts progression of heart-transplant vasculopathy. Transplantation 2003, 76, 1470–1474. [Google Scholar] [CrossRef] [PubMed]
- Delgado, J.F.; Reyne, A.G.; de Dios, S.; López-Medrano, F.; Jurado, A.; Juan, R.S.; Ruiz-Cano, M.J.; Dolores Folgueira, M.; Gómez-Sánchez, M.Á.; Aguado, J.M.; et al. Influence of cytomegalovirus infection in the development of cardiac allograft vasculopathy after heart transplantation. J. Heart Lung Transplant. Off. Publ. Int. Soc. Heart Transplant. 2015, 34, 1112–1119. [Google Scholar] [CrossRef]
- Topilsky, Y.; Gandhi, M.J.; Hasin, T.; Voit, L.L.; Raichlin, E.; Boilson, B.A.; Schirger, J.A.; Edwards, B.S.; Clavell, A.L.; Rodeheffer, R.J.; et al. Donor-specific antibodies to class II antigens are associated with accelerated cardiac allograft vasculopathy: A three-dimensional volumetric intravascular ultrasound study. Transplantation 2013, 95, 389–396. [Google Scholar] [CrossRef]
- Loupy, A.; Toquet, C.; Rouvier, P.; Beuscart, T.; Bories, M.C.; Varnous, S.; Guillemain, R.; Pattier, S.; Suberbielle, C.; Leprince, P.; et al. Late failing heart allografts: Pathology of cardiac allograft vasculopathy and association with antibody-mediated rejection. Am. J. Transplant. 2016, 16, 111–120. [Google Scholar] [CrossRef]
- Raichlin, E.; Edwards, B.S.; Kremers, W.K.; Clavell, A.L.; Rodeheffer, R.J.; Frantz, R.P.; Pereira, N.L.; Daly, R.C.; McGregor, C.G.; Lerman, A.; et al. Acute cellular rejection and the subsequent development of allograft vasculopathy after cardiac transplantation. J. Heart Lung Transplant. 2009, 28, 320–327. [Google Scholar] [CrossRef]
- Rahmani, M.; Cruz, R.P.; Granville, D.J.; McManus, B.M. Allograft vasculopathy versus atherosclerosis. Circ. Res. 2006, 99, 801–815. [Google Scholar] [CrossRef]
- Konerman, M.C.; Lazarus, J.J.; Weinberg, R.L.; Shah, R.V.; Ghannam, M.; Hummel, S.L.; Corbett, J.R.; Ficaro, E.P.; Aaronson, K.D.; Colvin, M.M.; et al. Reduced myocardial flow reserve by positron emission tomography predicts cardiovascular events after cardiac transplantation. Circ. Heart Fail. 2018, 11, e004473. [Google Scholar] [CrossRef] [PubMed]
- Fearon, W.F.; Hirohata, A.; Nakamura, M.; Luikart, H.; Lee, D.P.; Vagelos, R.H.; Hunt, S.A.; Valantine, H.A.; Fitzgerald, P.J.; Yock, P.G.; et al. Discordant Changes in Epicardial and Microvascular Coronary Physiology after Cardiac Transplantation: Physiologic Investigation for Transplant Arteriopathy II (PITA II) Study. J. Heart Lung Transplant. 2006, 25, 765–771. [Google Scholar] [CrossRef] [PubMed]
- Pijls, N.H.; De Bruyne, B.; Smith, L.; Aarnoudse, W.; Barbato, E.; Bartunek, J.; Bech, G.J.; Van De Vosse, F. Coronary thermodilution to assess flow reserve: Validation in humans. Circulation 2002, 105, 2482–2486. [Google Scholar] [CrossRef] [PubMed]
- Candreva, A.; Gallinoro, E.; van ‘t Veer, M.; Sonck, J.; Collet, C.; Di Gioia, G.; Kodeboina, M.; Mizukami, T.; Nagumo, S.; Keulards, D.; et al. Basics of Coronary Thermodilution. JACC Cardiovasc. Interv. 2021, 14, 595–605. [Google Scholar] [CrossRef]
- Escaned, J.; Flores, A.; García-Pavía, P.; Segovia, J.; Jimenez, J.; Aragoncillo, P.; Salas, C.; Alfonso, F.; Hernández, R.; Angiolillo, D.J.; et al. Assessment of microcirculatory remodeling with intracoronary flow velocity and pressure measurements: Validation with endomyocardial sampling in cardiac allografts. Circulation 2009, 120, 1561–1568. [Google Scholar] [CrossRef] [PubMed]
- Fearon, W.F.; Balsam, L.B.; Farouque, H.M.; Caffarelli, A.D.; Robbins, R.C.; Fitzgerald, P.J.; Yock, P.G.; Yeung, A.C. Novel index for invasively assessing the coronary microcirculation. Circulation 2003, 107, 3129–3132. [Google Scholar] [CrossRef] [PubMed]
- Pinheiro, J.; Bates, D. Mixed-Effects Models in S and S-PLUS; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Kuznetsova, A.; Brockhoff, P.B.; Christensen, R.H.B. lmerTest Package: Tests in Linear Mixed Effects Models. J. Stat. Softw. 2017, 82, 1–26. [Google Scholar] [CrossRef]
- Orban, M.; Kuehl, A.; Pechmajou, L.; Mueller, C.; Hausleiter, J.; Sfeir, M.; Bories, M.C.; Martin, A.C.; Ulrich, S.M.; Dalla Pozza, R.; et al. Reduction of cardiac allograft vasculopathy by PCI: Quantification and correlation with outcome after heart transplantation. Eur. Heart J. 2023, 44 (Suppl. S2), ehad655.1045. [Google Scholar] [CrossRef]
- Fearon, W.F.; Nakamura, M.; Lee, D.P.; Rezaee, M.; Vagelos, R.H.; Hunt, S.A.; Fitzgerald, P.J.; Yock, P.G.; Yeung, A.C. Simultaneous assessment of fractional and coronary flow reserves in cardiac transplant recipients: Physiologic Investigation for Transplant Arteriopathy (PITA study). Circulation 2003, 108, 1605–1610. [Google Scholar] [CrossRef]
- Yang, H.M.; Khush, K.; Luikart, H.; Okada, K.; Lim, H.S.; Kobayashi, Y.; Honda, Y.; Yeung, A.C.; Valantine, H.; Fearon, W.F. Invasive Assessment of Coronary Physiology Predicts Late Mortality after Heart Transplantation. Circulation 2016, 133, 1945–1950. [Google Scholar] [CrossRef]
- Ahn, J.M.; Zimmermann, F.M.; Gullestad, L.; Angerås, O.; Karason, K.; Russell, K.; Lunde, K.; Okada, K.; Luikart, H.; Khush, K.K.; et al. Microcirculatory Resistance Predicts Allograft Rejection and Cardiac Events after Heart Transplantation. J. Am. Coll. Cardiol. 2021, 78, 2425–2435. [Google Scholar] [CrossRef] [PubMed]
- Ng, M.K.C.; Yeung, A.C.; Fearon, W.F. Invasive Assessment of the Coronary Microcirculation. Superior Reproducibility and Less Hemodynamic Dependence of Index of Microcirculatory Resistance Compared with Coronary Flow Reserve. Circulation 2006, 113, 2054–2061. [Google Scholar] [CrossRef] [PubMed]
- Demir, O.M.; Boerhout, C.K.M.; de Waard, G.A.; van de Hoef, T.P.; Patel, N.; Beijk, M.A.M.; Williams, R.; Rahman, H.; Everaars, H.; Kharbanda, R.K.; et al. Comparison of Doppler Flow Velocity and Thermodilution Derived Indexes of Coronary Physiology. J. Am. Coll. Cardiol. Interv. 2022, 15, 1060–1070. [Google Scholar] [CrossRef] [PubMed]
- De Bruyne, B.; Pijls, N.H.J.; Gallinoro, E.; Candreva, A.; Fournier, S.; Keulards, D.C.J.; Sonck, J.; van’t Veer, M.; Barbato, E.; Bartunek, J.; et al. Microvascular Resistance Reserve for Assessment of Coronary Microvascular Function. J. Am. Coll. Cardiol. 2021, 78, 1541–1549. [Google Scholar] [CrossRef]
- Weiss, K.J.; Hohendanner, F.; Diedrichs, F.; Reiber, J.H.C.; Castillo Tovar, J.; Falk, V.; Schoenrath, F.; Stawowy, P.; Just, I.A. Angio-IMR identifies microvascular cardiac allograft vasculopathy in heart transplant recipients. Eur. Heart J. 2023, 44 (Suppl. S2), ehad655.2770. [Google Scholar] [CrossRef]
- Clerkin, K.J.; Topkara, V.K.; Farr, M.A.; Jain, R.; Colombo, P.C.; Restaino, S.; Sayer, G.; Castillo, M.; Lam, E.Y.; Chernovolenko, M.; et al. Noninvasive physiologic assessment of cardiac allograft vasculopathy is prognostic for post-transplant events. J. Am. Coll. Cardiol. 2022, 80, 1617–1628. [Google Scholar] [CrossRef]
- Tremblay-Gravel, M.; Racine, N.; de Denus, S.; Ducharme, A.; Pelletier, G.B.; Giraldeau, G.; Liszkowski, M.; Parent, M.C.; Carrier, M.; Fortier, A.; et al. Changes in outcomes of cardiac allograft vasculopathy over 30 years following heart transplantation. JACC Heart Fail. 2017, 5, 891–901. [Google Scholar] [CrossRef]
Patient Data | ALL Patients (N = 27) |
---|---|
Donor age; years ± SD | 42 ± 8 |
Recipient age at HTX; years ± SD | 54 ± 12 |
Recipient sex, male; n (%) | 19 (70%) |
Hypertension; n (%) | 15 (56%) |
Diabetes mellitus; n (%) | 12 (44%) |
Hyperlipidemia; n (%) | 20 (74%) |
Aspirin therapy; n (%) | 19 (70%) |
Statin therapy; n (%) | 20 (74%) |
BMI at first measurement; (kg/m2) ± SD | 26 ± 4 |
LVEF; % ± SD | 64 ± 10.8 |
TAPSE; mm ± SD | 18 ± 3.4 |
LVOT VTI; mm ± SD | 17 ± 9 |
RVSP; mmHg ± SD | 40 ± 17 |
Cold ischemic time; minutes ± SD | 179 ± 64 |
HTX indication: ischemic heart failure; n (%) | 14 (52%) |
Time from HTX to first measurement; months ± SD | 43 ± 43 |
CMV-PCR positivity; n (%) | 6 (23%) |
Outcome | Variable | Estimate | p-Value | Lower Limit of 95% CI | Upper Limit of 95% CI |
---|---|---|---|---|---|
CFR | CMV | −0.179 | 0.807 | −1.731 | 1.373 |
CFR | DM | 0.371 | 0.559 | −0.989 | 1.731 |
CFR | HLP | −0.162 | 0.818 | −1.738 | 1.414 |
CFR | HT | 0.156 | 0.316 | −0.789 | 2.220 |
CFR | age at HTX | −0.046 | 0.117 | −0.105 | 0.013 |
IMR | CMV | −6.354 | 0.276 | −18.41 | 5.697 |
IMR | DM | −5.691 | 0.259 | −16.22 | 4.839 |
IMR | HLP | 4.555 | 0.412 | −7.631 | 16.74 |
IMR | HT | 1.520 | 0.780 | −10.23 | 13.26 |
IMR | age at HTX | −0.045 | 0.836 | −0.508 | 0.418 |
FFR | CMV | −0.013 | 0.453 | −0.048 | 0.022 |
FFR | DM | −0.017 | 0.272 | −0.047 | 0.014 |
FFR | HLP | −0.019 | 0.260 | −0.054 | 0.016 |
FFR | HT | 0.017 | 0.300 | −0.017 | 0.050 |
FFR | age at HTX | 0.001 | 0.208 | −0.001 | 0.002 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bora, N.; Balogh, O.; Ferenci, T.; Piroth, Z. Functional Assessment of Long-Term Microvascular Cardiac Allograft Vasculopathy. J. Pers. Med. 2023, 13, 1686. https://doi.org/10.3390/jpm13121686
Bora N, Balogh O, Ferenci T, Piroth Z. Functional Assessment of Long-Term Microvascular Cardiac Allograft Vasculopathy. Journal of Personalized Medicine. 2023; 13(12):1686. https://doi.org/10.3390/jpm13121686
Chicago/Turabian StyleBora, Noemi, Orsolya Balogh, Tamás Ferenci, and Zsolt Piroth. 2023. "Functional Assessment of Long-Term Microvascular Cardiac Allograft Vasculopathy" Journal of Personalized Medicine 13, no. 12: 1686. https://doi.org/10.3390/jpm13121686
APA StyleBora, N., Balogh, O., Ferenci, T., & Piroth, Z. (2023). Functional Assessment of Long-Term Microvascular Cardiac Allograft Vasculopathy. Journal of Personalized Medicine, 13(12), 1686. https://doi.org/10.3390/jpm13121686