Robust Bioinformatics Approaches Result in the First Polygenic Risk Score for BMI in Greek Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Anthropometric Measurements
2.3. Genotyping Analyses
2.4. Preprocessing and Statistical Analysis
2.4.1. Dataset Merging and Genotype Imputation
2.4.2. Data Filtering and Summary Statistics
2.4.3. Derivation of PRS
3. Results
3.1. Population Characteristics
3.2. Summary Statistics for PRS Derivation
3.3. Selection of a PRS
3.4. PRS Evaluation
3.5. PRS for BMI
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Obesity and Overweight. 2021. Available online: https://www.who.int/en/news-room/fact-sheets/detail/obesity-and-overweight#:~:text=Key%20facts.%20Worldwide%20obesity%20has%20nearly%20tripled%20since,were%20overweight%20in%202016%2C%20and%2013%25%20were%20obese (accessed on 8 October 2022).
- Finkelstein, E.A.; Khavjou, O.A.; Thompson, H.; Trogdon, J.G.; Pan, L.; Sherry, B.; Dietz, W. Obesity and severe obesity forecasts through 2030. Am. J. Prev. Med. 2012, 42, 563–570. [Google Scholar] [CrossRef]
- Bray, G.A.; Clearfield, M.B.; Fintel, D.J.; Nelinson, D.S. Overweight and obesity: The pathogenesis of cardiometabolic risk. Clin. Cornerstone 2009, 9, 30–42. [Google Scholar] [CrossRef]
- Chan, R.S.; Woo, J. Prevention of overweight and obesity: How effective is the current public health approach. IJERPH 2010, 7, 765–783. [Google Scholar] [CrossRef]
- Locke, A.E.; Kahali, B.; Berndt, S.I.; Justice, A.E.; Pers, T.H.; Day, F.R.; Powell, C.; Vedantam, S.; Buchkovich, M.L.; Yang, J.; et al. Genetic studies of body mass index yield new insights for obesity biology. Nature 2015, 518, 197–206. [Google Scholar] [CrossRef]
- PGS Catalog. Available online: https://www.pgscatalog.org/ (accessed on 16 December 2022).
- Murthy, V.L.; Xia, R.; Baldridge, A.S.; Carnethon, M.R.; Sidney, S.; Bouchard, C.; Sarzynski, M.A.; Lima, J.; Lewis, G.D.; Shah, S.J.; et al. Polygenic Risk, Fitness, and Obesity in the Coronary Artery Risk Development in Young Adults (CARDIA) Study. JAMA Cardiol. 2020, 5, 40–48. [Google Scholar] [CrossRef] [PubMed]
- Dashti, H.S.; Hivert, M.F.; Levy, D.E.; McCurley, J.L.; Saxena, R.; Thorndike, A.N. Polygenic risk score for obesity and the quality, quantity, and timing of workplace food purchases: A secondary analysis from the ChooseWell 365 randomized trial. PLoS Med. 2020, 17, e1003219. [Google Scholar] [CrossRef]
- Dashti, H.S.; Miranda, N.; Cade, B.E.; Huang, T.; Redline, S.; Karlson, E.W.; Saxena, R. Interaction of obesity polygenic score with lifestyle risk factors in an electronic health record biobank. BMC Med. 2022, 20, 5. [Google Scholar] [CrossRef]
- Sapkota, Y.; Qiu, W.; Dixon, S.B.; Wilson, C.L.; Wang, Z.; Zhang, J.; Leisenring, W.; Chow, E.J.; Bhatia, S.; Armstrong, G.T.; et al. Genetic risk score enhances the risk prediction of severe obesity in adult survivors of childhood cancer. Nat. Med. 2022, 28, 1590–1598. [Google Scholar] [CrossRef] [PubMed]
- Weissbrod, O.; Kanai, M.; Shi, H.; Gazal, S.; Peyrot, W.J.; Khera, A.V.; Okada, Y.; Biobank Japan Project; Martin, A.R.; Finucane, H.K.; et al. Leveraging fine-mapping and multipopulation training data to improve cross-population polygenic risk scores. Nat. Genet. 2022, 54, 450–458. [Google Scholar] [CrossRef]
- Polygenic Risk Score Task Force of the International Common Disease Alliance. Responsible use of polygenic risk scores in the clinic: Potential benefits, risks and gaps. Nat. Med. 2021, 27, 1876–1884. [Google Scholar] [CrossRef] [PubMed]
- Moorthie, S.; Hall, A.; Janus, J.; Brigden, T.; Babb de Villiers, C.; Blackburn, L.; Johnson, E.; Kroese, M. Polygenic Scores and Clinical Utility. PHG Foundation. 2021. Available online: https://www.phgfoundation.org/media/35/download/polygenic-scores-and-clinical-utility.pdf?v=1 (accessed on 24 January 2023).
- Kumuthini, J.; Zick, B.; Balasopoulou, A.; Chalikiopoulou, C.; Dandara, C.; El-Kamah, G.; Findley, L.; Katsila, T.; Li, R.; Maceda, E.B.; et al. The clinical utility of polygenic risk scores in genomic medicine practices: A systematic review. Hum. Genet. 2022, 141, 1697–1704. [Google Scholar] [CrossRef] [PubMed]
- Lewis, C.M.; Vassos, E. Polygenic risk scores: From research tools to clinical instruments. Genome Med. 2020, 12, 44. [Google Scholar] [CrossRef]
- Privé, F.; Aschard, H.; Carmi, S.; Folkersen, L.; Hoggart, C.; O’Reilly, P.F.; Vilhjálmsson, B.J. Portability of 245 polygenic scores when derived from the UK Biobank and applied to 9 ancestry groups from the same cohort. Am. J. Hum. Genet. 2022, 109, 12–23, Erratum in Am. J. Hum. Genet. 2022, 109, 373. [Google Scholar] [CrossRef] [PubMed]
- Craig, S.J.C.; Kenney, A.M.; Lin, J.; Paul, I.M.; Birch, L.L.; Savage, J.S.; Marini, M.E.; Chiaromonte, F.; Reimherr, M.L.; Makova, K.D. Constructing a polygenic risk score for childhood obesity using functional data analysis. Econom Stat. 2023, 25, 66–86. [Google Scholar] [CrossRef]
- Janssens, A.C.J.W. Validity of polygenic risk scores: Are we measuring what we think we are? Hum. Mol. Genet. 2019, 28, R143–R150. [Google Scholar] [CrossRef]
- Kalafati, I.P.; Dimitriou, M.; Borsa, D.; Vlachogiannakos, J.; Revenas, K.; Kokkinos, A.; Ladas, S.D.; Dedoussis, G.V. Fish intake interacts with TM6SF2 gene variant to affect NAFLD risk: Results of a case-control study. Eur. J. Nutr. 2019, 58, 1463–1473. [Google Scholar] [CrossRef]
- Kalafati, I.P.; Borsa, D.; Dimitriou, M.; Revenas, K.; Kokkinos, A.; Dedoussis, G.V. Dietary patterns and non-alcoholic fatty liver disease in a Greek case-control study. Nutrition 2019, 61, 105–110. [Google Scholar] [CrossRef]
- Grigoriou, E.V.; Trovas, G.; Papaioannou, N.; Makras, P.; Kokkoris, P.; Dontas, I.; Makris, K.; Tournis, S.; Dedoussis, G.V. Serum 25-hydroxyvitamin D status, quantitative ultrasound parameters, and their determinants in Greek population. Arch. Osteoporos. 2018, 13, 111. [Google Scholar] [CrossRef] [PubMed]
- Theodoraki, E.V.; Nikopensius, T.; Suhorutsenko, J.; Peppes, V.; Fili, P.; Kolovou, G.; Papamikos, V.; Richter, D.; Zakopoulos, N.; Krjutškov, K.; et al. Fibrinogen beta variants confer protection against coronary artery disease in a Greek case-control study. BMC Med. Genet. 2010, 11, 28. [Google Scholar] [CrossRef]
- Marouli, E.; Kanoni, S.; Dimitriou, M.; Kolovou, G.; Deloukas, P.; Dedoussis, G. Lifestyle may modify the glucose-raising effect of genetic loci. A study in the Greek population. Nutr Metab Cardiovasc Dis. 2016, 26, 201–206. [Google Scholar] [CrossRef]
- Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.A.R.; Bender, D.; Maller, J.; Sklar, P.; de Bakker, P.I.W.; Daly, M.J.; et al. PLINK: A tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 2007, 81, 559–575. [Google Scholar] [CrossRef]
- Howie, B.N.; Donnelly, P.; Marchini, J. A flexible and accurate genotype imputation method for the next generation of genome-wide association studies. PLoS Genet. 2009, 5, e1000529. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Mitra, N.; Kanetsky, P.A.; Nathanson, K.L.; Rebbeck, T.R. A practical approach to adjusting for population stratification in genome-wide association studies: Principal components and propensity scores (PCAPS). Stat. Appl Genet. Mol. Biol. 2018, 17. [Google Scholar] [CrossRef] [PubMed]
- Biometris/statgenGWAS. 2022. Available online: https://github.com/Biometris/statgenGWAS/ (accessed on 7 December 2022.).
- Marchini, J.; Howie, B.; Myers, S.; McVean, G.; Donnelly, P. A new multipoint method for genome-wide association studies by imputation of genotypes. Nat. Genet. 2007, 39, 906–913. [Google Scholar] [CrossRef]
- Choi, S.W.; O’Reilly, P.F. PRSice-2: Polygenic Risk Score software for biobank-scale data. Gigascience 2019, 8, giz082. [Google Scholar] [CrossRef]
- Mostafavi, H.; Harpak, A.; Agarwal, I.; Conley, D.; Pritchard, J.K.; Przeworski, M. Variable prediction accuracy of polygenic scores within an ancestry group. eLife 2020, 9, e48376. [Google Scholar] [CrossRef]
- Maraki, M.I.; Hatzimanolis, A.; Mourtzi, N.; Stefanis, L.; Yannakoulia, M.; Kosmidis, M.H.; Dardiotis, E.; Hadjigeorgiou, G.M.; Sakka, P.; Ramirez, A.; et al. Association of the Polygenic Risk Score With the Probability of Prodromal Parkinson’s Disease in Older Adults. Front. Mol. Neurosci. 2021, 14, 739571. [Google Scholar] [CrossRef]
- Rühlemann, M.C.; Hermes, B.M.; Bang, C.; Doms, S.; Moitinho-Silva, L.; Thingholm, L.B.; Frost, F.; Degenhardt, F.; Wittig, M.; Kässens, J.; et al. Genome-wide association study in 8,956 German individuals identifies influence of ABO histo-blood groups on gut microbiome. Nat. Genet. 2021, 53, 147–155. [Google Scholar] [CrossRef] [PubMed]
- Qin, Y.; Havulinna, A.S.; Liu, Y.; Jousilahti, P.; Ritchie, S.C.; Tokolyi, A.; Sanders, J.G.; Valsta, L.; Brożyńska, M.; Zhu, Q.; et al. Combined effects of host genetics and diet on human gut microbiota and incident disease in a single population cohort. Nat. Genet. 2022, 54, 134–142. [Google Scholar] [CrossRef] [PubMed]
- Aoun, A.; Darwish, F.; Hamod, N. The Influence of the Gut Microbiome on Obesity in Adults and the Role of Probiotics, Prebiotics, and Synbiotics for Weight Loss. Prev. Nutr. Food Sci. 2020, 25, 113–123. [Google Scholar] [CrossRef]
- Palmas, V.; Pisanu, S.; Madau, V.; Casula, E.; Deledda, A.; Cusano, R.; Uva, P.; Vascellari, S.; Loviselli, A.; Manzin, A.; et al. Gut microbiota markers associated with obesity and overweight in Italian adults. Sci. Rep. 2021, 11, 5532. [Google Scholar] [CrossRef] [PubMed]
- Liang, D.; Zhang, X.; Liu, Z.; Zheng, R.; Zhang, L.; Yu, D.; Shen, X. The Genus Parabacteroides Is a Potential Contributor to the Beneficial Effects of Truncal Vagotomy-Related Bariatric Surgery. Obes. Surg. 2022, 32, 1–11. [Google Scholar] [CrossRef]
- Jian, C.; Silvestre, M.P.; Middleton, D.; Korpela, K.; Jalo, E.; Broderick, D.; de Vos, W.M.; Fogelholm, M.; Taylor, M.W.; Raben, A.; et al. Gut microbiota predicts body fat change following a low-energy diet: A PREVIEW intervention study. Genome Med. 2022, 14, 54. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Liao, M.; Zhou, N.; Bao, L.; Ma, K.; Zheng, Z.; Wang, Y.; Liu, C.; Wang, W.; Wang, J.; et al. Parabacteroides distasonis Alleviates Obesity and Metabolic Dysfunctions via Production of Succinate and Secondary Bile Acids. Cell Rep. 2019, 26, 222–235.e5. [Google Scholar] [CrossRef]
- Okbay, A.; Baselmans, B.M.; De Neve, J.E.; Turley, P.; Nivard, M.G.; Fontana, M.A.; Meddens, S.F.; Linnér, R.K.; Rietveld, C.A.; Derringer, J.; et al. Genetic variants associated with subjective well-being, depressive symptoms, and neuroticism identified through genome-wide analyses. Nat. Genet. 2016, 48, 624–633. [Google Scholar] [CrossRef] [PubMed]
- Hara, M.; Hachiya, T.; Sutoh, Y.; Matsuo, K.; Nishida, Y.; Shimanoe, C.; Tanaka, K.; Shimizu, A.; Ohnaka, K.; Kawaguchi, T.; et al. Genomewide Association Study of Leisure-Time Exercise Behavior in Japanese Adults. Med. Sci. Sports Exerc. 2018, 50, 2433–2441. [Google Scholar] [CrossRef] [PubMed]
All | NAFLD | OSTEOS | THISEAS | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
All (n = 2075 for age, n = 2083 for BMI) | Men (n = 841) | Women (n = 1234 for age, n = 1242 for BMI) | All (n = 342) | Men (n = 140) | Women (n = 202) | All (n = 783 for age, n = 791 for BMI) | Men (n = 101) | Women (n = 682 for age, n = 690 for BMI) | All (n = 950) | Men (n = 600) | Women (n = 350) | |
Med (IQR) | ||||||||||||
Age | 53 (18) | 54 (19) | 52 (19) | 47 (18) | 44 (17) | 50 (16) | 50 (18) | 47 (28.5) | 51 (16.25) | 59 (19) | 58 (18.75) | 60 (21) |
BMI (kg/m2) | 27.38 (6.18) | 27.68 (5.34) | 27.02 (7.10) | 26.5 (6.23) | 26.8 (4.54) | 25.9 (6.98) | 26.91 (6.81) | 26.70 (5.13) | 26.94 7.01) | 27.81 (5.80) | 27.88 (5.43) | 27.77 (6.51) |
BMI < 18.5 kg/m2 | 18.5 kg/m2 ≤ BMI < 25 kg/m2 | 25 kg/m2 ≤ BMI < 30 kg/m2 | BMI ≥ 30 kg/m2 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
All | Men | Women | All | Men | Women | All | Men | Women | All | Men | Women | |
All | 15 | 0 | 15 | 614 | 193 | 421 | 875 | 405 | 470 | 579 | 243 | 336 |
NAFLD | 3 | 0 | 3 | 117 | 36 | 81 | 141 | 74 | 67 | 81 | 30 | 51 |
OSTEOS | 10 | 0 | 10 | 279 | 34 | 245 | 300 | 43 | 257 | 202 | 24 | 178 |
THISEAS | 2 | 0 | 2 | 218 | 123 | 95 | 434 | 288 | 146 | 296 | 189 | 107 |
Consortial Summary Statistics (GWAS Catalog) | Known Associated Traits | Unified Cohort Summary Statistics | ||||||
---|---|---|---|---|---|---|---|---|
SNP | Nearest gene | Position (Chr:bp) | Alleles | MAF | Effect Allele | Associated Traits | Effect allele | Beta 1 |
rs11668205 | IZUMO4 | 19:2096429-2099593 | G/A | 0.09 (A) | N/A | Abnormality of chromosome segregation | G | −0.32575 |
rs488248 | LOC728192 | 13:105944370 | C/A/T | 0.23 (C) | T | Response to docetaxel, antineoplastic agent | C | −0.17048 |
rs480039 | SLC35F3 | 1:234290732 | G/A/C/T | 0.37 (A) | N/A | Gut microbiome measurement | G | −0.17361 |
rs2288061 | RPL18P13 | 16:76135833 | G/A/C | 0.34 (A) | G | Delta-5 desaturase measurement | G | −0.17776 |
rs2807854 | HLX-AS1 | 1:220856499 | T/C/G | 0.25 (T) | T | LDL, apoB measurements | T | −0.13816 |
rs2955742 | TMEM266 | 15:76153791 | G/A | 0.10 (A) | A | Serum urea, cystatin c, creatinine, urate, glomerular filtration measurement | G | −0.19108 |
Rs2710804 | SEPT7,EEPD1 | 7:36044919 | T/C | 0.23 (C) | #N/A | Fibrinogen measurement | T | −0.1356 |
rs2710804 | N/A | 7:36044919 | T/C | 0.23 (C) | C | Serum alanine aminotransferase measurement | T | −0.1356 |
rs2710804 | N/A | 7:36044919 | T/C | 0.23 (C) | C | Lymphocyte count | T | −0.1356 |
rs2710804 | N/A | 7:36044919 | T/C | 0.23 (C) | C | Platelet count | T | −0.1356 |
rs2710804 | N/A | 7:36044919 | T/C | 0.23 (C) | C | Lymphocyte count | T | −0.1356 |
rs2710804 | KIAA1706 | 7:36044919 | T/C | 0.23 (C) | C | C-reactive protein measurement | T | −0.1356 |
rs2710804 | AC083864.3 | 7:36044919 | T/C | 0.23 (C) | C | Leukocyte count | T | −0.1356 |
rs2710804 | N/A | 7:36044919 | T/C | 0.23 (C) | C | Neutrophil count | T | −0.1356 |
rs2710804 | N/A | 7:36044919 | T/C | 0.23 (C) | C | Myeloid white cell count | T | −0.1356 |
rs2710804 | N/A | 7:36044919 | T/C | 0.23 (C) | N/A | Leukocyte count | T | −0.1356 |
rs2710804 | SEPT7, EEPD1 | 7:36044919 | T/C | 0.23 (C) | N/A | Fibrinogen measurement | T | −0.1356 |
rs2710804 | N/A | 7:36044919 | T/C | 0.23 (C) | C | Lymphocyte count | T | −0.1356 |
rs2710804 | N/A | 7:36044919 | T/C | 0.23 (C) | C | Platelet count | T | −0.1356 |
rs2710804 | N/A | 7:36044919 | T/C | 0.23 (C) | T | Platelet count | T | −0.1356 |
rs2710804 | N/A | 7:36044919 | T/C | 0.23 (C) | C | Leukocyte count | T | −0.1356 |
rs2710804 | AC083864.3 | 7:36044919 | T/C | 0.23 (C) | C | Neutrophil count | T | −0.1356 |
rs2710804 | N/A | 7:36044919 | T/C | 0.23 (C) | C | Serum albumin measurement | T | −0.1356 |
rs2710804 | N/A | 7:36044919 | T/C | 0.23 (C) | C | C-reactive protein measurement | T | −0.1356 |
rs2710804 | EEPD1 | 7:36044919 | T/C | 0.23 (C) | C | Fibrinogen measurement | T | −0.1356 |
rs2710804 | N/A | 7:36044919 | T/C | 0.23 (C) | C | Neutrophil count | T | −0.1356 |
rs2710804 | LOC101928618 | 7:36044919 | T/C | 0.23 (C) | T | Serum alanine aminotransferase measurement | T | −0.1356 |
rs2710804 | N/A | 7:36044919 | T/C | 0.23 (C) | C | Myeloid white cell count | T | −0.1356 |
rs2710804 | N/A | 7:36044919 | T/C | 0.23 (C) | C | Platelet count | T | −0.1356 |
rs2710804 | AC083864.3 | 7:36044919 | T/C | 0.23 (C) | C | Lymphocyte count | T | −0.1356 |
rs2710804 | AC083864.3 | 7:36044919 | T/C | 0.23 (C) | C | Platelet count | T | −0.1356 |
rs2710804 | AC083864.3 | 7:36044919 | T/C | 0.23 (C) | C | Platelet crit | T | −0.1356 |
rs2710804 | N/A | 7:36044919 | T/C | 0.23 (C) | C | Neutrophil count | T | −0.1356 |
rs2251188 | ZNF12, ZNF316 | 7:6664701 | A/C/G/T | 0.16 (A) | G | Basophil count, neutrophil count | A | 0.13807 |
rs7589592 | ENSG00000237720 | 2:2709171 | T/A/C | 0.41 (C) | N/A | Diffuse plaque measurement | T | 0.11391 |
rs1010304 | CHD6, EMILIN3 | 20:41473007 | A/G | 0.30 (G) | A | Memory performance, word list delayed recall measurement | A | −0.28657 |
rs12673506 | CHN2 | 7:29382170 | G/A | 0.24 (A) | A | Gut microbiome measurement | G | −0.185 |
rs17662327 | HNRNPA1P41,JAK2 | 9:4967587 | T/C/G | 0.16 (C) | T | Wellbeing measurement | T | 0.14714 |
rs2485662 | MEX3A/LMNA | 1:156113677 | T/C | 0.31 (T) | N/A | Triacylglycerol 48:1, triacylglycerol 50:2 measurements | T | 0.11601 |
rs4718965 | AUTS2 | 7:70575462 | C/A/T | 0.08 (C) | C | Cortical surface area measurement | C | 0.19049 |
rs9847987 | intergenic/CFAP20DC-DT | 3:59432807 | C/T | 0.20 (T) | T | Neuritic plaque measurement | C | 0.26274 |
rs10252228 | DPY19L1, NPSR1 | 7:34900427 | A/G | 0.29 (G) | G | Exercise | A | 0.12063 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kafyra, M.; Kalafati, I.P.; Dimitriou, M.; Grigoriou, E.; Kokkinos, A.; Rallidis, L.; Kolovou, G.; Trovas, G.; Marouli, E.; Deloukas, P.; et al. Robust Bioinformatics Approaches Result in the First Polygenic Risk Score for BMI in Greek Adults. J. Pers. Med. 2023, 13, 327. https://doi.org/10.3390/jpm13020327
Kafyra M, Kalafati IP, Dimitriou M, Grigoriou E, Kokkinos A, Rallidis L, Kolovou G, Trovas G, Marouli E, Deloukas P, et al. Robust Bioinformatics Approaches Result in the First Polygenic Risk Score for BMI in Greek Adults. Journal of Personalized Medicine. 2023; 13(2):327. https://doi.org/10.3390/jpm13020327
Chicago/Turabian StyleKafyra, Maria, Ioanna Panagiota Kalafati, Maria Dimitriou, Effimia Grigoriou, Alexandros Kokkinos, Loukianos Rallidis, Genovefa Kolovou, Georgios Trovas, Eirini Marouli, Panos Deloukas, and et al. 2023. "Robust Bioinformatics Approaches Result in the First Polygenic Risk Score for BMI in Greek Adults" Journal of Personalized Medicine 13, no. 2: 327. https://doi.org/10.3390/jpm13020327
APA StyleKafyra, M., Kalafati, I. P., Dimitriou, M., Grigoriou, E., Kokkinos, A., Rallidis, L., Kolovou, G., Trovas, G., Marouli, E., Deloukas, P., Moulos, P., & Dedoussis, G. V. (2023). Robust Bioinformatics Approaches Result in the First Polygenic Risk Score for BMI in Greek Adults. Journal of Personalized Medicine, 13(2), 327. https://doi.org/10.3390/jpm13020327