Alterations in Retinal Vessel Diameters in Patients with Retinal Vein Occlusion before and after Treatment with Intravitreal Ranibizumab
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Klein, R.; Klein, B.E.; Moss, S.E.; Meuer, S.M. The epidemiology of retinal vein occlusion: The Beaver Dam Eye Study. Trans. Am. Ophthalmol. Soc. 2000, 98, 133–143. [Google Scholar]
- Rogers, S.; McIntosh, R.L.; Cheung, N.; Lim, L.; Wang, J.J.; Mitchell, P.; Kowalski, J.W.; Nguyen, H.; Wong, T.Y. The Prevalence of Retinal Vein Occlusion: Pooled Data from Population Studies from the United States, Europe, Asia, and Australia. Ophthalmology 2010, 117, 313–319.e1. [Google Scholar] [CrossRef] [Green Version]
- Song, P.; Xu, Y.; Zha, M.; Zhang, Y.; Rudan, I. Global epidemiology of retinal vein occlusion: A systematic review and meta-analysis of prevalence, incidence, and risk factors. J. Glob. Health 2019, 9, 010427. [Google Scholar] [CrossRef]
- Scott, I.U.; Campochiaro, P.A.; Newman, N.J.; Biousse, V. Retinal vascular occlusions. Lancet 2020, 396, 1927–1940. [Google Scholar] [CrossRef]
- Ørskov, M.; Vorum, H.; Bjerregaard Larsen, T.; Vestergaard, N.; Lip, G.Y.H.; Bek, T.; Skjøth, F. A review of risk factors for retinal vein occlusions. Expert Rev Cardiovasc. Ther. 2022, 20, 761–772. [Google Scholar] [CrossRef]
- Green, W.R.; Chan, C.C.; Hutchins, G.M.; Terry, J.M. Central retinal vein occlusion: A prospective histopathologic study of 29 eyes in 28 cases. Trans Am. Ophthalmol Soc. 1981, 79, 371–422. [Google Scholar] [CrossRef]
- Hayreh, S.S.; Servais, G.E.; Virdi, P.S. Fundus lesions in malignant hypertension. IV. Focal intraretinal periarteriolar transudates. Ophthalmology 1986, 93, 60–73. [Google Scholar] [CrossRef]
- Rehak, J.; Rehak, M. Branch retinal vein occlusion: Pathogenesis, visual prognosis, and treatment modalities. Curr. Eye Res. 2008, 33, 111–131. [Google Scholar] [CrossRef]
- Zhao, J.; Sastry, S.M.; Sperduto, R.D.; Chew, E.Y.; Remaley, N.A. Arteriovenous crossing patterns in branch retinal vein occlusion. The Eye Disease Case-Control Study Group. Ophthalmology 1993, 100, 423–428. [Google Scholar] [CrossRef]
- Funk, M.; Kriechbaum, K.; Prager, F.; Benesch, T.; Georgopoulos, M.; Zlabinger, G.J.; Schmidt-Erfurth, U. Intraocular Concentrations of Growth Factors and Cytokines in Retinal Vein Occlusion and the Effect of Therapy with Bevacizumab. Investig. Ophthalmol. Vis. Sci. 2009, 50, 1025–1453. [Google Scholar] [CrossRef] [Green Version]
- Aiello, L.P.; Wong, J.S. Role of vascular endothelial growth factor in diabetic vascular complications. Kidney Int Suppl. 2000, 77, S113–S119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tilton, R.G.; Chang, K.C.; LeJeune, W.S.; Stephan, C.C.; Brock, T.A.; Williamson, J.R. Role for nitric oxide in the hyperpermeability and hemodynamic changes induced by intravenous VEGF. Investig. Ophthalmol. Vis. Sci. 1999, 40, 689–696. [Google Scholar] [PubMed]
- Maar, N.; Luksch, A.; Graebe, A.; Ergun, E.; Wimpissinger, B.; Tittl, M.; Vécsei, P.; Stur, M.; Schmetterer, L. Effect of laser photocoagulation on the retinal vessel diameter in branch and macular vein occlusion. Arch Ophthalmol. 2004, 122, 987–991. [Google Scholar] [CrossRef] [Green Version]
- Stefansson, E.; Landers, M.B., 3rd; Wolbarsht, M.L. Oxygenation and vasodilatation in relation to diabetic and other proliferative retinopathies. Ophthalmic Surg. 1983, 14, 209–226. [Google Scholar] [CrossRef]
- Chatziralli, I.; Nicholson, L.; Sivaprasad, S.; Hykin, P. Intravitreal steroid and anti-vascular endothelial growth agents for the management of retinal vein occlusion: Evidence from randomized trials. Expert Opin. Biol. Ther. 2015, 15, 1685–1697. [Google Scholar] [CrossRef] [PubMed]
- Arnarsson, A.; Stefansson, E. Laser treatment and the mechanism of edema reduction in branch retinal vein occlusion. Investig. Ophthalmol. Vis. Sci. 2000, 41, 877–879. [Google Scholar] [PubMed]
- Sacu, S.; Pemp, B.; Weigert, G.; Matt, G.; Garhofer, G.; Pruente, C.; Schmetterer, L.; Schmidt-Erfurth, U. Response of Retinal Vessels and Retrobulbar Hemodynamics to Intravitreal Anti-VEGF Treatment in Eyes with Branch Retinal Vein Occlusion. Investig. Ophthalmol. Vis. Sci. 2011, 52, 3046–3050. [Google Scholar] [CrossRef] [Green Version]
- Corvi, F.; La Spina, C.; Benatti, L.; Querques, L.; Lattanzio, R.; Bandello, F.; Querques, G. Impact of Intravitreal Ranibizumab on Vessel Functionality in Patients With Retinal Vein Occlusion. Am. J. Ophthalmol. 2015, 160, 45–52.e1. [Google Scholar] [CrossRef]
- Nagaoka, T.; Sogawa, K.; Yoshida, A. Changes in retinal blood flow in patients with macular edema secondary to branch retinal vein occlusion before and after intravitreal injection of bevacizumab. Retina 2014, 34, 2037–2043. [Google Scholar] [CrossRef] [Green Version]
- Yilmaz Tugan, B.; Karabas, L.; Ozkan, B. Impact of Intravitreal Dexamethasone Implant on Vessel Diameters in Patients with Retinal Vein Occlusion. J. Ophthalmol 2019, 2019, 3982428. [Google Scholar] [CrossRef] [Green Version]
- Eibenberger, K.; Schmetterer, L.; Rezar-Dreindl, S.; Wozniak, P.; Told, R.; Mylonas, G.; Krall, C.; Schmidt-Erfurth, U.; Sacu, S. Effects of Intravitreal Dexamethasone Implants on Retinal Oxygen Saturation, Vessel Diameter, and Retrobulbar Blood Flow Velocity in ME Secondary to RVO. Investig. Ophthalmol. Vis. Sci. 2017, 58, 5022. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jurgens, C.; Ittermann, T.; Volzke, H.; Tost, F. Comparison of two non-mydriatic fundus cameras to obtain retinal arterio-venous ratio. Ophthalmic Epidemiol. 2014, 21, 333–338. [Google Scholar] [CrossRef]
- Knudtson, M.D.; Lee, K.E.; Hubbard, L.D.; Wong, T.Y.; Klein, R.; Klein, B.E. Revised formulas for summarizing retinal vessel diameters. Curr. Eye Res. 2003, 27, 143–149. [Google Scholar] [CrossRef] [PubMed]
- Fukumura, D.; Gohongi, T.; Kadambi, A.; Izumi, Y.; Ang, J.; Yun, C.-O.; Buerk, D.G.; Huang, P.L.; Jain, R.K. Predominant role of endothelial nitric oxide synthase in vascular endothelial growth factor-induced angiogenesis and vascular permeability. Proc. Natl. Acad. Sci. USA 2001, 98, 2604–2609. [Google Scholar] [CrossRef] [Green Version]
- Argon laser scatter photocoagulation for prevention of neovascularization and vitreous hemorrhage in branch vein occlusion. A randomized clinical trial. Branch Vein Occlusion Study Group. Arch Ophthalmol. 1986, 104, 34–41. [CrossRef] [PubMed]
- Stefansson, E. The therapeutic effects of retinal laser treatment and vitrectomy. A theory based on oxygen and vascular physiology. Acta Ophthalmol Scand. 2001, 79, 435–440. [Google Scholar] [CrossRef] [PubMed]
- Mendrinos, E.; Mangioris, G.; Papadopoulou, D.N.; Donati, G.; Pournaras, C.J. Long-term results of the effect of intravitreal ranibizumab on the retinal arteriolar diameter in patients with neovascular age-related macular degeneration. Acta Ophthalmol 2013, 91, e184–e190. [Google Scholar] [CrossRef]
- Fontaine, O.; Olivier, S.; Descovich, D.; Cordahi, G.; Vaucher, E.; Lesk, M.R. The effect of intravitreal injection of bevacizumab on retinal circulation in patients with neovascular macular degeneration. Investig. Ophthalmol. Vis.. Sci. 2011, 52, 7400–7405. [Google Scholar] [CrossRef] [Green Version]
- Sabaner, M.C.; Dogan, M.; Duman, R. Effect of intravitreal aflibercept treatment on retinal vessel parameters in diabetic macular oedema: Arteriolar vasoconstriction. Cutan Ocul. Toxicol. 2019, 38, 267–273. [Google Scholar] [CrossRef]
- Kurt, M.M.; Cekic, O.; Akpolat, C.; Elcioglu, M. Effects of Intravitreal Ranibizumab and Bevacizumab on the Retinal Vessel Size in Diabetic Macular Edema. Retina 2018, 38, 1120–1126. [Google Scholar] [CrossRef]
- Soliman, W.; Vinten, M.; Sander, B.; Soliman, K.A.E.-N.; Yehya, S.; Rahman, M.S.A.; Larsen, M. Optical coherence tomography and vessel diameter changes after intravitreal bevacizumab in diabetic macular oedema. Acta Ophthalmol. 2008, 86, 365–371. [Google Scholar] [CrossRef] [PubMed]
- Asikgarip, N.; Yenerel, N.M. Comparison of the effects of intravitreal ranibizumab and aflibercept on retinal vessel diameters in patients with diabetic macular edema. Photodiagnosis Photodyn Ther. 2021, 34, 102282. [Google Scholar] [CrossRef] [PubMed]
- Tatlipinar, S.; Dinc, U.A.; Yenerel, N.M.; Gorgun, E. Short-term effects of a single intravitreal bevacizumab injection on retinal vessel calibre. Clin. Exp. Optom. 2012, 95, 94–98. [Google Scholar] [CrossRef] [PubMed]
- Terai, N.; Spoerl, E.; Pillunat, L.E.; Stodtmeister, R. The effect of caffeine on retinal vessel diameter in young healthy subjects. Acta Ophthalmol. 2012, 90, e524–e528. [Google Scholar] [CrossRef]
- Garhofer, G.; Vilser, W. Measurement of retinal vessel diameters. In Ocular Blood Flow; Schmetterer, L., Kiel, J.W., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 102–107. [Google Scholar]
N = 16 Patients/17 Eyes | |
---|---|
Age (years, mean ± SD) | 67 ± 10.2 |
Gender (N, %) Male Female | 9 (56.3%) 7 (43.7%) |
Retinal vein occlusion type (N, %) Central Branch | 6 (37.5%) 10 (62.5%) |
Best-corrected visual acuity (decimal, mean ± SD) | 0.28 ± 0.13 |
Central subfield thickness (μm, mean ± SD) | 427.4 ± 63.7 |
Before | After | p-Value | |
---|---|---|---|
Retinal vein occlusion (n = 16) | |||
CRAE (μm) | 215.2 ± 11.2 | 201.2 ± 11.1 | <0.001 |
CRVE (μm) | 233.8 ± 29.6 | 207.6 ± 21.7 | <0.001 |
AVR | 0.93 ± 0.10 | 0.98 ± 0.12 | 0.107 |
Branch retinal vein occlusion (n = 10) | |||
CRAE (μm) | 215.8 ± 10.3 | 203.6 ± 10.3 | 0.002 |
CRVE (μm) | 221.0 ± 15.6 | 197.2 ± 12.2 | <0.001 |
AVR | 0.98 ± 0.07 | 1.04 ± 0.09 | 0.043 |
Central retinal vein occlusion (n = 6) | |||
CRAE (μm) | 214.4 ± 14.2 | 197.5 ± 11.9 | 0.007 |
CRVE (μm) | 253.5 ± 35.5 | 223.7 ± 23.7 | 0.031 |
AVR | 0.86 ± 0.10 | 0.89 ± 0.10 | 0.434 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aissopou, E.; Protogerou, A.; Theodossiadis, P.; Sfikakis, P.P.; Chatziralli, I. Alterations in Retinal Vessel Diameters in Patients with Retinal Vein Occlusion before and after Treatment with Intravitreal Ranibizumab. J. Pers. Med. 2023, 13, 351. https://doi.org/10.3390/jpm13020351
Aissopou E, Protogerou A, Theodossiadis P, Sfikakis PP, Chatziralli I. Alterations in Retinal Vessel Diameters in Patients with Retinal Vein Occlusion before and after Treatment with Intravitreal Ranibizumab. Journal of Personalized Medicine. 2023; 13(2):351. https://doi.org/10.3390/jpm13020351
Chicago/Turabian StyleAissopou, Evaggelia, Athanasios Protogerou, Panagiotis Theodossiadis, Petros P. Sfikakis, and Irini Chatziralli. 2023. "Alterations in Retinal Vessel Diameters in Patients with Retinal Vein Occlusion before and after Treatment with Intravitreal Ranibizumab" Journal of Personalized Medicine 13, no. 2: 351. https://doi.org/10.3390/jpm13020351
APA StyleAissopou, E., Protogerou, A., Theodossiadis, P., Sfikakis, P. P., & Chatziralli, I. (2023). Alterations in Retinal Vessel Diameters in Patients with Retinal Vein Occlusion before and after Treatment with Intravitreal Ranibizumab. Journal of Personalized Medicine, 13(2), 351. https://doi.org/10.3390/jpm13020351