High Complication Rate and High Percentage of Regressing Radiolucency in Magnesium Screw Fixation in 18 Consecutive Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics
2.2. Patients
2.3. Methods
2.4. Screws
2.5. Statistics
3. Results
3.1. Radiolucency
3.2. Material Failure
3.3. Infection
3.4. Re-Operation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Böstman, O.M.; Pihlajamäki, H.K. Adverse Tissue Reactions to Bioabsorbable Fixation Devices. Clin. Orthop. Relat. Res. 2000, 371, 216–227. [Google Scholar] [CrossRef] [Green Version]
- Speer, K.P.; Warren, R.F. Arthroscopic shoulder stabilization. A role for biodegradable materials. Clin. Orthop. Relat. Res. 1993, 291, 67–74, From NLM. [Google Scholar] [CrossRef]
- Barber, F.A. Complications of Biodegradable Materials. Sports Med. Arthrosc. Rev. 2015, 23, 149–155. [Google Scholar] [CrossRef]
- Biber, R.; Pauser, J.; Brem, M.; Bail, H.J. Bioabsorbable metal screws in traumatology: A promising innovation. Trauma Case Rep. 2017, 8, 11–15. [Google Scholar] [CrossRef]
- Pisecky, L.; Luger, M.; Klasan, A.; Gotterbarm, T.; Klotz, M.C.; Hochgatterer, R. Bioabsorbable implants in forefoot surgery: A review of materials, possibilities and disadvantages. EFORT Open Rev. 2021, 6, 1132–1139. [Google Scholar] [CrossRef]
- Staiger, M.P.; Pietak, A.M.; Huadmai, J.; Dias, G. Magnesium and its alloys as orthopedic biomaterials: A review. Biomaterials 2006, 27, 1728–1734, From NLM. [Google Scholar] [CrossRef]
- Farraro, K.F.; Kim, K.E.; Woo, S.L.; Flowers, J.R.; McCullough, M.B. Revolutionizing orthopaedic biomaterials: The potential of biodegradable and bioresorbable magnesium-based materials for functional tissue engineering. J. Biomech. 2014, 47, 1979–1986, From NLM. [Google Scholar] [CrossRef] [Green Version]
- Windhagen, H.; Radtke, K.; Weizbauer, A.; Diekmann, J.; Noll, Y.; Kreimeyer, U.; Schavan, R.; Stukenborg-Colsman, C.; Waizy, H. Biodegradable magnesium-based screw clinically equivalent to titanium screw in hallux valgus surgery: Short term results of the first prospective, randomized, controlled clinical pilot study. Biomed. Eng. Online 2013, 12, 62. [Google Scholar] [CrossRef] [Green Version]
- Plaass, C.; Modrejewski, C.; Ettinger, S.; Noll, Y.; Claassen, L.; Daniilidis, K.; Belenko, L.; Windhagen, H.; Stukenborg-Colsman, C. Short-term results after distal metatarsal osteotomies for hallux valgus, using a biodegradable magnesium-implant. Fuß Sprunggelenk 2015, 13, 156–161. [Google Scholar] [CrossRef]
- Plaass, C.; Ettinger, S.; Sonnow, L.; Koenneker, S.; Noll, Y.; Weizbauer, A.; Reifenrath, J.; Claassen, L.; Daniilidis, K.; Stukenborg-Colsman, C. Early results using a biodegradable magnesium screw for modified chevron osteotomies. J. Orthop. Res.® 2016, 34, 2207–2214. [Google Scholar] [CrossRef] [Green Version]
- Klauser, H. Internal fixation of three-dimensional distal metatarsal I osteotomies in the treatment of hallux valgus deformities using biodegradable magnesium screws in comparison to titanium screws. Foot Ankle Surg. 2018, 25, 398–405. [Google Scholar] [CrossRef]
- Atkinson, H.D.; Khan, S.; Lashgari, Y.; Ziegler, A. Hallux valgus correction utilising a modified short scarf osteotomy with a magnesium biodegradable or titanium compression screws - a comparative study of clinical outcomes. BMC Musculoskelet. Disord. 2019, 20, 334, From NLM. [Google Scholar] [CrossRef] [Green Version]
- Wendelstein, J.; Holzbauer, M.; Neubauer, M.; Steiner, G.; Gruber, F.; Schneider, W. Matched retrospective analysis of three different fixation devices for chevron osteotomy. Foot (Edinb) 2021, 47, 101779, From NLM. [Google Scholar] [CrossRef]
- Stürznickel, J.; Delsmann, M.M.; Jungesblut, O.D.; Stücker, R.; Knorr, C.; Rolvien, T.; Kertai, M.; Rupprecht, M. Safety and performance of biodegradable magnesium-based implants in children and adolescents. Injury 2021, 52, 2265–2271. [Google Scholar] [CrossRef]
- Delsmann, M.M.; Stürznickel, J.; Kertai, M.; Stücker, R.; Rolvien, T.; Rupprecht, M. Radiolucent zones of biodegradable magnesium-based screws in children and adolescents—a radiographic analysis. Arch. Orthop. Trauma Surg. 2022. [Google Scholar] [CrossRef]
- Heye, P.; Matissek, C.; Seidl, C.; Varga, M.; Kassai, T.; Jozsa, G.; Krebs, T. Making Hardware Removal Unnecessary by Using Resorbable Implants for Osteosynthesis in Children. Children 2022, 9, 471. [Google Scholar] [CrossRef]
- Acar, B.; Kose, O.; Unal, M.; Turan, A.; Kati, Y.A.; Guler, F. Comparison of magnesium versus titanium screw fixation for biplane chevron medial malleolar osteotomy in the treatment of osteochondral lesions of the talus. Eur. J. Orthop. Surg. Traumatol. 2020, 30, 163–173. [Google Scholar] [CrossRef]
- Plaass, C.; von Falck, C.; Ettinger, S.; Sonnow, L.; Calderone, F.; Weizbauer, A.; Reifenrath, J.; Claassen, L.; Waizy, H.; Daniilidis, K.; et al. Bioabsorbable magnesium versus standard titanium compression screws for fixation of distal metatarsal osteotomies – 3 year results of a randomized clinical trial. J. Orthop. Sci. 2018, 23, 321–327. [Google Scholar] [CrossRef]
- Kose, O.; Turan, A.; Unal, M.; Acar, B.; Guler, F. Fixation of medial malleolar fractures with magnesium bioabsorbable headless compression screws: Short-term clinical and radiological outcomes in eleven patients. Arch. Orthop. Trauma Surg. 2018, 138, 1069–1075. [Google Scholar] [CrossRef]
- May, H.; Kati, Y.A.; Gumussuyu, G.; Emre, T.Y.; Unal, M.; Kose, O. Bioabsorbable magnesium screw versus conventional titanium screw fixation for medial malleolar fractures. J. Orthop. Traumatol. 2020, 21, 9. [Google Scholar] [CrossRef]
- Yang, Y.; He, C.; Dianyu, E.; Yang, W.; Qi, F.; Xie, D.; Shen, L.; Peng, S.; Shuai, C. Mg bone implant: Features, developments and perspectives. Mater. Des. 2020, 185, 108259. [Google Scholar] [CrossRef]
- Witte, F. Reprint of: The history of biodegradable magnesium implants: A review. Acta Biomater. 2015, 23, S28–S40. [Google Scholar] [CrossRef]
- Noviana, D.; Paramitha, D.; Ulum, M.F.; Hermawan, H. The effect of hydrogen gas evolution of magnesium implant on the postimplantation mortality of rats. J. Orthop. Transl. 2016, 5, 9–15. [Google Scholar] [CrossRef] [Green Version]
- Könneker, S.; Krockenberger, K.; Pieh, C.; Von Falck, C.; Brandewiede, B.; Vogt, P.M.; Kirschner, M.H.; Ziegler, A. Comparison of SCAphoid fracture osteosynthesis by MAGnesium-based headless Herbert screws with titanium Herbert screws: Protocol for the randomized controlled SCAMAG clinical trial. BMC Musculoskelet. Disord. 2019, 20, 1–11. [Google Scholar] [CrossRef]
- Seitz, J.-M.; Lucas, A.; Kirschner, M. Magnesium-Based Compression Screws: A Novelty in the Clinical Use of Implants. Jom 2016, 68, 1177–1182. [Google Scholar] [CrossRef]
- Talbert, T.W.; Green, J.R.; Mukherjee, D.P.; Ogden, A.L.; Mayeux, R.H. Bioabsorbable screw fixation in coracoclavicular ligament reconstruction. J. Long Term Eff. Med. Implants 2003, 13, 319–323, From NLM. [Google Scholar] [CrossRef] [Green Version]
- Virtanen, K.J.; Remes, V.M.; Tulikoura, I.T.; Pajarinen, J.T.; Savolainen, V.T.; Björkenheim, J.M.; Paavola, M.P. Surgical treatment of Rockwood grade-V acromioclavicular joint dislocations: 50 patients followed for 15–22 years. Acta Orthop. From NLM. 2013, 84, 191–195. [Google Scholar] [CrossRef]
- Bockmann, B.; Jaeger, E.; Dankl, L.; Nebelung, W.; Frey, S.; Schmölz, W.; Schulte, T.L. A biomechanical comparison of steel screws versus PLLA and magnesium screws for the Latarjet procedure. Arch. Orthop. Trauma Surg. 2021, 142, 1091–1098. [Google Scholar] [CrossRef]
- Hurley, E.T.; Schwartz, L.B.; Mojica, E.S.; Campbell, K.A.; Matache, B.A.; Meislin, R.J.; Jazrawi, L. Short-term complications of the Latarjet procedure: A systematic review. J. Shoulder Elb. Surg. 2021, 30, 1693–1699. [Google Scholar] [CrossRef]
Patient # | Sex (Male—0, Female—1) | Smoker (No—0, Yes—1) | Age (in Years) | Region of Surgery | BMI | Number of MAGNEZIX® CS Screws | 3-Month FU | 6-Month FU | 9-Month FU | Revision Surgery (No—0, Yes—1) | |||||||||||||
P | R | MF | I | P | R | MF | I | P | R | MF | I | ||||||||||||
1 | 1 | 1 | 43 | Elbow | 37.0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||||
2 | 0 | 1 | 39 | Shoulder | 33.6 | 2 | 3 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||||
3 | 1 | 0 | 40 | Elbow | 23.4 | 2 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||||
4 | 0 | 0 | 9 | Shoulder | 20.5 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||||
5 | 0 | 0 | 15 | Forearm | 21.2 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | ||||
6 | 0 | 0 | 55 | Shoulder | 29.0 | 2 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||||
7 | 0 | 0 | 42 | Shoulder | 28.9 | 1 | 3 | 0 | 0 | 1 | 2 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | ||||
8 | 0 | 1 | 21 | Shoulder | 35.9 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||||
9 | 0 | 0 | 25 | Shoulder | 24.0 | 2 | 3 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | ||||
10 | 0 | 1 | 25 | Shoulder | 25.1 | 2 | 2 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | ||||
11 | 0 | 0 | 24 | Shoulder | 25.1 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||||
12 | 1 | 0 | 29 | Foot | 18.3 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||||
13 | 0 | 1 | 27 | Shoulder | 27.4 | 2 | 3 | 1 | 0 | 0 | 6 | 1 | 0 | 0 | 4 | 1 | 1 | 0 | 0 | ||||
14 | 0 | 0 | 12 | Elbow | 18.8 | 2 | 0 | 0 | 1 | 0 | 2 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | ||||
15 | 1 | 0 | 63 | Ankle | 27.0 | 2 | 3 | 1 | 0 | 1 | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||||
16 | 1 | 0 | 39 | Knee | 22.6 | 2 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | ||||
17 | 0 | 0 | 81 | Shoulder | 25.5 | 4 | 2 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | ||||
18 | 0 | 0 | 64 | Shoulder | 24.0 | 2 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haslhofer, D.J.; Gotterbarm, T.; Klasan, A. High Complication Rate and High Percentage of Regressing Radiolucency in Magnesium Screw Fixation in 18 Consecutive Patients. J. Pers. Med. 2023, 13, 357. https://doi.org/10.3390/jpm13020357
Haslhofer DJ, Gotterbarm T, Klasan A. High Complication Rate and High Percentage of Regressing Radiolucency in Magnesium Screw Fixation in 18 Consecutive Patients. Journal of Personalized Medicine. 2023; 13(2):357. https://doi.org/10.3390/jpm13020357
Chicago/Turabian StyleHaslhofer, David J., Tobias Gotterbarm, and Antonio Klasan. 2023. "High Complication Rate and High Percentage of Regressing Radiolucency in Magnesium Screw Fixation in 18 Consecutive Patients" Journal of Personalized Medicine 13, no. 2: 357. https://doi.org/10.3390/jpm13020357
APA StyleHaslhofer, D. J., Gotterbarm, T., & Klasan, A. (2023). High Complication Rate and High Percentage of Regressing Radiolucency in Magnesium Screw Fixation in 18 Consecutive Patients. Journal of Personalized Medicine, 13(2), 357. https://doi.org/10.3390/jpm13020357