Digital TKA Alignment Training with a New Digital Simulation Tool (Knee-CAT) Improves Process Quality, Efficiency, and Confidence
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Performance
3.2. Efficiency
3.3. Confidence
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Inacio, M.C.S.; Graves, S.E.; Pratt, N.L.; Roughead, E.E.; Nemes, S. Increase in Total Joint Arthroplasty Projected from 2014 to 2046 in Australia: A Conservative Local Model with International Implications. Clin. Orthop. Relat. Res. 2017, 475, 2130–2137. [Google Scholar] [CrossRef] [Green Version]
- Bourne, R.B.; Chesworth, B.M.; Davis, A.M.; Mahomed, N.N.; Charron, K.D.J. Patient satisfaction after total knee arthroplasty: Who is satisfied and who is not? Clin. Orthop. Relat. Res. 2010, 468, 57–63. [Google Scholar] [CrossRef] [Green Version]
- Gunaratne, R.; Pratt, D.N.; Banda, J.; Fick, D.P.; Khan, R.J.K.; Robertson, B.W. Patient Dissatisfaction Following Total Knee Arthroplasty: A Systematic Review of the Literature. J. Arthroplast. 2017, 32, 3854–3860. [Google Scholar] [CrossRef]
- Kahlenberg, C.A.; Nwachukwu, B.U.; McLawhorn, A.S.; Cross, M.B.; Cornell, C.N.; Padgett, D.E. Patient Satisfaction After Total Knee Replacement: Satisfaction after hip. HSS J. 2018, 14, 192–201. [Google Scholar] [CrossRef] [Green Version]
- Thambiah, M.D.; Nathan, S.; Seow, B.Z.X.; Liang, S.; Lingaraj, K. Patient satisfaction after total knee arthroplasty: An Asian perspective. Singap. Med. J. 2015, 56, 259–263. [Google Scholar] [CrossRef] [Green Version]
- Manley, M.; Ong, K.; Lau, E.; Kurtz, S.M. Total knee arthroplasty survivorship in the United States Medicare population: Effect of hospital and surgeon procedure volume. J. Arthroplast. 2009, 24, 1061–1067. [Google Scholar] [CrossRef]
- Ravi, B.; Jenkinson, R.; Austin, P.C.; Croxford, R.; Wasserstein, D.; Escott, B.; Paterson, J.M.; Kreder, H.; Hawker, G.A. Relation between surgeon volume and risk of complications after total hip arthroplasty: Propensity score matched cohort study. BMJ 2014, 348, g3284. [Google Scholar] [CrossRef] [Green Version]
- Marchand, R.C.; Sodhi, N.; Khlopas, A.; Sultan, A.A.; Higuera, C.A.; Stearns, K.L.; Mont, M.A. Coronal Correction for Severe Deformity Using Robotic-Assisted Total Knee Arthroplasty. J. Knee Surg. 2018, 31, 2–5. [Google Scholar] [CrossRef]
- Mason, J.B.; Fehring, T.K.; Estok, R.; Banel, D.; Fahrbach, K. Meta-analysis of alignment outcomes in computer-assisted total knee arthroplasty surgery: Accuracy of cas. J. Arthroplast. 2007, 22, 1097–1106. [Google Scholar] [CrossRef]
- Mehliß, V.; Strauch Leira, M.; Serrano Olaizola, A.; Scior, W.; Graichen, H. Proven accuracy for a new dynamic gap measurement in navigated TKA. Knee Surg. Sports Traumatol. Arthrosc. 2019, 27, 1189–1195. [Google Scholar] [CrossRef]
- Takasaki, M.; Matsuda, S.; Fukagawa, S.; Mitsuyasu, H.; Miura, H.; Iwamoto, Y. Accuracy of image-free navigation for severely deformed knees: Accuracy of cas 2. Knee Surg. Sports Traumatol. Arthrosc. 2010, 18, 763–768. [Google Scholar] [CrossRef]
- Patrick, N.J.; Man, L.L.C.; Wai-Wang, C.; Tim-Yun, O.M.; Wing, C.K.; Hing, C.K.; Yin, C.K.; Ki-Wai, H.K. No difference in long-term functional outcomes or survivorship after total knee arthroplasty with or without computer navigation: No difference in cas. Knee Surg. Relat. Res. 2021, 33, 30. [Google Scholar] [CrossRef]
- De Steiger, R.N.; Liu, Y.-L.; Graves, S.E. Computer navigation for total knee arthroplasty reduces revision rate for patients less than sixty-five years of age: Lower revision rate for cas aus. J. Bone Joint Surg. Am. 2015, 97, 635–642. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bellemans, J.; Colyn, W.; Vandenneucker, H.; Victor, J. The Chitranjan Ranawat award: CV. Clin. Orthop. Relat. Res. 2012, 470, 45–53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Graichen, H.; Lekkreusuwan, K.; Eller, K.; Grau, T.; Hirschmann, M.T.; Scior, W. A single type of varus knee does not exist: Morphotyping and gap analysis in varus OA. Knee Surg. Sports Traumatol. Arthrosc. 2022, 30, 2600–2608. [Google Scholar] [CrossRef] [PubMed]
- Thienpont, E.; Schwab, P.E.; Cornu, O.; Bellemans, J.; Victor, J. Bone morphotypes of the varus and valgus knee. Arch. Orthop. Trauma Surg. 2017, 137, 393–400. [Google Scholar] [CrossRef]
- Hazratwala, K.; O’Callaghan, W.B.; Dhariwal, S.; Wilkinson, M.P.R. Wide variation in tibial slopes and trochlear angles in the arthritic knee: A CT evaluation of 4116 pre-operative knees. Knee Surg. Sports Traumatol. Arthrosc. 2022, 30, 3049–3060. [Google Scholar] [CrossRef]
- Eller, K.; Scior, W.; Graichen, H. Dynamic gap analysis of valgus knees shows large inter-individual variability of gaps. Knee Surg. Sports Traumatol. Arthrosc. 2022, 9, 1–7. [Google Scholar] [CrossRef]
- Hirschmann, M.T.; Moser, L.B.; Amsler, F.; Behrend, H.; Leclerq, V.; Hess, S. Functional knee phenotypes: A novel classification for phenotyping the coronal lower limb alignment based on the native alignment in young non-osteoarthritic patients. Knee Surg. Sports Traumatol. Arthrosc. 2019, 27, 1394–1402. [Google Scholar] [CrossRef]
- Graichen, H.; Luderer, V.; Strauch, M.; Hirschmann, M.T.; Scior, W. Navigated, gap-balanced, adjusted mechanical alignment achieves alignment and balancing goals in a very high percentage but with partially non-anatomical resections. Knee Surg. Sports Traumatol. Arthrosc. 2022. [CrossRef] [PubMed]
- Hazratwala, K.; Brereton, S.G.; Grant, A.; Dlaska, C.E. Computer-Assisted Technologies in Arthroplasty: Navigating Your Way Today. JBJS Rev. 2020, 8, e0157. [Google Scholar] [CrossRef] [PubMed]
- Goodman, S.B.; Mihalko, W.M.; Anderson, P.A.; Sale, K.; Bozic, K.J. Introduction of New Technologies in Orthopaedic Surgery. JBJS Rev. 2016, 4, e5. [Google Scholar] [CrossRef] [PubMed]
- Harris, J.D.; Staheli, G.; LeClere, L.; Andersone, D.; McCormick, F. What effects have resident work-hour changes had on education, quality of life, and safety? A systematic review. Clin. Orthop. Relat. Res. 2015, 473, 1600–1608. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, G.C.; Smith, C.C.; Gordon, C.E.; Feller-Kopman, D.J.; Davis, R.B.; Phillips, R.S.; Weingart, S.N. Beyond the comfort zone: Residents assess their comfort performing inpatient medical procedures. Am. J. Med. 2006, 119, 71.e17–71.e24. [Google Scholar] [CrossRef] [PubMed]
- Magill, P.; Blaney, J.; Hill, J.C.; Bonnin, M.P.; Beverland, D.E. Impact of a learning curve on the survivorship of 4802 cementless total hip arthroplasties. Bone Joint J. 2016, 98, 1589–1596. [Google Scholar] [CrossRef]
- Manzotti, A.; Cerveri, P.; de Momi, E.; Pullen, C.; Confalonieri, N. Relationship between cutting errors and learning curve in computer-assisted total knee replacement: Training cas 2. Int. Orthop. 2010, 34, 655–662. [Google Scholar] [CrossRef] [Green Version]
- Peltola, M.; Malmivaara, A.; Paavola, M. Learning curve for new technology?: A nationwide register-based study of 46,363 total knee arthroplasties. J. Bone Joint Surg. Am. 2013, 95, 2097–2103. [Google Scholar] [CrossRef] [PubMed]
- Luring, C.; Hüfner, T.; Perlick, L.; Bäthis, H.; Krettek, C.; Grifka, J. The effectiveness of sequential medial soft tissue release on coronal alignment in total knee arthroplasty: Using a computer navigation model. J. Arthroplast. 2006, 21, 428–434. [Google Scholar] [CrossRef] [PubMed]
- Mullaji, A.; Sharma, A.; Marawar, S.; Kanna, R. Quantification of effect of sequential posteromedial release on flexion and extension gaps: Medial release 2. J. Arthroplast. 2009, 24, 795–805. [Google Scholar] [CrossRef] [PubMed]
- Niki, Y.; Harato, K.; Nagai, K.; Suda, Y.; Nakamura, M.; Matsumoto, M. Effects of Reduction Osteotomy on Gap Balancing During Total Knee Arthroplasty for Severe Varus Deformity: Reduction ot medial release. J. Arthroplast. 2015, 30, 2116–2120. [Google Scholar] [CrossRef] [PubMed]
- Tang, Q.; Yu, H.-C.; Shang, P.; Tang, S.-K.; Xu, H.-Z.; Liu, H.-X.; Zhang, Y. Selective medial soft tissue release combined with tibial reduction osteotomy in total knee arthroplasty: Medial release + treduction ot. J. Orthop. Surg. Res. 2017, 12, 174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Almaawi, A.M.; Hutt, J.R.B.; Masse, V.; Lavigne, M.; Vendittoli, P.-A. The Impact of Mechanical and Restricted Kinematic Alignment on Knee Anatomy in Total Knee Arthroplasty: KA RKA. J. Arthroplast. 2017, 32, 2133–2140. [Google Scholar] [CrossRef] [PubMed]
- Clatworthy, M. Patient-Specific TKA with the VELYS™ Robotic-Assisted Solution: PSA. Surg. Technol. Int. 2022, 40, 315–320. [Google Scholar] [CrossRef] [PubMed]
- Dossett, H.G.; Swartz, G.J.; Estrada, N.A.; LeFevre, G.W.; Kwasman, B.G. Kinematically versus mechanically aligned total knee arthroplasty: KA. Orthopedics 2012, 35, e160–e169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hollister, A.M.; Jatana, S.; Singh, A.K.; Sullivan, W.W.; Lupichuk, A.G. The axes of rotation of the knee: KA RKA. Clin. Orthop. Relat. Res. 1993, 290, 259–268. [Google Scholar] [CrossRef]
- Hommel, H.; Tsamassiotis, S.; Falk, R.; Fennema, P. Adjustiertes mechanisches Alignment: AMA 1. Orthopade 2020, 49, 562–569. [Google Scholar] [CrossRef]
- Howell, S.M. Calipered Kinematically Aligned Total Knee Arthroplasty: KA. Orthopedics 2019, 42, 126–135. [Google Scholar] [CrossRef]
- Hungerford, D.S.; Krackow, K.A. Total joint arthroplasty of the knee: AA. Clin. Orthop. Relat. Res. 1985, 192, 23–33. [Google Scholar] [CrossRef]
- Hutt, J.R.B.; LeBlanc, M.-A.; Massé, V.; Lavigne, M.; Vendittoli, P.-A. Kinematic TKA using navigation: KA. Orthop. Traumatol. Surg. Res. 2016, 102, 99–104. [Google Scholar] [CrossRef]
- Insall, J.; Ranawat, C.S.; Scott, W.N.; Walker, P. Total condylar knee replacement: MA Preliminary report. 1976. Clin. Orthop. Relat. Res. 2001, 388, 3–6. [Google Scholar] [CrossRef]
- Insall, J.N.; Binazzi, R.; Soudry, M.; Mestriner, L.A. Total knee arthroplasty: MA. Clin. Orthop. Relat. Res. 1985, 13–22. [Google Scholar] [CrossRef] [Green Version]
- Rivière, C.; Iranpour, F.; Auvinet, E.; Howell, S.; Vendittoli, P.-A.; Cobb, J.; Parratte, S. Alignment options for total knee arthroplasty: Ama 2. Orthop. Traumatol. Surg. Res. 2017, 103, 1047–1056. [Google Scholar] [CrossRef] [PubMed]
- Shatrov, J.; Battelier, C.; Sappey-Marinier, E.; Gunst, S.; Servien, E.; Lustig, S. Functional Alignment Philosophy in Total Knee Arthroplasty—Rationale and technique for the varus morphotype using a CT based robotic platform and individualized planning: FA. SICOT J. 2022, 8, 11. [Google Scholar] [CrossRef] [PubMed]
- Winnock de Grave, P.; Kellens, J.; Luyckx, T.; Tampere, T.; Lacaze, F.; Claeys, K. Inverse Kinematic Alignment for Total Knee Arthroplasty: IKA. Orthop. Traumatol. Surg. Res. 2022, 108, 103305. [Google Scholar] [CrossRef] [PubMed]
- Winnock de Grave, P.; Luyckx, T.; Claeys, K.; Tampere, T.; Kellens, J.; Müller, J.; Gunst, P. Higher satisfaction after total knee arthroplasty using restricted inverse kinematic alignment compared to adjusted mechanical alignment: IKA. Knee Surg. Sports Traumatol. Arthrosc. 2022, 30, 488–499. [Google Scholar] [CrossRef]
- Shin, K.-H.; Jang, K.-M.; Han, S.-B. Residual varus alignment can reduce joint awareness, restore joint parallelism, and preserve the soft tissue envelope during total knee arthroplasty for varus osteoarthritis. Knee Surg. Sports Traumatol. Arthrosc. 2022, 30, 507–516. [Google Scholar] [CrossRef]
- Love, G.J.; Kinninmonth, A.W.G. Training benefits of computer navigated total knee arthroplasty: Training cas 1. Knee 2013, 20, 236–241. [Google Scholar] [CrossRef]
- Alpaugh, K.; Ast, M.P.; Haas, S.B. Immersive technologies for total knee arthroplasty surgical education. Arch. Orthop. Trauma Surg. 2021, 141, 2331–2335. [Google Scholar] [CrossRef]
- Polce, E.M.; Kunze, K.N.; Williams, B.T.; Krivicich, L.M.; Maheshwer, B.; Beletsky, A.; Cohn, M.R.; Kogan, M.; Chahla, J. Efficacy and Validity of Orthopaedic Simulators in Surgical Training: Orth surg training simulator meta. J. Am. Acad. Orthop. Surg. 2020, 28, 1027–1040. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Graichen, H.; Strauch, M.; Hirschmann, M.T.; Becker, R.; Lustig, S.; Clatworthy, M.; Jordaan, J.D.; Hazratwala, K.; von Eisenhart-Rothe, R.; Giesinger, K.; et al. Digital TKA Alignment Training with a New Digital Simulation Tool (Knee-CAT) Improves Process Quality, Efficiency, and Confidence. J. Pers. Med. 2023, 13, 213. https://doi.org/10.3390/jpm13020213
Graichen H, Strauch M, Hirschmann MT, Becker R, Lustig S, Clatworthy M, Jordaan JD, Hazratwala K, von Eisenhart-Rothe R, Giesinger K, et al. Digital TKA Alignment Training with a New Digital Simulation Tool (Knee-CAT) Improves Process Quality, Efficiency, and Confidence. Journal of Personalized Medicine. 2023; 13(2):213. https://doi.org/10.3390/jpm13020213
Chicago/Turabian StyleGraichen, Heiko, Marco Strauch, Michael T. Hirschmann, Roland Becker, Sébastien Lustig, Mark Clatworthy, Jacobus Daniel Jordaan, Kaushik Hazratwala, Rüdiger von Eisenhart-Rothe, Karlmeinrad Giesinger, and et al. 2023. "Digital TKA Alignment Training with a New Digital Simulation Tool (Knee-CAT) Improves Process Quality, Efficiency, and Confidence" Journal of Personalized Medicine 13, no. 2: 213. https://doi.org/10.3390/jpm13020213
APA StyleGraichen, H., Strauch, M., Hirschmann, M. T., Becker, R., Lustig, S., Clatworthy, M., Jordaan, J. D., Hazratwala, K., von Eisenhart-Rothe, R., Giesinger, K., & Calliess, T. (2023). Digital TKA Alignment Training with a New Digital Simulation Tool (Knee-CAT) Improves Process Quality, Efficiency, and Confidence. Journal of Personalized Medicine, 13(2), 213. https://doi.org/10.3390/jpm13020213