Patient Specific Instruments and Patient Individual Implants—A Narrative Review
Abstract
:1. Introduction
2. Knee Arthroplasty
3. Osteotomies
4. Shoulder Arthroplasty
5. Hip Arthroplasty
6. Total Ankle Arthroplasty (TAA)
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Haaker, R.G.; Tiedjen, K.; Ottersbach, A.; Rubenthaler, F.; Stockheim, M.; Stiehl, J.B. Comparison of conventional versus computer-navigated acetabular component insertion. J. Arthroplast. 2007, 22, 151–159. [Google Scholar] [CrossRef]
- Victor, J.; Van Doninck, D.; Labey, L.; Innocenti, B.; Parizel, P.M.; Bellemans, J. How precise can bony landmarks be determined on a CT scan of the knee? Knee 2009, 16, 358–365. [Google Scholar] [CrossRef] [Green Version]
- Haaker, R. Evolution of total knee arthroplasty. From robotics and navigation to patient-specific instruments. Orthopade 2016, 45, 280–285. [Google Scholar] [CrossRef]
- Ibrahim, M.S.; Khan, M.A.; Nizam, I.; Haddad, F.S. Peri-operative interventions producing better functional outcomes and enhanced recovery following total hip and knee arthroplasty: An evidence-based review. BMC Med. 2013, 11, 37. [Google Scholar] [CrossRef] [Green Version]
- Stronach, B.M.; Pelt, C.E.; Erickson, J.A.; Peters, C.L. Patient-specific instrumentation in total knee arthroplasty provides no improvement in component alignment. J. Arthroplast. 2014, 29, 1705–1708. [Google Scholar] [CrossRef]
- Voleti, P.B.; Hamula, M.J.; Baldwin, K.D.; Lee, G.C. Current data do not support routine use of patient-specific instrumentation in total knee arthroplasty. J. Arthroplast. 2014, 29, 1709–1712. [Google Scholar] [CrossRef]
- Sassoon, A.; Nam, D.; Nunley, R.; Barrack, R. Systematic review of patient-specific instrumentation in total knee arthroplasty: New but not improved. Clin. Orthop. Relat. Res. 2015, 473, 151–158. [Google Scholar] [CrossRef] [Green Version]
- Mannan, A.; Smith, T.O.; Sagar, C.; London, N.J.; Molitor, P.J. No demonstrable benefit for coronal alignment outcomes in PSI knee arthroplasty: A systematic review and meta-analysis. Orthop. Traumatol. Surg. Res. 2015, 101, 461–468. [Google Scholar] [CrossRef]
- Schotanus, M.G.M.; Thijs, E.; Heijmans, M.; Vos, R.; Kort, N.P. Favourable alignment outcomes with MRI-based patient-specific instruments in total knee arthroplasty. Knee Surg. Sport. Traumatol. Arthrosc. Off. J. ESSKA 2018, 26, 2659–2668. [Google Scholar] [CrossRef]
- Wu, X.D.; Xiang, B.Y.; Schotanus, M.G.M.; Liu, Z.H.; Chen, Y.; Huang, W. CT- versus MRI-based patient-specific instrumentation for total knee arthroplasty: A systematic review and meta-analysis. Surgeon 2017, 15, 336–348. [Google Scholar] [CrossRef]
- Thienpont, E.; Schwab, P.E.; Fennema, P. Efficacy of Patient-Specific Instruments in Total Knee Arthroplasty: A Systematic Review and Meta-Analysis. J. Bone Jt. Surg. Am. Vol. 2017, 99, 521–530. [Google Scholar] [CrossRef]
- Lin, Y.; Cai, W.; Xu, B.; Li, J.; Yang, Y.; Pan, X.; Fu, W. Patient-Specific or Conventional Instrumentations: A Meta-analysis of Randomized Controlled Trials. Biomed. Res. Int. 2020, 2020, 2164371. [Google Scholar] [CrossRef] [Green Version]
- Sotozawa, M.; Kumagai, K.; Yamada, S.; Nejima, S.; Inaba, Y. Patient-specific instrumentation for total knee arthroplasty improves reproducibility in the planned rotational positioning of the tibial component. J. Orthop. Surg. Res. 2022, 17, 403. [Google Scholar] [CrossRef]
- Tandogan, R.N.; Kort, N.P.; Ercin, E.; van Rooij, F.; Nover, L.; Saffarini, M.; Hirschmann, M.T.; Becker, R.; Dejour, D. Computer-assisted surgery and patient-specific instrumentation improve the accuracy of tibial baseplate rotation in total knee arthroplasty compared to conventional instrumentation: A systematic review and meta-analysis. Knee Surg. Sport. Traumatol. Arthrosc. Off. J. ESSKA 2022, 30, 2654–2665. [Google Scholar] [CrossRef]
- Mannan, A.; Smith, T.O. Favourable rotational alignment outcomes in PSI knee arthroplasty: A Level 1 systematic review and meta-analysis. Knee 2016, 23, 186–190. [Google Scholar] [CrossRef]
- Rudran, B.; Magill, H.; Ponugoti, N.; Williams, A.; Ball, S. Functional outcomes in patient specific instrumentation vs. conventional instrumentation for total knee arthroplasty; a systematic review and meta-analysis of prospective studies. BMC Musculoskelet. Disord. 2022, 23, 702. [Google Scholar] [CrossRef]
- Lei, K.; Liu, L.; Chen, X.; Feng, Q.; Yang, L.; Guo, L. Navigation and robotics improved alignment compared with PSI and conventional instrument, while clinical outcomes were similar in TKA: A network meta-analysis. Knee Surg. Sport. Traumatol. Arthrosc. Off. J. ESSKA 2022, 30, 721–733. [Google Scholar] [CrossRef]
- Thomas, S.; Patel, A.; Patrick, C.; Delhougne, G. Total Hospital Costs and Readmission Rate of Patient-Specific Instrument in Total Knee Arthroplasty Patients. J. Knee Surg. 2022, 35, 113–121. [Google Scholar] [CrossRef]
- Christen, B.; Tanner, L.; Ettinger, M.; Bonnin, M.P.; Koch, P.P.; Calliess, T. Comparative Cost Analysis of Four Different Computer-Assisted Technologies to Implant a Total Knee Arthroplasty over Conventional Instrumentation. J. Pers. Med. 2022, 12, 184. [Google Scholar] [CrossRef]
- Volpi, P.; Prospero, E.; Bait, C.; Cervellin, M.; Quaglia, A.; Redaelli, A.; Denti, M. High accuracy in knee alignment and implant placement in unicompartmental medial knee replacement when using patient-specific instrumentation. Knee Surg. Sport. Traumatol. Arthrosc. Off. J. ESSKA 2015, 23, 1292–1298. [Google Scholar] [CrossRef]
- Kerens, B.; Schotanus, M.G.; Boonen, B.; Kort, N.P. No radiographic difference between patient-specific guiding and conventional Oxford UKA surgery. Knee Surg. Sport. Traumatol. Arthrosc. Off. J. ESSKA 2015, 23, 1324–1329. [Google Scholar] [CrossRef]
- Jones, G.G.; Clarke, S.; Harris, S.; Jaere, M.; Aldalmani, T.; de Klee, P.; Cobb, J.P. A novel patient-specific instrument design can deliver robotic level accuracy in unicompartmental knee arthroplasty. Knee 2019, 26, 1421–1428. [Google Scholar] [CrossRef]
- Ollivier, M.; Parratte, S.; Lunebourg, A.; Viehweger, E.; Argenson, J.N. The John Insall Award: No Functional Benefit After Unicompartmental Knee Arthroplasty Performed with Patient-specific Instrumentation: A Randomized Trial. Clin. Orthop. Relat. Res. 2016, 474, 60–68. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Zeng, Y.; Wu, Y.; Liu, Y.; Wei, W.; Wu, L.; Peng, B.-q.; Li, J.; Shen, B. Patient-specific instrument for unicompartmental knee arthroplasty does not reduce the outliers in alignment or improve postoperative function: A meta-analysis and systematic review. Arch. Orthop. Trauma Surg. 2020, 140, 1097–1107. [Google Scholar] [CrossRef]
- Leenders, A.M.; Kort, N.P.; Koenraadt, K.L.M.; van Geenen, R.C.I.; Most, J.; Kerens, B.; Boonen, B.; Schotanus, M.G.M. Patient-specific instruments do not show advantage over conventional instruments in unicompartmental knee arthroplasty at 2 year follow-up: A prospective, two-centre, randomised, double-blind, controlled trial. Knee Surg. Sport. Traumatol. Arthrosc. Off. J. ESSKA 2022, 30, 918–927. [Google Scholar] [CrossRef]
- Calliess, T.; Bauer, K.; Stukenborg-Colsman, C.; Windhagen, H.; Budde, S.; Ettinger, M. PSI kinematic versus non-PSI mechanical alignment in total knee arthroplasty: A prospective, randomized study. Knee Surg. Sport. Traumatol. Arthrosc. Off. J. ESSKA 2017, 25, 1743–1748. [Google Scholar] [CrossRef]
- Hommel, H.; Abdel, M.P.; Perka, C. Kinematic femoral alignment with gap balancing and patient-specific instrumentation in total knee arthroplasty: A randomized clinical trial. Eur. J. Orthop. Surg. Traumatol. Orthop. Traumatol. 2017, 27, 683–688. [Google Scholar] [CrossRef]
- Kim, K.K.; Howell, S.M.; Won, Y.Y. Kinematically Aligned Total Knee Arthroplasty with Patient-Specific Instrument. Yonsei Med. J. 2020, 61, 201–209. [Google Scholar] [CrossRef]
- Blakeney, W.G.; Vendittoli, P.-A. Kinematic Alignment Total Knee Replacement with Personalized Instruments. In Personalized Hip and Knee Joint Replacement; Rivière, C., Vendittoli, P.-A., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 301–309. [Google Scholar]
- Lüring, C.; Beckmann, J. Custom made total knee arthroplasty: Review of current literature. Orthopade 2020, 49, 382–389. [Google Scholar] [CrossRef]
- Moret, C.S.; Schelker, B.L.; Hirschmann, M.T. Clinical and Radiological Outcomes after Knee Arthroplasty with Patient-Specific versus Off-the-Shelf Knee Implants: A Systematic Review. J. Pers. Med. 2021, 11, 590. [Google Scholar] [CrossRef]
- Müller, J.H.; Liebensteiner, M.; Kort, N.; Stirling, P.; Pilot, P.; Demey, G. No significant difference in early clinical outcomes of custom versus off-the-shelf total knee arthroplasty: A systematic review and meta-analysis. Knee Surg. Sport. Traumatol. Arthrosc. Off. J. ESSKA 2021, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Beit Ner, E.; Dosani, S.; Biant, L.C.; Tawy, G.F. Custom Implants in TKA Provide No Substantial Benefit in Terms of Outcome Scores, Reoperation Risk, or Mean Alignment: A Systematic Review. Clin. Orthop. Relat. Res. 2021, 479, 1237–1249. [Google Scholar] [CrossRef] [PubMed]
- Demey, G.; Müller, J.H.; Liebensteiner, M.; Pilot, P.; Nover, L.; Kort, N. Insufficient evidence to confirm benefits of custom partial knee arthroplasty: A systematic review. Knee Surg. Sport. Traumatol. Arthrosc. Off. J. ESSKA 2022, 30, 3968–3982. [Google Scholar] [CrossRef]
- Kumar, P.; Elfrink, J.; Daniels, J.P.; Aggarwal, A.; Keeney, J.A. Higher Component Malposition Rates with Patient-Specific Cruciate Retaining TKA than Contemporary Posterior Stabilized TKA. J. Knee Surg. 2021, 34, 1085–1091. [Google Scholar] [CrossRef] [PubMed]
- Talmo, C.T.; Anderson, M.C.; Jia, E.S.; Robbins, C.E.; Rand, J.D.; McKeon, B.P. High Rate of Early Revision After Custom-Made Unicondylar Knee Arthroplasty. J. Arthroplast. 2018, 33, S100–S104. [Google Scholar] [CrossRef] [PubMed]
- Shamdasani, S.; Vogel, N.; Kaelin, R.; Kaim, A.; Arnold, M.P. Relevant changes of leg alignment after customised individually made bicompartmental knee arthroplasty due to overstuffing. Knee Surg. Sport. Traumatol. Arthrosc. Off. J. ESSKA 2022, 30, 567–573. [Google Scholar] [CrossRef] [PubMed]
- Schroeder, L.; Pumilia, C.A.; Sarpong, N.O.; Martin, G. Patient Satisfaction, Functional Outcomes, and Implant Survivorship in Patients Undergoing Customized Cruciate-Retaining TKA. JBJS Rev. 2021, 9, e20. [Google Scholar] [CrossRef]
- Neginhal, V.; Kurtz, W.; Schroeder, L. Patient Satisfaction, Functional Outcomes, and Survivorship in Patients with a Customized Posterior-Stabilized Total Knee Replacement. JBJS Rev. 2020, 8, e19. [Google Scholar] [CrossRef]
- Schroeder, L.; Dunaway, A.; Dunaway, D. A Comparison of Clinical Outcomes and Implant Preference of Patients with Bilateral TKA: One Knee with a Patient-Specific and One Knee with an Off-the-Shelf Implant. JBJS Rev. 2022, 10, e20. [Google Scholar] [CrossRef]
- Bonnin, M.P.; Beckers, L.; Leon, A.; Chauveau, J.; Müller, J.H.; Tibesku, C.O.; Aït-Si-Selmi, T. Custom total knee arthroplasty facilitates restoration of constitutional coronal alignment. Knee Surg. Sport. Traumatol. Arthrosc. Off. J. ESSKA 2022, 30, 464–475. [Google Scholar] [CrossRef]
- Daxhelet, J.; Aït-Si-Selmi, T.; Müller, J.H.; Saffarini, M.; Ratano, S.; Bondoux, L.; Mihov, K.; Bonnin, M.P. Custom TKA enables adequate realignment with minimal ligament release and grants satisfactory outcomes in knees that had prior osteotomies or extra-articular fracture sequelae. Knee Surg. Sport. Traumatol. Arthrosc. Off. J. ESSKA 2021, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Ratano, S.; Müller, J.H.; Daxhelet, J.; Beckers, L.; Bondoux, L.; Tibesku, C.O.; Aït-Si-Selmi, T.; Bonnin, M.P. Custom TKA combined with personalised coronal alignment yield improvements that exceed KSS substantial clinical benefits. Knee Surg. Sport. Traumatol. Arthrosc. Off. J. ESSKA 2022, 30, 2958–2965. [Google Scholar] [CrossRef] [PubMed]
- McNamara, C.A.; Gösthe, R.G.; Patel, P.D.; Sanders, K.C.; Huaman, G.; Suarez, J.C. Revision total knee arthroplasty using a custom tantalum implant in a patient following multiple failed revisions. Arthroplast. Today 2017, 3, 13–17. [Google Scholar] [CrossRef] [Green Version]
- Ettinger, M.; Windhagen, H. Individual revision arthroplasty of the knee joint. Orthopade 2020, 49, 396–402. [Google Scholar] [CrossRef]
- Engel, G.M.; Lippert, F.G., 3rd. Valgus tibial osteotomy: Avoiding the pitfalls. Clin. Orthop. Relat. Res. 1981, 160, 137–143. [Google Scholar] [CrossRef]
- Kwun, J.D.; Kim, H.J.; Park, J.; Park, I.H.; Kyung, H.S. Open wedge high tibial osteotomy using three-dimensional printed models: Experimental analysis using porcine bone. Knee 2017, 24, 16–22. [Google Scholar] [CrossRef]
- Kawakami, H.; Sugano, N.; Yonenobu, K.; Yoshikawa, H.; Ochi, T.; Hattori, A.; Suzuki, N. Effects of rotation on measurement of lower limb alignment for knee osteotomy. J. Orthop. Res. 2004, 22, 1248–1253. [Google Scholar] [CrossRef]
- Predescu, V.; Grosu, A.M.; Gherman, I.; Prescura, C.; Hiohi, V.; Deleanu, B. Early experience using patient-specific instrumentation in opening wedge high tibial osteotomy. Int. Orthop. 2021, 45, 1509–1515. [Google Scholar] [CrossRef]
- Jacquet, C.; Sharma, A.; Fabre, M.; Ehlinger, M.; Argenson, J.N.; Parratte, S.; Ollivier, M. Patient-specific high-tibial osteotomy’s ‘cutting-guides’ decrease operating time and the number of fluoroscopic images taken after a Brief Learning Curve. Knee Surg. Sport. Traumatol. Arthrosc. Off. J. ESSKA 2020, 28, 2854–2862. [Google Scholar] [CrossRef]
- Chaouche, S.; Jacquet, C.; Fabre-Aubrespy, M.; Sharma, A.; Argenson, J.N.; Parratte, S.; Ollivier, M. Patient-specific cutting guides for open-wedge high tibial osteotomy: Safety and accuracy analysis of a hundred patients continuous cohort. Int. Orthop. 2019, 43, 2757–2765. [Google Scholar] [CrossRef]
- Jeong, S.H.; Samuel, L.T.; Acuña, A.J.; Kamath, A.F. Patient-specific high tibial osteotomy for varus malalignment: 3D-printed plating technique and review of the literature. Eur. J. Orthop. Surg. Traumatol. Orthop. Traumatol. 2022, 32, 845–855. [Google Scholar] [CrossRef] [PubMed]
- Aman, Z.S.; DePhillipo, N.N.; Peebles, L.A.; Familiari, F.; LaPrade, R.F.; Dekker, T.J. Improved Accuracy of Coronal Alignment Can Be Attained Using 3D-Printed Patient-Specific Instrumentation for Knee Osteotomies: A Systematic Review of Level III and IV Studies. Arthrosc. J. Arthrosc. Relat. Surg. Off. Publ. Arthrosc. Assoc. N. Am. Int. Arthrosc. Assoc. 2022, 38, 2741–2758. [Google Scholar] [CrossRef] [PubMed]
- Dallalana, R.J.; McMahon, R.A.; East, B.; Geraghty, L. Accuracy of patient-specific instrumentation in anatomic and reverse total shoulder arthroplasty. Int. J. Shoulder Surg. 2016, 10, 59–66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Denard, P.J.; Walch, G. Current concepts in the surgical management of primary glenohumeral arthritis with a biconcave glenoid. J. Shoulder Elb. Surg. 2013, 22, 1589–1598. [Google Scholar] [CrossRef]
- Mizuno, N.; Denard, P.J.; Raiss, P.; Walch, G. Reverse total shoulder arthroplasty for primary glenohumeral osteoarthritis in patients with a biconcave glenoid. J. Bone Jt. Surg. Am. Vol. 2013, 95, 1297–1304. [Google Scholar] [CrossRef] [PubMed]
- Rolf, O.; Mauch, F. Individualized shoulder arthroplasty: The current state of development. Orthopade 2020, 49, 424–431. [Google Scholar] [CrossRef] [PubMed]
- Villatte, G.; Muller, A.S.; Pereira, B.; Mulliez, A.; Reilly, P.; Emery, R. Use of Patient-Specific Instrumentation (PSI) for glenoid component positioning in shoulder arthroplasty. A systematic review and meta-analysis. PLoS ONE 2018, 13, e0201759. [Google Scholar] [CrossRef]
- Cabarcas, B.C.; Cvetanovich, G.L.; Espinoza-Orias, A.A.; Inoue, N.; Gowd, A.K.; Bernardoni, E.; Verma, N.N. Novel 3-dimensionally printed patient-specific guide improves accuracy compared with standard total shoulder arthroplasty guide: A cadaveric study. JSES Open Access 2019, 3, 83–92. [Google Scholar] [CrossRef] [Green Version]
- Hu, H.; Liu, W.; Zeng, Q.; Wang, S.; Zhang, Z.; Liu, J.; Zhang, Y.; Shao, Z.; Wang, B. The Personalized Shoulder Reconstruction Assisted by 3D Printing Technology After Resection of the Proximal Humerus Tumours. Cancer Manag. Res. 2019, 11, 10665–10673. [Google Scholar] [CrossRef] [Green Version]
- Gauci, M.O.; Cavalier, M.; Gonzalez, J.F.; Holzer, N.; Baring, T.; Walch, G.; Boileau, P. Revision of failed shoulder arthroplasty: Epidemiology, etiology, and surgical options. J. Shoulder Elb. Surg. 2020, 29, 541–549. [Google Scholar] [CrossRef]
- Hitz, O.F.; Flecher, X.; Parratte, S.; Ollivier, M.; Argenson, J.N. Minimum 10-Year Outcome of One-Stage Total Hip Arthroplasty Without Subtrochanteric Osteotomy Using a Cementless Custom Stem for Crowe III and IV Hip Dislocation. J. Arthroplast. 2018, 33, 2197–2202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jacquet, C.; Flecher, X.; Pioger, C.; Fabre-Aubrespy, M.; Ollivier, M.; Argenson, J.N. Long-term results of custom-made femoral stems. Orthopade 2020, 49, 408–416. [Google Scholar] [CrossRef]
- Flecher, X.; Ollivier, M.; Maman, P.; Pesenti, S.; Parratte, S.; Argenson, J.N. Long-term results of custom cementless-stem total hip arthroplasty performed in hip fusion. Int. Orthop. 2018, 42, 1259–1264. [Google Scholar] [CrossRef] [Green Version]
- Paprosky, W.G.; Perona, P.G.; Lawrence, J.M. Acetabular defect classification and surgical reconstruction in revision arthroplasty. A 6-year follow-up evaluation. J. Arthroplast. 1994, 9, 33–44. [Google Scholar] [CrossRef]
- D’Antonio, J.A.; Capello, W.N.; Borden, L.S.; Bargar, W.L.; Bierbaum, B.F.; Boettcher, W.G.; Steinberg, M.E.; Stulberg, S.D.; Wedge, J.H. Classification and management of acetabular abnormalities in total hip arthroplasty. Clin. Orthop. Relat. Res. 1989, 243, 126–137. [Google Scholar] [CrossRef]
- von Lewinski, G. Custom-made acetabular implants in revision total hip arthroplasty. Orthopade 2020, 49, 417–423. [Google Scholar] [CrossRef]
- Scheele, C.; Harrasser, N.; Suren, C.; Pohlig, F.; von Eisenhart-Rothe, R.; Prodinger, P.M. Prospects and challenges of individualized implants in the treatment of large acetabular defects. OUP 2018, 7, 204–211. [Google Scholar] [CrossRef]
- Chiarlone, F.; Zanirato, A.; Cavagnaro, L.; Alessio-Mazzola, M.; Felli, L.; Burastero, G. Acetabular custom-made implants for severe acetabular bone defect in revision total hip arthroplasty: A systematic review of the literature. Arch. Orthop. Trauma Surg. 2020, 140, 415–424. [Google Scholar] [CrossRef]
- Berlet, G.C.; Penner, M.J.; Lancianese, S.; Stemniski, P.M.; Obert, R.M. Total Ankle Arthroplasty Accuracy and Reproducibility Using Preoperative CT Scan-Derived, Patient-Specific Guides. Foot Ankle Int. 2014, 35, 665–676. [Google Scholar] [CrossRef]
- Albagli, A.; Ge, S.M.; Park, P.; Cohen, D.; Epure, L.; Chaytor, R.E.; Volesky, M. Total ankle arthroplasty results using fixed bearing CT-guided patient specific implants in posttraumatic versus nontraumatic arthritis. Foot Ankle Surg. Off. J. Eur. Soc. Foot Ankle Surg. 2022, 28, 222–228. [Google Scholar] [CrossRef]
- Hsu, A.R.; Davis, W.H.; Cohen, B.E.; Jones, C.P.; Ellington, J.K.; Anderson, R.B. Radiographic Outcomes of Preoperative CT Scan-Derived Patient-Specific Total Ankle Arthroplasty. Foot Ankle Int. 2015, 36, 1163–1169. [Google Scholar] [CrossRef] [PubMed]
- Escudero, M.I.; Le, V.; Bemenderfer, T.B.; Barahona, M.; Anderson, R.B.; Davis, H.; Wing, K.J.; Penner, M.J. Total Ankle Arthroplasty Radiographic Alignment Comparison Between Patient-Specific Instrumentation and Standard Instrumentation. Foot Ankle Int. 2021, 42, 851–858. [Google Scholar] [CrossRef] [PubMed]
- Saito, G.H.; Sanders, A.E.; O’Malley, M.J.; Deland, J.T.; Ellis, S.J.; Demetracopoulos, C.A. Accuracy of patient-specific instrumentation in total ankle arthroplasty: A comparative study. Foot Ankle Surg. Off. J. Eur. Soc. Foot Ankle Surg. 2019, 25, 383–389. [Google Scholar] [CrossRef]
- Gagne, O.J.; Veljkovic, A.; Townshend, D.; Younger, A.; Wing, K.J.; Penner, M.J. Intraoperative Assessment of the Axial Rotational Positioning of a Modern Ankle Arthroplasty Tibial Component Using Preoperative Patient-Specific Instrumentation Guidance. Foot Ankle Int. 2019, 40, 1160–1165. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, N.; Guo, W.; Wang, W.; Zhang, Q. Patient-specific instrumentation (PSI) in total ankle arthroplasty: A systematic review. Int. Orthop. 2021, 45, 2445–2452. [Google Scholar] [CrossRef]
- Hamid, K.S.; Matson, A.P.; Nwachukwu, B.U.; Scott, D.J.; Mather, R.C., 3rd; DeOrio, J.K. Determining the Cost-Savings Threshold and Alignment Accuracy of Patient-Specific Instrumentation in Total Ankle Replacements. Foot Ankle Int. 2017, 38, 49–57. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benignus, C.; Buschner, P.; Meier, M.K.; Wilken, F.; Rieger, J.; Beckmann, J. Patient Specific Instruments and Patient Individual Implants—A Narrative Review. J. Pers. Med. 2023, 13, 426. https://doi.org/10.3390/jpm13030426
Benignus C, Buschner P, Meier MK, Wilken F, Rieger J, Beckmann J. Patient Specific Instruments and Patient Individual Implants—A Narrative Review. Journal of Personalized Medicine. 2023; 13(3):426. https://doi.org/10.3390/jpm13030426
Chicago/Turabian StyleBenignus, Christian, Peter Buschner, Malin Kristin Meier, Frauke Wilken, Johannes Rieger, and Johannes Beckmann. 2023. "Patient Specific Instruments and Patient Individual Implants—A Narrative Review" Journal of Personalized Medicine 13, no. 3: 426. https://doi.org/10.3390/jpm13030426
APA StyleBenignus, C., Buschner, P., Meier, M. K., Wilken, F., Rieger, J., & Beckmann, J. (2023). Patient Specific Instruments and Patient Individual Implants—A Narrative Review. Journal of Personalized Medicine, 13(3), 426. https://doi.org/10.3390/jpm13030426