Distribution of OGTT-Related Variables in Patients with Cystic Fibrosis from Puberty to Adulthood: An Italian Multicenter Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design, Setting, and Participants
2.2. Variables and Measurements
- OGTT parameters: glucose, insulin, and C-peptide (sampled before and at 30, 60, 90, and 120 min of the OGTT), and their area under the curve (AUC).
- β cell function: β cell glucose sensitivity, basal insulin secretion, insulin secretion at a fixed glucose concentration, total insulin secretion.
- insulin clearance: basal and OGTT insulin clearance.
- insulin sensitivity: quantitative insulin-sensitivity check index (QUICKI, for basal insulin sensitivity), and a 2-h oral glucose insulin sensitivity index (2-h OGIS for OGTT insulin sensitivity).
2.2.1. CFTR Gene Mutation, Clinical Evaluation, Anthropometric and Pulmonary Assessment
2.2.2. Oral Glucose Tolerance Test and Laboratory Exams
2.2.3. Modeling of β Cell Function and Other OGTT-Derived Indices
2.3. Bias and Study Size
2.4. Quantitative Variables and Statistical Methods
2.5. Italian Reference Values
3. Results
3.1. Participants Characteristics
3.2. Main Results
3.3. Italian Reference Values
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lanng, S.; Hansen, A.; Thorsteinsson, B.; Koch, C. Glucose tolerance in patients with cystic fibrosis: Five year prospective study. BMJ 1995, 311, 655–659. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moran, A.; Dunitz, J.; Nathan, B.; Saeed, A.; Holme, B.; Thomas, W. Cystic fibrosisrelated diabetes: Current trends in prevalence, incidence, and mortality. Diabetes Care 2009, 32, 1626–1631. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sandouk, Z.; Khan, F.; Khare, S.; Moran, A. Cystic fibrosis related diabetes (CFRD) prognosis. J. Clin. Transl. Endocrinol. 2021, 26, 100278. [Google Scholar] [CrossRef] [PubMed]
- Merjaneh, L.; Hasan, S.; Kasim, N.; Ode, K.L. The role of modulators in cystic fibrosis related diabetes. J. Clin. Transl. Endocrinol. 2022, 27, 100286. [Google Scholar] [CrossRef] [PubMed]
- Kelly, A.; Leon, D.D.D.; Sheikh, S.; Camburn, D.; Kubrak, C.; Peleckis, A.J.; Stefanovski, D.; Hadjiliadis, D.; Rickels, M.R.; Rubenstein, R.C. Islet hormone and incretin secretion in cystic fibrosis after four months of ivacaftor therapy. Am. J. Respir. Crit. Care Med. 2019, 199, 342–351. [Google Scholar] [CrossRef]
- Volkova, N.; Moy, K.; Evans, J.; Campbell, D.; Tian, S.; Simard, C.; Higgins, M.; Konstan, M.W.; Sawicki, G.S.; Elbert, A.; et al. Disease progression in patients with cystic fibrosis treated with ivacaftor: Data from national US and UK registries. J. Cyst. Fibros. 2020, 19, 68–79. [Google Scholar] [CrossRef]
- Thomassen, J.C.; Mueller, M.I.; Alcazar, M.A.A.; Rietschel, E.; Koningsbruggen-Rietschel, S. Effect of lumacaftor/ivacaftor on glucose metabolism and insulin secretion in Phe508del homozygous cystic fibrosis patients. J. Cyst. Fibros. 2018, 17, 271–275. [Google Scholar] [CrossRef] [Green Version]
- Li, A.; Vigers, T.; Pyle, L.; Zemanick, E.; Nadeau, K.; Sagel, S.D.; Chan, C.L. Continuous glucose monitoring in youth with cystic fibrosis treated with lumacaftor-ivacaftor. J. Cyst. Fibros. 2019, 18, 144–149. [Google Scholar] [CrossRef]
- Misgault, B.; Chatron, E.; Reynaud, Q.; Touzet, S.; Abely, M.; Melly, L.; Dominique, S.; Troussier, F.; Ronsin-Pradel, O.; Gerardin, M.; et al. Effect of one-year lumacaftorivacaftor treatment on glucose tolerance abnormalities in cystic fibrosis patients. J. Cyst. Fibros. 2020, 19, 712–716. [Google Scholar] [CrossRef] [Green Version]
- Moheet, A.; Beisang, D.; Zhang, L.; Sagel, S.D.; VanDalfsen, J.M.; Heltshe, S.L.; Frederick, C.; Mann, M.; Antos, N.; Billings, J.; et al. Lumacaftor/ivacaftor therapy fails to increase insulin secretion in F508del/F508del CF patients. J. Cyst. Fibros. 2021, 20, 333–338. [Google Scholar] [CrossRef]
- Colombo, C.; Foppiani, A.; Bisogno, A.; Gambazza, S.; Daccò, V.; Nazzari, E.; Leone, A.; Giana, A.; Mari, A.; Battezzati, A. Lumacaftor/ivacaftor in cystic fibrosis: Effects on glucose metabolism and insulin secretion. J. Endocrinol. Investig. 2021, 44, 2213–2218. [Google Scholar] [CrossRef] [PubMed]
- Petersen, M.C.; Begnel, L.; Wallendorf, M.; Litvin, M. Effect of elexacaftor-tezacaftor-ivacaftor on body weight and metabolic parameters in adults with cystic fibrosis. J. Cyst. Fibros. 2022, 21, 265–271. [Google Scholar] [CrossRef] [PubMed]
- Crow, H.; Bengtson, C.; Shi, X.; Graves, L.; Anabtawi, A. CGM patterns in adults with cystic fibrosis-related diabetes before and after elexacaftor-tezacaftor-ivacaftor therapy. J. Clin. Transl. Endocrinol. 2022, 30, 100307. [Google Scholar] [CrossRef] [PubMed]
- Scully, K.J.; Marchetti, P.; Sawicki, G.S.; Uluer, A.; Cernadas, M.; Cagnina, R.E.; Kennedy, J.C.; Putman, M.S. The effect of elexacaftor/tezacaftor/ivacaftor (ETI) on glycemia in adults with cystic fibrosis. J. Cyst. Fibros. 2022, 21, 258–263. [Google Scholar] [CrossRef]
- Nielsen, B.; Olsen, M.; Mathiesen, I.; Pressler, T.; Jensen-Fangel, S.; Ritz, C.; Almdal, T.; Faurholt-Jepsen, D. 6 decline in HbA1c during the first year on elexacaftor/tezacaftor/ivacaftor in the danish cystic fibrosis population. J. Cyst. Fibros. 2022, 21, S4. [Google Scholar] [CrossRef]
- Stalvey, M.; Walega, R.; Rowe, S.; Nichols, D.; Stefanovski, D.; Kelly, A. 15 promise: Glucose excursion and insulin secretion after 12 to 18 months of highly effective modulator therapy. J. Cyst. Fibros. 2022, 21, S11–S12. [Google Scholar] [CrossRef]
- Chan, C.L.; Granados, A.; Moheet, A.; Singh, S.; Vigers, T.; Arbeláez, A.M.; Yi, Y.; Hu, S.; Norris, A.W.; Ode, K.L. Glycemia and -cell function before and after elexacaftor/tezacaftor/ivacaftor in youth and adults with cystic fibrosis. J. Clin. Transl. Endocrinol. 2022, 30, 100311. [Google Scholar] [CrossRef]
- Moran, A.; Pillay, K.; Becker, D.; Granados, A.; Hameed, S.; Acerini, C.L. ISPAD clinical practice consensus guidelines 2018: Management of cystic fibrosis-related diabetes in children and adolescents. Pediatr. Diabetes 2018, 19, 64–74. [Google Scholar] [CrossRef]
- Battezzati, A.; Battezzati, P.; Costantini, D.; Zazzeron, L.; Russo, M.; Daccò, V.; Motta, V.; Colombo, C. Cystic Fibrosis Related Diabetes Is Anticipated By Reduced Insulin Secretion During Ogtt. J. Cyst. Fibros. 2008, 7, S22–S23. [Google Scholar] [CrossRef] [Green Version]
- Potter, K.J.; Boudreau, V.; Bonhoure, A.; Tremblay, F.; Lavoie, A.; Carricart, M.; Senior, P.A.; Rabasa-Lhoret, R. Insulinogenic index and early phase insulin secretion predict increased risk of worsening glucose tolerance and of cystic fibrosis-related diabetes. J. Cyst. Fibros. 2022. [Google Scholar] [CrossRef]
- Milla, C.E.; Warwick, W.J.; Moran, A. Trends in pulmonary function in patients with cystic fibrosis correlate with the degree of glucose intolerance at baseline. Am. J. Respir. Crit. Care Med. 2000, 162, 891–895. [Google Scholar] [CrossRef] [PubMed]
- Colombo, C.; Alicandro, G.; Gambazza, S.; Mileto, P.; Mari, A.; Grespan, E.; Nazzari, E.; Russo, M.C.; Battezzati, A. Ventilation inhomogeneity is associated with OGTT-derived insulin secretory defects in cystic fibrosis. Pediatr. Pulmonol. 2018, 54, 141–149. [Google Scholar] [CrossRef] [PubMed]
- Cheung, M.S.; Bridges, N.A.; Prasad, S.A.; Francis, J.; Carr, S.B.; Suri, R.; Balfour-Lynn, I. Growth in children with cystic fibrosis-related diabetes. Pediatr. Pulmonol. 2009, 44, 1223–1225. [Google Scholar] [CrossRef]
- Ripa, P.; Robertson, I.; Cowley, D.; Harris, M.; Masters, I.B.; Cotterill, A.M. The relationship between insulin secretion, the insulin-like growth factor axis and growth in children with cystic fibrosis. Clin. Endocrinol. 2002, 56, 383–389. [Google Scholar] [CrossRef] [PubMed]
- Battezzati, A.; Foppiani, A.; Alicandro, G.; Bisogno, A.; Biffi, A.; Bedogni, G.; Bertoli, S.; De Carlo, G.; Nazzari, E.; Colombo, C. Prepuberal insulin secretory indices are long-term predictors of short adult stature in cystic fibrosis. Endocr. Connect. 2022, 11, e220056. [Google Scholar] [CrossRef]
- Khare, S.; Desimone, M.; Kasim, N.; Chan, C.L. Cystic fibrosis-related diabetes: Prevalence, screening, and diagnosis. J. Clin. Transl. Endocrinol. 2022, 27, 100290. [Google Scholar] [CrossRef]
- Battezzati, A.; Bedogni, G.; Zazzeron, L.; Mari, A.; Battezzati, P.M.; Alicandro, G.; Bertoli, S.; Colombo, C. Age- and sex-dependent distribution of OGTT-related variables in a population of cystic fibrosis patients. J. Clin. Endocrinol. Metab. 2015, 100, 2963–2971. [Google Scholar] [CrossRef] [Green Version]
- Mari, A.; Pacini, G.; Murphy, E.; Ludvik, B.; Nolan, J.J. A model-based method for assessing insulin sensitivity from the oral glucose tolerance test. Diabetes Care 2001, 24, 539–548. [Google Scholar] [CrossRef] [Green Version]
- Mari, A.; Ferrannini, E. β-cell function assessment from modelling of oral tests: An effective approach. Diabetes Obes. Metab. 2008, 10, 77–87. [Google Scholar] [CrossRef]
- Marson, F.A.L.; Bertuzzo, C.S.; Ribeiro, J.D. Classification of CFTR mutation classes. Lancet Respir. Med. 2016, 4, e37–e38. [Google Scholar] [CrossRef] [Green Version]
- Lohman, T.G.; Roche, A.F. Anthropometric Standardization Reference Manual; Human Kinetics: Champaign, IL, USA, 1988. [Google Scholar]
- Center for Disease Control and Prevention. CDC Growth Charts: United States 2000. Available online: http://www.cdc.gov/growthcharts/ (accessed on 1 February 2023).
- Center for Disease Control and Prevention. Use and Interpretation of the WHO and CDC Growth Charts for Children from Birth to 20 Years in the United States 2014. Available online: https://www.cdc.gov/nccdphp/dnpa/growthcharts/resources/growthchart.pdf (accessed on 1 February 2023).
- Cystic Fibrosis Foundation. Nutritional Basics 2022. Available online: https://www.cff.org/managing-cf/nutritional-basics (accessed on 1 February 2023).
- Miller, M.R. General considerations for lung function testing. Eur. Respir. J. 2005, 26, 153–161. [Google Scholar] [CrossRef] [Green Version]
- Quanjer, P.H.; Stanojevic, S.; Cole, T.J.; Baur, X.; Hall, G.L.; Culver, B.H.; Enright, P.L.; Hankinson, J.L.; Ip, M.S.M.; Zheng, J.; et al. Multi-ethnic reference values for spirometry for the 395-yr age range: The global lung function 2012 equations. Eur. Respir. J. 2012, 40, 1324–1343. [Google Scholar] [CrossRef] [PubMed]
- Battezzati, A.; Mari, A.; Zazzeron, L.; Alicandro, G.; Claut, L.; Battezzati, P.M.; Colombo, C. Identification of insulin secretory defects and insulin resistance during oral glucose tolerance test in a cohort of cystic fibrosis patients. Eur. J. Endocrinol. 2011, 165, 69–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katz, A.; Nambi, S.S.; Mather, K.; Baron, A.D.; Follmann, D.A.; Sullivan, G.; Quon, M.J. Quantitative insulin sensitivity check index: A simple, accurate method for assessing insulin sensitivity in humans. J. Clin. Endocrinol. Metab. 2000, 85, 2402–2410. [Google Scholar] [CrossRef] [PubMed]
- Tukey, J. The future of data analysis. Ann. Math. Statist. 1962, 33, 1–67. [Google Scholar] [CrossRef]
- Koenker, R.; Chernozhukov, V.; He, X.; Peng, L. Handbook of Quantile Regression; Chapman and Hall/CRC: New York, NY, USA, 2017. [Google Scholar]
- Kelsey, M.M.; Zeitler, P.S. Insulin resistance of puberty. Curr. Diabetes Rep. 2016, 16, 64. [Google Scholar] [CrossRef]
- Caprio, S.; Plewe, G.; Diamond, M.P.; Simonson, D.C.; Boulware, S.D.; Sherwin, R.S.; Tamborlane, W.V. Increased insulin secretion in puberty: A compensatory response to reductions in insulin sensitivity. J. Pediatr. 1989, 114, 963–967. [Google Scholar] [CrossRef] [PubMed]
- Marwitz, S.E.; Gaines, M.V.; Brady, S.M.; Mi, S.J.; Broadney, M.M.; Yanovski, S.Z.; Hubbard, V.S.; Yanovski, J.A. Cross-sectional and longitudinal examination of insulin sensitivity and secretion across puberty among non-hispanic black and white children. Endocrinol. Metab. 2020, 35, 847–857. [Google Scholar] [CrossRef]
- Ford, E.S.; Li, C.; Imperatore, G.; Cook, S. Age, sex, and ethnic variations in serum insulin concentrations among u.s. youth. Diabetes Care 2006, 29, 2605–2611. [Google Scholar] [CrossRef] [Green Version]
- Koester-Weber, T.; Valtueña, J.; Breidenassel, C.; Beghin, L.; Plada, M.; Moreno, S.; Huybrechts, I.; Palacios, G.; Gómez-Martínez, S.; Albers, U.; et al. Reference values for leptin, cortisol, insulin and glucose, among european adolescents and their association with adiposity: The HELENA study. Nutr. Hosp. 2014, 30, 1181–1190. [Google Scholar]
- Peplies, J.; on behalf of the IDEFICS Consortium; Jiménez-Pavón, D.; Savva, S.C.; Buck, C.; Günther, K.; Fraterman, A.; Russo, P.; Iacoviello, L.; Veidebaum, T.; et al. Percentiles of fasting serum insulin, glucose, HbA1c and HOMA-IR in pre-pubertal normal weight european children from the IDEFICS cohort. Int. J. Obes. 2014, 38, S39–S47. [Google Scholar] [CrossRef] [Green Version]
- Tohidi, M.; Ghasemi, A.; Hadaegh, F.; Derakhshan, A.; Chary, A.; Azizi, F. Age- and sex-specific reference values for fasting serum insulin levels and insulin resistance/sensitivity indices in healthy iranian adults: Tehran lipid and glucose study. Clin. Biochem. 2014, 47, 432–438. [Google Scholar] [CrossRef] [PubMed]
- Galli, F.; Battistoni, A.; Gambari, R.; Pompella, A.; Bragonzi, A.; Pilolli, F.; Iuliano, L.; Piroddi, M.; Dechecchi, M.C.; Cabrini, G. Oxidative stress and antioxidant therapy in cystic fibrosis. Biochim. Biophys. Acta (BBA)-Mol. Basis Dis. 2012, 1822, 690–713. [Google Scholar] [CrossRef] [Green Version]
- Moheet, A.; Moran, A. CF-related diabetes: Containing the metabolic miscreant of cystic fibrosis. Pediatr. Pulmonol. 2017, 52, S37–S43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rickels, M.R.; Norris, A.W.; Hull, R.L. A tale of two pancreases: Exocrine pathology and endocrine dysfunction. Diabetologia 2020, 63, 2030–2039. [Google Scholar] [CrossRef] [PubMed]
- Mun, K.S.; Arora, K.; Huang, Y.; Yang, F.; Yarlagadda, S.; Ramananda, Y.; Abu-El-Haija, M.; Palermo, J.J.; Appakalai, B.N.; Nathan, J.D.; et al. Patient-derived pancreas-on-a-chip to model cystic fibrosis-related disorders. Nat. Commun. 2019, 10, 3124. [Google Scholar] [CrossRef] [Green Version]
- Cauter, E.V.; Mestrez, F.; Sturis, J.; Polonsky, K.S. Estimation of insulin secretion rates from c-peptide levels: Comparison of individual and standard kinetic parameters for c-peptide clearance. Diabetes 1992, 41, 368–377. [Google Scholar] [CrossRef]
- Klein, D. MIMRGNS: Stata Module to Run Margins after mi Estimate (Statistical Software Components); Boston College Department of Economics: Chestnut Hill, MA, USA, 2014. [Google Scholar]
- Morris, T.P.; White, I.R.; Carpenter, J.R.; Stanworth, S.J.; Royston, P. Combining fractional polynomial model building with multiple imputation. Stat. Med. 2015, 34, 3298–3317. [Google Scholar] [CrossRef]
- Stern, J.A.C.; White, I.R.; Carlin, J.B.; Spratt, M.; Royston, P.; Kenward, M.G.; Wood, A.M.; Carpenter, J.R. Multiple imputation for missing data in epidemiological and clinical research: Potential and pitfalls. BMJ 2009, 338. [Google Scholar] [CrossRef]
- Van Buuren, S. Flexible Imputation of Missing Data. CRC Press: Boca Raton, FL, USA, 2015; Available online: https://stefvanbuuren.name/fimd/ (accessed on 1 February 2023).
- White, I.R.; Royston, P.; Wood, A.M. Multiple imputation using chained equations: Issues and guidance for practice. Stat. Med. 2011, 20, 377–399. [Google Scholar] [CrossRef]
- Williams, R. Using the Margins Command to Estimate and Interpret Adjusted Predictions and Marginal Effects. Stat. J. 2012, 12, 308–331. [Google Scholar] [CrossRef] [Green Version]
Characteristic | N = 369 1 |
---|---|
Age (years) | 19 (15, 24) |
Sex | |
Female | 56% |
Male | 44% |
CFTR gene mutation | |
F508del homozygous | 23% |
F508del heterozygous | 43% |
Other | 34% |
Pancreatic insufficiency | 79% |
Liver disease | 25% |
Pseudomonas aeruginosa infection | 65% |
Burkholderia cepacia infection | 4.1% |
Liver transplant | 0.3% |
Lung transplant | 0.3% |
CFTR modulator therapy | |
No therapy | 88.9% |
Ivacaftor | 2.9% |
Tezacaftor/Ivacaftor | 0.3% |
Lumacaftor/Ivacaftor | 7.9% |
Weight (kg) | 54 (46, 63) |
Weight z-score (CDC growth charts) | −0.01 (−0.03, 0.02) |
Height (cm) | 161 (154, 169) |
Height z-score (CDC growth charts) | −0.0008 (−0.0020, 0.0003) |
BMI (kg × m−2) | 20.5 (18.7, 22.8) |
BMI z-score (CDC growth charts) | −0.003 (−0.016, 0.010) |
BMI category | |
Underweight | 3.6% |
Normal weight | 90% |
Overweight | 4.9% |
Obese | 1.1% |
BMI Cystic Fibrosis Foundation recommendations | |
Below target | 58% |
Above target | 42% |
FEV1 (% of predicted) | 88 (70, 103) |
FVC (% of predicted) | 98 (84, 108) |
C-reactive protein (mg × dL−1) | 0.25 (0.09, 0.99) |
HbA1C (%) | 5.44 (5.20, 5.90) |
Glucose tolerance category | |
Normal glucose tolerance | 65% |
Normal glucose tolerance with impaired fasting glucose | 0.6% |
Indeterminate glucose tolerance | 12% |
Impaired glucose tolerance | 15% |
Cystic fibrosis-related diabetes without fasting hyperglycemia | 8.1% |
Cystic fibrosis-related diabetes with fasting hyperglycemia | 0% |
Age Group (Range in Years) | ||||||||
---|---|---|---|---|---|---|---|---|
Characteristic | Overall, N = 369 1 | ≤10, N = 12 1 | (10,15], N = 92 1 | (15,20], N = 101 1 | (20,25], N = 80 1 | (25,30], N = 41 1 | (30,35], N = 25 1 | >35, N = 18 1 |
Age (years) | 19 (15, 24) | 9 (9, 10) | 13 (11, 14) | 17 (16, 19) | 22 (21, 24) | 27 (26, 28) | 32 (31, 33) | 43 (37, 46) |
Sex | ||||||||
Female | 206 (56%) | 8 (67%) | 49 (53%) | 47 (47%) | 51 (64%) | 25 (61%) | 15 (60%) | 11 (61%) |
Male | 163 (44%) | 4 (33%) | 43 (47%) | 54 (53%) | 29 (36%) | 16 (39%) | 10 (40%) | 7 (39%) |
Pancreatic status | ||||||||
Pancreatic sufficient | 77 (21%) | 4 (33%) | 18 (20%) | 24 (24%) | 13 (16%) | 9 (22%) | 4 (16%) | 5 (28%) |
Pancreatic insufficient | 292 (79%) | 8 (67%) | 74 (80%) | 77 (76%) | 67 (84%) | 32 (78%) | 21 (84%) | 13 (72%) |
(10,15] Years vs. ≤10 Years | >35 Years vs. (30,35] Years | |||||
---|---|---|---|---|---|---|
Characteristic | Difference | 95% CI | p-Value | Difference | 95% CI | p-Value |
Fasting glucose (mg × dL−1) | 2.0 | −4.0, 8.0 | 0.5 | 1.0 | −20, 22 | 0.9 |
Glucose (mg × dL−1) 30 OGTT minute | 0.00 | −12, 12 | 0.9 | 17 | −18, 52 | 0.3 |
Glucose (mg × dL−1) 60 OGTT minute | −9.0 | −33, 15 | 0.5 | 5.0 | −43, 53 | 0.8 |
Glucose (mg × dL−1) 90 OGTT minute | −1.0 | −15, 13 | 0.9 | −19 | −71, 33 | 0.5 |
Glucose (mg × dL−1) 120 OGTT minute | −8.0 | −20, 4.0 | 0.2 | −39 | −85, 7.3 | 0.10 |
Fasting insulin (μu × mL−1) | 2.3 | −0.34, 5.0 | 0.087 | −0.05 | −3.3, 3.2 | 0.9 |
Insulin (μU × mL−1) 30 OGTT minute | 30 | −36, 96 | 0.4 | 10 | −8.7, 29 | 0.3 |
Insulin (μU × mL−1) 60 OGTT minute | 11 | −19, 42 | 0.5 | 13 | −6.0, 31 | 0.2 |
Insulin (μU × mL−1) 90 OGTT minute | −9.1 | −68, 50 | 0.8 | 7.7 | −27, 42 | 0.7 |
Insulin (μU × mL−1) 120 OGTT minute | 5.2 | −21, 31 | 0.7 | −2.9 | −32, 26 | 0.8 |
Fasting C−peptide (ng × mL−1) | 0.48 | 0.20, 0.76 | <0.001 | −0.01 | −0.60, 0.58 | 0.9 |
C-peptide (ng × mL−1) 30 OGTT minute | 1.3 | 0.20, 2.4 | 0.021 | 0.65 | −0.08, 1.4 | 0.078 |
C-peptide (ng × mL−1) 60 OGTT minute | 3.2 | 2.1, 4.3 | <0.001 | 1.6 | 0.23, 2.9 | 0.023 |
C-peptide (ng × mL−1) 90 OGTT minute | 3.5 | 1.7, 5.2 | <0.001 | 1.8 | −0.40, 4.0 | 0.10 |
C-peptide (ng × mL−1) 120 OGTT minute | 2.8 | 1.7, 3.8 | <0.001 | −0.30 | −3.3, 2.7 | 0.8 |
β cell glucose sensitivity (pmol × min−1 × m−2 × mM−1) | 30 | 13, 46 | <0.001 | 19 | 0.96, 37 | 0.040 |
Basal insulin secretion (pmol × min−1 × m−2) | 21 | 5.4, 37 | 0.009 | −5.0 | −32, 22 | 0.7 |
Total insulin secretion (nmol × m−2) | 25 | 15, 35 | <0.001 | −3.6 | −18, 11 | 0.6 |
Insulin secretion at 5 mmol/L glucose from the dose-response, adjusted for basal potentiation (pmol × min−1 × m−2) | 19 | −6.7, 45 | 0.14 | 18 | −40, 77 | 0.5 |
Basal insulin clearance (L × min−1 × m−2) | −0.24 | −0.54, 0.06 | 0.12 | −0.26 | −1.2, 0.69 | 0.6 |
OGTT insulin clearance (L × min−1 × m−2) | −0.29 | −1.1, 0.52 | 0.5 | −0.29 | −0.86, 0.28 | 0.3 |
Glucose AUC | 7.5 | −1330, 1345 | 0.9 | 270 | −3897, 4437 | 0.9 |
Insulin AUC | 864 | −2402, 4130 | 0.6 | 1640 | −202, 3482 | 0.078 |
C-peptide AUC | 290 | 195, 384 | <0.001 | 133 | −26, 292 | 0.10 |
QUICKI | −0.01 | −0.02, 0.00 | 0.15 | 0.00 | −0.02, 0.01 | 0.9 |
2−h OGIS (mL × min−1 × m−2) | −16 | −73, 40 | 0.6 | −0.23 | −83, 82 | 0.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Foppiani, A.; Ciciriello, F.; Bisogno, A.; Bricchi, S.; Colombo, C.; Alghisi, F.; Lucidi, V.; Catena, M.A.; Lucanto, M.; Mari, A.; et al. Distribution of OGTT-Related Variables in Patients with Cystic Fibrosis from Puberty to Adulthood: An Italian Multicenter Study. J. Pers. Med. 2023, 13, 469. https://doi.org/10.3390/jpm13030469
Foppiani A, Ciciriello F, Bisogno A, Bricchi S, Colombo C, Alghisi F, Lucidi V, Catena MA, Lucanto M, Mari A, et al. Distribution of OGTT-Related Variables in Patients with Cystic Fibrosis from Puberty to Adulthood: An Italian Multicenter Study. Journal of Personalized Medicine. 2023; 13(3):469. https://doi.org/10.3390/jpm13030469
Chicago/Turabian StyleFoppiani, Andrea, Fabiana Ciciriello, Arianna Bisogno, Silvia Bricchi, Carla Colombo, Federico Alghisi, Vincenzina Lucidi, Maria Ausilia Catena, Mariacristina Lucanto, Andrea Mari, and et al. 2023. "Distribution of OGTT-Related Variables in Patients with Cystic Fibrosis from Puberty to Adulthood: An Italian Multicenter Study" Journal of Personalized Medicine 13, no. 3: 469. https://doi.org/10.3390/jpm13030469
APA StyleFoppiani, A., Ciciriello, F., Bisogno, A., Bricchi, S., Colombo, C., Alghisi, F., Lucidi, V., Catena, M. A., Lucanto, M., Mari, A., Bedogni, G., & Battezzati, A. (2023). Distribution of OGTT-Related Variables in Patients with Cystic Fibrosis from Puberty to Adulthood: An Italian Multicenter Study. Journal of Personalized Medicine, 13(3), 469. https://doi.org/10.3390/jpm13030469