Cardiac Rehabilitation in Severe Heart Failure Patients with Impella 5.0 Support via the Subclavian Artery Approach Prior to Left Ventricular Assist Device Implantation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Primary Outcomes
2.3. Clinical Parameters
2.4. CR with Impella 5.0 Support
2.5. Statistics
3. Results
3.1. Patients’ Baseline Characteristics
3.2. Post-Impella 5.0 and Pre-/Post-LVAD Surgery
3.3. CR with Impella 5.0 Support
No. | Age | Sex | BMI | HF Etiology | LVEF, % | Comorbidities | Oral Medications Prior to Impella 5.0 Implantation | MCS Prior to Impella 5.0 Implantation | Length of MCS Prior to Impella 5.0 Implantation, Days |
---|---|---|---|---|---|---|---|---|---|
1 | 37 | M | 20.9 | TGCV | 10.9 | CKD, myopathy | ARB, BB, MRA, loop diuretic | IABP, VA-ECMO | 27 |
2 | 42 | M | 25.1 | ICM | 16.6 | PAD, dyslipidemia | Antiplatelet agent, statin | IABP, VA-ECMO | 11 |
3 | 58 | F | 22.7 | ICM | 20.0 | Diabetes mellitus, dyslipidemia, post-CABG, post-SVR | Antiplatelet agent, statin, BB, MRA, loop diuretic | IABP | 23 |
4 | 38 | M | 22.5 | DCM | 14.0 | Bronchial asthma, chronic hepatitis | ACEi, BB, loop diuretic | IABP | 8 |
5 | 55 | M | 18.2 | DCM | 16.0 | None | BB, loop diuretic | Impella CP, VA-ECMO | 5 |
6 | 54 | M | 23.8 | Cardiac sarcoidosis | 20.5 | Hypertension | None | Impella 2.5, VA-ECMO | 3 |
No. | Length of Impella 5.0, Days | Pre-LVAD Mechanical Ventilation, Days | Pre-LVAD Hospital Stay, Days | LVAD Operative Time, Hours | Post-LVAD ICU Stay, Days | Post-LVAD Adverse Events | Discharge |
---|---|---|---|---|---|---|---|
1 | 91 | 93 | 129 | 9.2 | 203 | Exchange of LVAD, wound infection, stroke | Hospital death |
2 | 97 | 11 | 99 | 6.8 | 32 | Pump thrombosis and hypoxic–ischemic encephalopathy | Hospital death |
3 | 39 | 19 | 47 | 6.7 | 10 | Gastrointestinal hemorrhage | Home |
4 | 58 | 3 | 65 | 4.8 | 10 | - | Home |
5 | 43 | 4 | 43 | 5.1 | 10 | Rethoracotomy | Home |
6 | 10 | 5 | 69 | 5.3 | 39 | Stroke | Another hospital |
No. | Pre-LVAD IMS | Grip Strength, kgf | Grip (% Body Weight), % | KEIS, kgf/kg | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Post-Impella 5.0 | Pre-LVAD | Post-LVAD | Discharge | Post-Impella 5.0 | Pre-LVAD | Post-LVAD | Discharge | Post-Impella 5.0 | Pre-LVAD | Post-LVAD | Discharge | ||
1 | 1 | 4.2 | 7.8 | 9.1 | - | 0.09 | 0.17 | 0.21 | - | - | 0.11 | - | - |
2 | 9 | 13.0 | 29.5 | - | - | 0.20 | 0.55 | - | - | - | 0.47 | - | - |
3 | 3 | 1.5 | 3.1 | 6.4 | 13.9 | 0.03 | 0.06 | 0.13 | 0.28 | - | 0.07 | - | 0.48 |
4 | 9 | 23.3 | 33.2 | 20.2 | 35.6 | 0.59 | 0.60 | 0.39 | 0.64 | - | 0.58 | 0.60 | 0.58 |
5 | 6 | 33.2 | 37.3 | 25.8 | 39.9 | 0.68 | 0.81 | 0.55 | 0.88 | - | 0.50 | 0.54 | 0.80 |
6 | 3 | 25.7 | 27.0 | 7.0 | 28.5 | 0.36 | 0.39 | 0.09 | 0.44 | - | - | - | 0.42 |
No. | Six-Minute Walking Distance at Discharge, m | NMES | Progress of Cardiac Rehabilitation | ||||||||||
Pre-LVAD Total Number of Times | Pre-LVAD Intensity of NMES, mA | Pre-LVAD Total Number of Times | Post-LVAD Sitting, Days | Post-LVAD 100-m Gait, Days | Post-LVAD Exercise Room, Days | ||||||||
1 | - | 53 | 65 | Yes | 21 | - | - | ||||||
2 | - | - | - | No | - | - | - | ||||||
3 | 440 | 24 | 40 | Yes | 3 | 54 | 17 | ||||||
4 | 540 | - | - | No | 3 | 11 | 19 | ||||||
5 | 370 | - | - | No | 4 | 12 | 19 | ||||||
6 | - | - | - | No | 7 | - | 91 |
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nakatani, T.; Sase, K.; Oshiyama, H.; Akiyama, M.; Horie, M.; Nawata, K.; Nishinaka, T.; Tanoue, Y.; Toda, K.; Tozawa, M.; et al. Japanese registry for mechanically assisted circulatory support: First report. J. Heart Lung. Transplant. 2017, 36, 1087–1096. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kerrigan, D.J.; Williams, C.T.; Ehrman, J.K.; Saval, M.A.; Bronsteen, K.; Schairer, J.R.; Swaffer, M.; Brawner, C.A.; Lanfear, D.E.; Selektor, Y.; et al. Cardiac rehabilitation improves functional capacity and patient-reported health status in patients with continuous-flow left ventricular assist devices: The Rehab-VAD randomized controlled trial. JACC Heart Fail. 2014, 2, 653–659. [Google Scholar] [CrossRef] [PubMed]
- English, M.L.; Speed, J. Effectiveness of acute inpatient rehabilitation after left ventricular assist device placement. Am. J. Phys. Med. Rehabil. 2013, 92, 621–626. [Google Scholar] [CrossRef] [PubMed]
- Haddad, T.M.; Saurav, A.; Smer, A.; Azzouz, M.S.; Akinapelli, A.; Williams, M.A.; Alla, V.M. Cardiac rehabilitation in patients with left ventricular assist device: A systematic review and meta-analysis. J. Cardiopulm. Rehabil. Prev. 2017, 37, 390–396. [Google Scholar] [CrossRef] [PubMed]
- Scaglione, A.; Panzarino, C.; Modica, M.; Tavanelli, M.; Pezzano, A.; Grati, P.; Racca, V.; Toccafondi, A.; Bordoni, B.; Verde, A.; et al. Short- and long-term effects of a cardiac rehabilitation program in patients implanted with a left ventricular assist device. PLoS ONE 2021, 16, e0259927. [Google Scholar] [CrossRef]
- Yost, G.; Bhat, G. Relationship between handgrip strength and length of stay for left ventricular assist device implantation. Nutr. Clin. Pract. 2017, 32, 98–102. [Google Scholar] [CrossRef]
- Tsuji, M.; Amiya, E.; Hatano, M.; Nitta, D.; Maki, H.; Bujo, C.; Saito, A.; Hosoya, Y.; Minatsuki, S.; Hara, T.; et al. Abdominal skeletal muscle mass as a predictor of mortality in Japanese patients undergoing left ventricular assist device implantation. ESC Heart Fail. 2019, 6, 526–535. [Google Scholar] [CrossRef] [Green Version]
- Sugimura, Y.; Sipahi, N.F.; Immohr, M.B.; Yilmaz, E.; Aissa, J.; Boeken, U.; Aubin, H.; Lichtenberg, A.; Akhyari, P.; Dalyanoglu, H. Effect of preoperative erector spinae muscles mass on postoperative outcomes in patients with left ventricular assist devices. J. Card. Surg. 2021, 37, 297–304. [Google Scholar] [CrossRef]
- Heberton, G.A.; Nassif, M.; Bierhals, A.; Novak, E.; LaRue, S.J.; Lima, B.; Hall, S.; Silvestry, S.; Joseph, S.M. Usefulness of psoas muscle area determined by computed tomography to predict mortality or prolonged length of hospitals stay in patients undergoing left ventricular assist device implantation. Am. J. Cardiol. 2016, 118, 1363–1367. [Google Scholar] [CrossRef]
- Molina, E.J.; Shah, P.; Kiernan, M.S.; Cornwell, W.K., 3rd; Copeland, H.; Takeda, K.; Fernandez, F.G.; Badhwar, V.; Habib, R.H.; Jacobs, J.P.; et al. The Society of Thoracic Surgeons Intermacs 2020 Annual Report. Ann. Thorac. Surg. 2021, 111, 778–792. [Google Scholar] [CrossRef]
- Parry, S.M.; Puthucheary, Z.A. The impact of extended bed rest on the musculoskeletal system in the critical care environment. Extreme. Physiol. Med. 2015, 4, 16. [Google Scholar] [CrossRef] [Green Version]
- Ikeda, Y.; Ako, J.; Toda, K.; Hirayama, A.; Kinugawa, K.; Kobayashi, Y.; Ono, M.; Nishimura, T.; Sato, N.; Shindo, T.; et al. Short-term outcomes of Impella support in Japanese patients with cardiogenic shock due to acute myocardial infarction—Japanese registry for percutaneous ventricular assist device (J-PVAD). Circ. J. 2023. online ahead of print. [Google Scholar] [CrossRef]
- Alushi, B.; Douedari, A.; Froehlig, G.; Knie, W.; Wurster, T.H.; Leistner, D.M.; Stahli, B.E.; Mochmann, H.C.; Pieske, B.; Landmesser, U.; et al. Impella versus IABP in acute myocardial infarction complicated by cardiogenic shock. Open Heart 2019, 6, e000987. [Google Scholar] [CrossRef] [Green Version]
- Bansal, A.; Bhama, J.K.; Patel, R.; Desai, S.; Mandras, S.A.; Patel, H.; Collins, T.; Reilly, J.P.; Ventura, H.O.; Parrino, P.E. Using the minimally invasive Impella 5.0 via the right subclavian artery cutdown for acute on chronic decompensated heart failure as a bridge to decision. Ochsner. J. 2016, 16, 210–216. [Google Scholar]
- Esposito, M.L.; Jablonski, J.; Kras, A.; Krasney, S.; Kapur, N.K. Maximum level of mobility with axillary deployment of the Impella 5.0 is associated with improved survival. Int. J. Artif. Organs 2018, 41, 236–239. [Google Scholar] [CrossRef]
- Kamiya, K.; Adachi, T.; Sasou, K.; Suzuki, T.; Yamada, S. Risk factors for disability progression among Japanese long-term care service users: A 3-year prospective cohort study. Geriatr. Gerontol. Int. 2017, 17, 568–574. [Google Scholar] [CrossRef]
- Kitamura, H.; Yamada, S.; Adachi, T.; Shibata, K.; Tamaki, M.; Okawa, Y.; Usui, A. Effect of perioperative neuromuscular electrical stimulation in patients undergoing cardiovascular surgery: A pilot randomized controlled trial. Semin. Thorac. Cardiovasc. Surg. 2019, 31, 361–367. [Google Scholar] [CrossRef] [Green Version]
- Kamiya, K.; Mezzani, A.; Hotta, K.; Shimizu, R.; Kamekawa, D.; Noda, C.; Yamaoka-Tojo, M.; Matsunaga, A.; Masuda, T. Quadriceps isometric strength as a predictor of exercise capacity in coronary artery disease patients. Eur. J. Prev. Cardiol. 2013, 21, 1285–1291. [Google Scholar] [CrossRef]
- Japan Cardiovascular Surgery Database, JCVSD. Available online: http://www.jacvsd.umin.jp/ (accessed on 1 January 2023).
- Hodgson, C.; Needham, D.; Haines, K.; Bailey, M.; Ward, A.; Harrold, M.; Young, P.; Zanni, J.; Buhr, H.; Higgins, A.; et al. Feasibility and inter-rater reliability of the ICU Mobility Scale. Heart Lung 2014, 43, 19–24. [Google Scholar] [CrossRef] [Green Version]
- Tsutsui, H.; Isobe, M.; Ito, H.; Ito, H.; Okumura, K.; Ono, M.; Kitakaze, M.; Kinugawa, K.; Kihara, Y.; Goto, Y.; et al. JCS 2017/JHFS 2017 Guideline on diagnosis and treatment of acute and chronic heart failure—Digest version. Circ. J. 2019, 83, 2084–2184. [Google Scholar] [CrossRef] [Green Version]
- JCS/JSCVS/JATS/JSVS 2021 Guideline on Implantable Left Ventricular Assist Device for Patients with Advanced Heart Failure. Available online: https://www.j-circ.or.jp/cms/wp-content/uploads/2021/03/JCS2021_Ono_Yamaguchi.pdf (accessed on 1 January 2023). (In Japanese).
- Kondo, T.; Yamada, S.; Tanimura, D.; Kazama, S.; Ishihara, T.; Shimojo, M.; Iwata, E.; Kondo, S.; Hiraiwa, H.; Kato, T.; et al. Neuromuscular electrical stimulation is feasible in patients with acute heart failure. ESC. Heart Fail. 2019, 6, 975–982. [Google Scholar] [CrossRef] [PubMed]
- Nozaki, K.; Hamazaki, N.; Ikeda, Y.; Nihei, M.; Kobayashi, S.; Kamiya, K.; Maekawa, E.; Matsunaga, A.; Yamaoka-Tojo, M.; Ako, J. Hemodynamic changes during neuromuscular electrical stimulation and mobility therapy for an advanced heart failure patient with Impella 5.0 device. Int. Heart J. 2021, 62, 695–699. [Google Scholar] [CrossRef] [PubMed]
- Kamiya, K.; Mezzani, A.; Masuda, T.; Matsunaga, A.; Izumi, T.; Giannuzzi, P. Effects of electrical muscle stimulation in a left ventricular assist device patient. Int. J. Cardiol. 2012, 160, e44–e45. [Google Scholar] [CrossRef] [PubMed]
- JCS/JACR 2021 Guideline on Rehabilitation in Patients with Cardiovascular Disease. Available online: https://www.j-circ.or.jp/cms/wp-content/uploads/2021/03/JCS2021_Makita.pdf (accessed on 1 January 2023). (In Japanese).
- Koomalsingh, K.; Kobashigawa, J.A. The future of cardiac transplantation. Ann. Cardiothorac. Surg. 2018, 7, 135–142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kondo, T.; Morimoto, R.; Mutsuga, M.; Fujimoto, K.; Okumura, T.; Shibata, N.; Kazama, S.; Kimira, Y.; Oishi, H.; Kuwayama, T.; et al. Comparison of Impella 5.0 and extracorporeal left ventricular assist device in patients with cardiogenic shock. Int. J. Artif. Organs 2021, 44, 846–853. [Google Scholar] [CrossRef]
- Glazier, J.J.; Kaki, A. The Impella device: Historical background, clinical applications and future directions. Int. J. Angiol. 2019, 28, 118–123. [Google Scholar] [CrossRef]
- Chung, C.J.; Wu, C.; Jones, M.; Kato, T.S.; Dam, T.T.; Givens, R.C.; Templeton, D.L.; Maurer, M.S.; Naka, Y.; Takayama, H.; et al. Reduced handgrip strength as a marker of frailty predicts clinical outcomes in patients with heart failure undergoing ventricular assist device placement. J. Card. Fail. 2014, 20, 310–315. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shimizu, M.; Hiraiwa, H.; Tanaka, S.; Tsuchikawa, Y.; Ito, R.; Kazama, S.; Kimura, Y.; Araki, T.; Mizutani, T.; Oishi, H.; et al. Cardiac Rehabilitation in Severe Heart Failure Patients with Impella 5.0 Support via the Subclavian Artery Approach Prior to Left Ventricular Assist Device Implantation. J. Pers. Med. 2023, 13, 630. https://doi.org/10.3390/jpm13040630
Shimizu M, Hiraiwa H, Tanaka S, Tsuchikawa Y, Ito R, Kazama S, Kimura Y, Araki T, Mizutani T, Oishi H, et al. Cardiac Rehabilitation in Severe Heart Failure Patients with Impella 5.0 Support via the Subclavian Artery Approach Prior to Left Ventricular Assist Device Implantation. Journal of Personalized Medicine. 2023; 13(4):630. https://doi.org/10.3390/jpm13040630
Chicago/Turabian StyleShimizu, Miho, Hiroaki Hiraiwa, Shinya Tanaka, Yohei Tsuchikawa, Ryota Ito, Shingo Kazama, Yuki Kimura, Takashi Araki, Takashi Mizutani, Hideo Oishi, and et al. 2023. "Cardiac Rehabilitation in Severe Heart Failure Patients with Impella 5.0 Support via the Subclavian Artery Approach Prior to Left Ventricular Assist Device Implantation" Journal of Personalized Medicine 13, no. 4: 630. https://doi.org/10.3390/jpm13040630
APA StyleShimizu, M., Hiraiwa, H., Tanaka, S., Tsuchikawa, Y., Ito, R., Kazama, S., Kimura, Y., Araki, T., Mizutani, T., Oishi, H., Kuwayama, T., Kondo, T., Morimoto, R., Okumura, T., Ito, H., Yoshizumi, T., Mutsuga, M., Usui, A., & Murohara, T. (2023). Cardiac Rehabilitation in Severe Heart Failure Patients with Impella 5.0 Support via the Subclavian Artery Approach Prior to Left Ventricular Assist Device Implantation. Journal of Personalized Medicine, 13(4), 630. https://doi.org/10.3390/jpm13040630