Lower All-Cause Mortality Risk in Females and Males with Peripheral Artery Disease following Pain-Free Home-Based Exercise: A 7-Year Observational Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Setting
2.2. Participants
2.3. Exercise Group
2.4. Control Group
2.5. Study Variables
2.6. Statistical Analysis
3. Results
3.1. Exercise Group
3.2. Survival Probability
3.3. Predictors of Survival Probability
3.4. Secondary Outcomes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Roth, G.A.; Mensah, G.A.; Johnson, C.O.; Addolorato, G.; Ammirati, E.; Baddour, L.M.; Barengo, N.C.; Beaton, A.Z.; Benjamin, E.J.; Benziger, C.P.; et al. Global Burden of Cardiovascular Diseases and Risk Factors, 1990–2019: Update from the GBD 2019 Study. J. Am. Coll. Cardiol. 2020, 76, 2982–3021. [Google Scholar] [CrossRef]
- Mendelsohn, M.E.; Karas, R.H. Molecular and Cellular Basis of Cardiovascular Gender Differences. Science 2005, 308, 1583–1587. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ndzie Noah, M.L.; Adzika, G.K.; Mprah, R.; Adekunle, A.O.; Adu-Amankwaah, J.; Sun, H. Sex-Gender Disparities in Cardiovascular Diseases: The Effects of Estrogen on ENOS, Lipid Profile, and NFATs During Catecholamine Stress. Front. Cardiovasc. Med. 2021, 8, 639946. [Google Scholar] [CrossRef] [PubMed]
- Boese, A.C.; Kim, S.C.; Yin, K.-J.; Lee, J.-P.; Hamblin, M.H. Sex Differences in Vascular Physiology and Pathophysiology: Estrogen and Androgen Signaling in Health and Disease. Am. J. Physiol. Heart Circ. Physiol. 2017, 313, H524–H545. [Google Scholar] [CrossRef] [Green Version]
- Kittnar, O. Selected Sex Related Differences in Pathophysiology of Cardiovascular System. Physiol. Res. 2020, 69, 21–31. [Google Scholar] [CrossRef]
- Pabon, M.; Cheng, S.; Altin, S.E.; Sethi, S.S.; Nelson, M.D.; Moreau, K.L.; Hamburg, N.; Hess, C.N. Sex Differences in Peripheral Artery Disease. Circ. Res. 2022, 130, 496–511. [Google Scholar] [CrossRef]
- Ekblom, Ö.; Cider, Å.; Hambraeus, K.; Bäck, M.; Leosdottir, M.; Lönn, A.; Börjesson, M. Participation in Exercise-Based Cardiac Rehabilitation Is Related to Reduced Total Mortality in Both Men and Women: Results from the SWEDEHEART Registry. Eur. J. Prev. Cardiol. 2022, 29, 485–492. [Google Scholar] [CrossRef] [PubMed]
- Smith, J.R.; Thomas, R.J.; Bonikowske, A.R.; Hammer, S.M.; Olson, T.P. Sex Differences in Cardiac Rehabilitation Outcomes. Circ. Res. 2022, 130, 552–565. [Google Scholar] [CrossRef]
- Arnold, A.P.; Cassis, L.A.; Eghbali, M.; Reue, K.; Sandberg, K. Sex Hormones and Sex Chromosomes Cause Sex Differences in the Development of Cardiovascular Diseases. Arterioscler. Thromb. Vasc. Biol. 2017, 37, 746–756. [Google Scholar] [CrossRef] [Green Version]
- Tsao, C.W.; Aday, A.W.; Almarzooq, Z.I.; Anderson, C.A.M.; Arora, P.; Avery, C.L.; Baker-Smith, C.M.; Beaton, A.Z.; Boehme, A.K.; Buxton, A.E.; et al. Heart Disease and Stroke Statistics-2023 Update: A Report From the American Heart Association. Circulation 2023, 147, e93–e621. [Google Scholar] [CrossRef]
- Sigvant, B.; Hasvold, P.; Kragsterman, B.; Falkenberg, M.; Johansson, S.; Thuresson, M.; Nordanstig, J. Cardiovascular Outcomes in Patients with Peripheral Arterial Disease as an Initial or Subsequent Manifestation of Atherosclerotic Disease: Results from a Swedish Nationwide Study. J. Vasc. Surg. 2017, 66, 507–514.e1. [Google Scholar] [CrossRef] [Green Version]
- Lane, R.; Harwood, A.; Watson, L.; Leng, G.C. Exercise for Intermittent Claudication. Cochrane Database Syst. Rev. 2017, 12, CD000990. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sartipy, F.; Sigvant, B.; Lundin, F.; Wahlberg, E. Ten Year Mortality in Different Peripheral Arterial Disease Stages: A Population Based Observational Study on Outcome. Eur. J. Vasc. Endovasc. Surg. Off. J. Eur. Soc. Vasc. Surg. 2018, 55, 529–536. [Google Scholar] [CrossRef] [Green Version]
- McDermott, M.M.; Fried, L.; Simonsick, E.; Ling, S.; Guralnik, J.M. Asymptomatic Peripheral Arterial Disease Is Independently Associated with Impaired Lower Extremity Functioning: The Women’s Health and Aging Study. Circulation 2000, 101, 1007–1012. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barochiner, J.; Aparicio, L.S.; Waisman, G.D. Challenges Associated with Peripheral Arterial Disease in Women. Vasc. Health Risk Manag. 2014, 10, 115–128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Porras, C.P.; Bots, M.L.; Teraa, M.; van Doorn, S.; Vernooij, R.W.M. Differences in Symptom Presentation in Women and Men with Confirmed Lower Limb Peripheral Artery Disease: A Systematic Review and Meta-Analysis. Eur. J. Vasc. Endovasc. Surg. Off. J. Eur. Soc. Vasc. Surg. 2022, 63, 602–612. [Google Scholar] [CrossRef]
- Gardner, A.W. Sex Differences in Claudication Pain in Subjects with Peripheral Arterial Disease. Med. Sci. Sports Exerc. 2002, 34, 1695–1698. [Google Scholar] [CrossRef] [Green Version]
- McDermott, M.M.; Greenland, P.; Liu, K.; Criqui, M.H.; Guralnik, J.M.; Celic, L.; Chan, C. Sex Differences in Peripheral Arterial Disease: Leg Symptoms and Physical Functioning. J. Am. Geriatr. Soc. 2003, 51, 222–228. [Google Scholar] [CrossRef]
- Ilonzo, N.; Lee, J.; James, C.; Phair, J.; Ting, W.; Faries, P.; Vouyouka, A. Sex-Based Differences in Loss of Independence after Lower Extremity Bypass Surgery. Am. J. Surg. 2022, 223, 170–175. [Google Scholar] [CrossRef]
- Lee, M.H.-Y.; Li, P.Y.; Li, B.; Shakespeare, A.; Samarasinghe, Y.; Feridooni, T.; Cuen-Ojeda, C.; Alshabanah, L.; Kishibe, T.; Al-Omran, M. A Systematic Review and Meta-Analysis of Sex- and Gender-Based Differences in Presentation Severity and Outcomes in Adults Undergoing Major Vascular Surgery. J. Vasc. Surg. 2022, 76, 581–594.e25. [Google Scholar] [CrossRef]
- Lo, R.C.; Bensley, R.P.; Dahlberg, S.E.; Matyal, R.; Hamdan, A.D.; Wyers, M.; Chaikof, E.L.; Schermerhorn, M.L. Presentation, Treatment, and Outcome Differences between Men and Women Undergoing Revascularization or Amputation for Lower Extremity Peripheral Arterial Disease. J. Vasc. Surg. 2014, 59, 409–418.e3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McGinigle, K.L.; Browder, S.E.; Strassle, P.D.; Shalhub, S.; Harris, L.M.; Minc, S.D. Sex-Related Disparities in Intervention Rates and Type of Intervention in Patients with Aortic and Peripheral Arterial Diseases in the National Inpatient Sample Database. J. Vasc. Surg. 2021, 73, 2081–2089.e7. [Google Scholar] [CrossRef] [PubMed]
- Hess, C.N.; Baumgartner, I.; Anand, S.S.; Nehler, M.R.; Patel, M.R.; Debus, E.S.; Szarek, M.; Capell, W.; Muehlhofer, E.; Berkowitz, S.D.; et al. Sex-Based Differences in Outcomes Following Peripheral Artery Revascularization: Insights From VOYAGER PAD. J. Am. Heart Assoc. 2022, 11, e024655. [Google Scholar] [CrossRef] [PubMed]
- Choi, K.H.; Park, T.K.; Kim, J.; Ko, Y.-G.; Yu, C.W.; Yoon, C.-H.; Lee, J.-H.; Min, P.-K.; Koh, Y.S.; Chae, I.-H.; et al. Sex Differences in Outcomes Following Endovascular Treatment for Symptomatic Peripheral Artery Disease: An Analysis From the K- VIS ELLA Registry. J. Am. Heart Assoc. 2019, 8, e010849. [Google Scholar] [CrossRef] [Green Version]
- McDermott, M.M.; Ferrucci, L.; Liu, K.; Guralnik, J.M.; Tian, L.; Kibbe, M.; Liao, Y.; Tao, H.; Criqui, M.H. Women with Peripheral Arterial Disease Experience Faster Functional Decline than Men with Peripheral Arterial Disease. J. Am. Coll. Cardiol. 2011, 57, 707–714. [Google Scholar] [CrossRef] [Green Version]
- Makowski, L.; Feld, J.; Köppe, J.; Illner, J.; Kühnemund, L.; Wiederhold, A.; Dröge, P.; Günster, C.; Gerß, J.; Reinecke, H.; et al. Sex Related Differences in Therapy and Outcome of Patients with Intermittent Claudication in a Real-World Cohort. Atherosclerosis 2021, 325, 75–82. [Google Scholar] [CrossRef]
- Kotov, A.; Heidemann, F.; Kuchenbecker, J.; Peters, F.; Marschall, U.; Acar, L.; Debus, E.S.; L’Hoest, H.; Behrendt, C.-A. Sex Disparities in Long Term Outcomes After Open Surgery for Chronic Limb Threatening Ischemia: A Propensity Score Matched Analysis of Health Insurance Claims. Eur. J. Vasc. Endovasc. Surg. Off. J. Eur. Soc. Vasc. Surg. 2021, 61, 423–429. [Google Scholar] [CrossRef]
- Heidemann, F.; Kuchenbecker, J.; Peters, F.; Kotov, A.; Marschall, U.; L’Hoest, H.; Acar, L.; Ramkumar, N.; Goodney, P.; Debus, E.S.; et al. A Health Insurance Claims Analysis on the Effect of Female Sex on Long-Term Outcomes after Peripheral Endovascular Interventions for Symptomatic Peripheral Arterial Occlusive Disease. J. Vasc. Surg. 2021, 74, 780–787.e7. [Google Scholar] [CrossRef]
- Ramkumar, N.; Suckow, B.D.; Brown, J.R.; Sedrakyan, A.; MacKenzie, T.; Stone, D.H.; Cronenwett, J.L.; Goodney, P.P. Role of Sex in Determining Treatment Type for Patients Undergoing Endovascular Lower Extremity Revascularization. J. Am. Heart Assoc. 2019, 8, e013088. [Google Scholar] [CrossRef]
- Mahtta, D.; Ahmed, S.T.; Ramsey, D.J.; Akeroyd, J.M.; Lee, M.T.; Rodriguez, F.; Michos, E.D.; Itchhaporia, D.; Nasir, K.; Alam, M.; et al. Statin Prescription Rates, Adherence, and Associated Clinical Outcomes Among Women with PAD and ICVD. Cardiovasc. Drugs Ther. 2020, 34, 745–754. [Google Scholar] [CrossRef]
- Nanna, M.G.; Wang, T.Y.; Xiang, Q.; Goldberg, A.C.; Robinson, J.G.; Roger, V.L.; Virani, S.S.; Wilson, P.W.F.; Louie, M.J.; Koren, A.; et al. Sex Differences in the Use of Statins in Community Practice. Circ. Cardiovasc. Qual. Outcomes 2019, 12, e005562. [Google Scholar] [CrossRef]
- Rodriguez, F.; Olufade, T.O.; Ramey, D.R.; Friedman, H.S.; Navaratnam, P.; Heithoff, K.; Foody, J.M. Gender Disparities in Lipid-Lowering Therapy in Cardiovascular Disease: Insights from a Managed Care Population. J. Womens Health (Larchmt.) 2016, 25, 697–706. [Google Scholar] [CrossRef]
- Messiha, D.; Petrikhovich, O.; Lortz, J.; Mahabadi, A.A.; Hering, R.; Schulz, M.; Rassaf, T.; Rammos, C. Gender Differences in Outpatient Peripheral Artery Disease Management in Germany: A Population Based Study 2009-2018. Eur. J. Vasc. Endovasc. Surg. Off. J. Eur. Soc. Vasc. Surg. 2022, 63, 714–720. [Google Scholar] [CrossRef]
- Aboyans, V.; Ricco, J.-B.; Bartelink, M.-L.E.L.; Björck, M.; Brodmann, M.; Cohnert, T.; Collet, J.-P.; Czerny, M.; De Carlo, M.; Debus, S.; et al. 2017 ESC Guidelines on the Diagnosis and Treatment of Peripheral Arterial Diseases, in Collaboration with the European Society for Vascular Surgery (ESVS): Document Covering Atherosclerotic Disease of Extracranial Carotid and Vertebral, Mesenteric, Renal. Eur. Heart J. 2018, 39, 763–816. [Google Scholar] [CrossRef] [Green Version]
- Gerhard-Herman, M.D.; Gornik, H.L.; Barrett, C.; Barshes, N.R.; Corriere, M.A.; Drachman, D.E.; Fleisher, L.A.; Fowkes, F.G.R.; Hamburg, N.M.; Kinlay, S.; et al. 2016 AHA/ACC Guideline on the Management of Patients With Lower Extremity Peripheral Artery Disease: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J. Am. Coll. Cardiol. 2017, 69, e71–e126. [Google Scholar] [CrossRef]
- Dörenkamp, S.; Mesters, I.; de Bie, R.; Teijink, J.; van Breukelen, G. Patient Characteristics and Comorbidities Influence Walking Distances in Symptomatic Peripheral Arterial Disease: A Large One-Year Physiotherapy Cohort Study. PLoS ONE 2016, 11, e0146828. [Google Scholar] [CrossRef] [Green Version]
- Gommans, L.N.M.; Scheltinga, M.R.M.; van Sambeek, M.R.H.M.; Maas, A.H.E.M.; Bendermacher, B.L.W.; Teijink, J.A.W. Gender Differences Following Supervised Exercise Therapy in Patients with Intermittent Claudication. J. Vasc. Surg. 2015, 62, 681–688. [Google Scholar] [CrossRef] [PubMed]
- Gardner, A.W.; Parker, D.E.; Montgomery, P.S.; Blevins, S.M. Diabetic Women Are Poor Responders to Exercise Rehabilitation in the Treatment of Claudication. J. Vasc. Surg. 2014, 59, 1036–1043. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manfredini, F.; Malagoni, A.M.; Mascoli, F.; Mandini, S.; Taddia, M.C.; Basaglia, N.; Manfredini, R.; Conconi, F.; Zamboni, P. Training Rather than Walking-The Test in-Train out Program for Home-Based Rehabilitation in Peripheral Arteriopathy. Circ. J. 2008, 72, 946–952. [Google Scholar] [CrossRef] [Green Version]
- Malagoni, A.M.; Vagnoni, E.; Felisatti, M.; Mandini, S.; Heidari, M.; Mascoli, F.; Basaglia, N.; Manfredini, R.; Zamboni, P.; Manfredini, F. Evaluation of Patient Compliance, Quality of Life Impact and Cost-Effectiveness of a “Test in-Train out” Exercise-Based Rehabilitation Program for Patients with Intermittent Claudication. Circ. J. 2011, 75, 2128–2134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lamberti, N.; Piva, G.; Businaro, F.; Caruso, L.; Crepaldi, A.; Lòpez-Soto, P.J.; Manfredini, F. A Fitness-Fatigue Model of Performance in Peripheral Artery Disease: Predicted and Measured Effects of a Pain-Free Exercise Program. J. Pers. Med. 2022, 12, 397. [Google Scholar] [CrossRef] [PubMed]
- Manfredini, R.; Lamberti, N.; Manfredini, F.; Straudi, S.; Fabbian, F.; Rodriguez Borrego, M.A.; Basaglia, N.; Carmona Torres, J.M.; Lopez Soto, P.J. Gender Differences in Outcomes Following a Pain-Free, Home-Based Exercise Program for Claudication. J. Women’s Health. 2019, 28, 1313–1321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vandenbroucke, J.P.; von Elm, E.; Altman, D.G.; Gøtzsche, P.C.; Mulrow, C.D.; Pocock, S.J.; Poole, C.; Schlesselman, J.J.; Egger, M. Strengthening the Reporting of Observational Studies in Epidemiology (STROBE): Explanation and Elaboration. PLoS Med. 2007, 4, e297. [Google Scholar] [CrossRef] [Green Version]
- Rantner, B.; Kollerits, B.; Pohlhammer, J.; Stadler, M.; Lamina, C.; Peric, S.; Klein-Weigel, P.; Mühlthaler, H.; Fraedrich, G.; Kronenberg, F. The Fate of Patients with Intermittent Claudication in the 21st Century Revisited-Results from the CAVASIC Study. Sci. Rep. 2017, 8, 45833. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Norgren, L.; Hiatt, W.R.; Dormandy, J.A.; Nehler, M.R.; Harris, K.A.; Fowkes, F.G.R. Inter-Society Consensus for the Management of Peripheral Arterial Disease (TASC II). J. Vasc. Surg. 2007, 45 (Suppl. 1), S5–S67. [Google Scholar] [CrossRef] [Green Version]
- Hogan, S.E.; Nehler, M.R.; Anand, S.; Patel, M.R.; Debus, S.; Jackson, M.T.; Buchanan, C.; King, R.W.; Hess, C.; Muehlhofer, E.; et al. Improvement in Walking Impairment Following Surgical and Endovascular Revascularization: Insights from VOYAGER PAD. Vasc. Med. 2022, 27, 343–349. [Google Scholar] [CrossRef]
- Secemsky, E.A.; Shen, C.; Schermerhorn, M.; Yeh, R.W. Longitudinal Assessment of Safety of Femoropopliteal Endovascular Treatment With Paclitaxel-Coated Devices Among Medicare Beneficiaries: The SAFE-PAD Study. JAMA Intern. Med. 2021, 181, 1071–1080. [Google Scholar] [CrossRef]
- Vouyouka, A.G.; Egorova, N.N.; Salloum, A.; Kleinman, L.; Marin, M.; Faries, P.L.; Moscowitz, A. Lessons Learned from the Analysis of Gender Effect on Risk Factors and Procedural Outcomes of Lower Extremity Arterial Disease. J. Vasc. Surg. 2010, 52, 1196–1202. [Google Scholar] [CrossRef] [Green Version]
- Jain, A.K.; Kalbaugh, C.A.; Farber, M.A.; Marston, W.A.; Vallabhaneni, R. Race and Gender Affect Outcomes of Lower Extremity Bypass. J. Vasc. Surg. 2014, 60, 1275–1281. [Google Scholar] [CrossRef] [Green Version]
- Bechter-Hugl, B.; Falkensammer, J.; Gorny, O.; Greiner, A.; Chemelli, A.; Fraedrich, G. The Influence of Gender on Patency Rates after Iliac Artery Stenting. J. Vasc. Surg. 2014, 59, 1588–1596. [Google Scholar] [CrossRef] [Green Version]
- Jackson, E.A.; Munir, K.; Schreiber, T.; Rubin, J.R.; Cuff, R.; Gallagher, K.A.; Henke, P.K.; Gurm, H.S.; Grossman, P.M. Impact of Sex on Morbidity and Mortality Rates after Lower Extremity Interventions for Peripheral Arterial Disease: Observations from the Blue Cross Blue Shield of Michigan Cardiovascular Consortium. J. Am. Coll. Cardiol. 2014, 63, 2525–2530. [Google Scholar] [CrossRef] [Green Version]
- Arnaoutakis, D.J.; Scully, R.E.; Sharma, G.; Shah, S.K.; Ozaki, C.K.; Belkin, M.; Nguyen, L.L. Impact of Body Mass Index and Gender on Wound Complications after Lower Extremity Arterial Surgery. J. Vasc. Surg. 2017, 65, 1713–1718.e1. [Google Scholar] [CrossRef] [Green Version]
- Redberg, R.F.; McDermott, M.M. High Mortality Rates in Medicare Patients After Peripheral Artery Disease Revascularization. JAMA Intern. Med. 2021, 181, 1041–1042. [Google Scholar] [CrossRef]
- Spronk, S.; Bosch, J.L.; den Hoed, P.T.; Veen, H.F.; Pattynama, P.M.T.; Hunink, M.G.M. Cost-Effectiveness of Endovascular Revascularization Compared to Supervised Hospital-Based Exercise Training in Patients with Intermittent Claudication: A Randomized Controlled Trial. J. Vasc. Surg. 2008, 48, 1472–1480. [Google Scholar] [CrossRef] [Green Version]
- Djerf, H.; Millinger, J.; Falkenberg, M.; Jivegård, L.; Svensson, M.; Nordanstig, J. Absence of Long-Term Benefit of Revascularization in Patients With Intermittent Claudication: Five-Year Results From the IRONIC Randomized Controlled Trial. Circ. Cardiovasc. Interv. 2020, 13, e008450. [Google Scholar] [CrossRef]
- Hageman, D.; Fokkenrood, H.J.; Gommans, L.N.; van den Houten, M.M.; Teijink, J.A. Supervised Exercise Therapy versus Home-Based Exercise Therapy versus Walking Advice for Intermittent Claudication. Cochrane Database Syst. Rev. 2018, 4, CD005263. [Google Scholar] [CrossRef]
- Leeper, N.J.; Myers, J.; Zhou, M.; Nead, K.T.; Syed, A.; Kojima, Y.; Caceres, R.D.; Cooke, J.P. Exercise Capacity Is the Strongest Predictor of Mortality in Patients with Peripheral Arterial Disease. J. Vasc. Surg. 2013, 57, 728–733. [Google Scholar] [CrossRef] [Green Version]
- Lamberti, N.; López-Soto, P.J.; Guerzoni, F.; Napoli, N.; Gasbarro, V.; Zamboni, P.; Tsolaki, E.; Taddia, M.C.; Rodríguez-Borrego, M.A.; Manfredini, R.; et al. Changes in Exercise Capacity and Risk of All-Cause Mortality in Patients with Peripheral Artery Disease: A 10-Year Retrospective Cohort Study. Intern. Emerg. Med. 2020, 15, 289–298. [Google Scholar] [CrossRef] [PubMed]
- Manfredini, F.; Lamberti, N.; Guerzoni, F.; Napoli, N.; Gasbarro, V.; Zamboni, P.; Mascoli, F.; Manfredini, R.; Basaglia, N.; Rodríguez-Borrego, M.A.; et al. Rehabilitative Exercise Reduced the Impact of Peripheral Artery Disease on Vascular Outcomes in Elderly Patients with Claudication: A Three-Year Single Center Retrospective Study. J. Clin. Med. 2019, 8, 210. [Google Scholar] [CrossRef] [PubMed]
- Hardy, S.E.; Perera, S.; Roumani, Y.F.; Chandler, J.M.; Studenski, S.A. Improvement in Usual Gait Speed Predicts Better Survival in Older Adults. J. Am. Geriatr. Soc. 2007, 55, 1727–1734. [Google Scholar] [CrossRef] [PubMed]
- Studenski, S.; Perera, S.; Patel, K.; Rosano, C.; Faulkner, K.; Inzitari, M.; Brach, J.; Chandler, J.; Cawthon, P.; Connor, E.B.; et al. Gait Speed and Survival in Older Adults. JAMA 2011, 305, 50–58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lamberti, N.; Straudi, S.; Lissia, E.; Cavazzini, L.; Buja, S.; Manfredini, R.; Basaglia, N.; Manfredini, F. Home-Based Exercise for Elderly Patients with Intermittent Claudication Limited by Osteoarticular Disorders-Feasibility and Eff Ectiveness of a Low-Intensity Programme. Vasa-Eur. J. Vasc. Med. 2018, 47, 227–234. [Google Scholar] [CrossRef]
- Garg, P.K.; Tian, L.; Criqui, M.H.; Liu, K.; Ferrucci, L.; Guralnik, J.M.; Tan, J.; McDermott, M.M. Physical Activity during Daily Life and Mortality in Patients with Peripheral Arterial Disease. Circulation 2006, 114, 242–248. [Google Scholar] [CrossRef] [Green Version]
- Lamberti, N.; López-Soto, P.J.; Rodríguez-Borrego, M.A.; Straudi, S.; Basaglia, N.; Zamboni, P.; Manfredini, R.; Manfredini, F. Restless Leg Syndrome in Peripheral Artery Disease: Prevalence among Patients with Claudication and Benefits from Low-Intensity Exercise. J. Clin. Med. 2019, 8, 1403. [Google Scholar] [CrossRef] [Green Version]
- Manfredini, F.; Mallamaci, F.; D’Arrigo, G.; Baggetta, R.; Bolignano, D.; Torino, C.; Lamberti, N.; Bertoli, S.; Ciurlino, D.; Rocca-Rey, L.; et al. Exercise in Patients on Dialysis: A Multicenter, Randomized Clinical Trial. J. Am. Soc. Nephrol. 2017, 28, 1259–1268. [Google Scholar] [CrossRef] [Green Version]
- Borg, S.; Öberg, B.; Leosdottir, M.; Lindolm, D.; Nilsson, L.; Bäck, M. Factors Associated with Non-Attendance at Exercise-Based Cardiac Rehabilitation. BMC Sport. Sci. Med. Rehabil. 2019, 11, 13. [Google Scholar] [CrossRef] [Green Version]
- Fillingim, R.B.; Maixner, W. Gender Differences in the Responses to Noxious Stimuli. Pain Forum 1995, 4, 209–221. [Google Scholar] [CrossRef]
- Cavalcante, B.R.; Farah, B.Q.; Barbosa, J.P.d.A.; Cucato, G.G.; da Rocha Chehuen, M.; da Silva Santana, F.; Wolosker, N.; de Moraes Forjaz, C.L.; Ritti-Dias, R.M. Are the Barriers for Physical Activity Practice Equal for All Peripheral Artery Disease Patients? Arch. Phys. Med. Rehabil. 2015, 96, 248–252. [Google Scholar] [CrossRef] [PubMed]
- Oka, R.K.; Szuba, A.; Giacomini, J.C.; Cooke, J.P. Gender Differences in Perception of PAD: A Pilot Study. Vasc. Med. 2003, 8, 89–94. [Google Scholar] [CrossRef] [Green Version]
- Treat-Jacobson, D.; McDermott, M.M.; Bronas, U.G.; Campia, U.; Collins, T.C.; Criqui, M.H.; Gardner, A.W.; Hiatt, W.R.; Regensteiner, J.G.; Rich, K. Optimal Exercise Programs for Patients with Peripheral Artery Disease: A Scientific Statement from the American Heart Association. Circulation 2019, 139, E10–E33. [Google Scholar] [CrossRef]
- Collins, T.C.; Suarez-Almazor, M.; Bush, R.L.; Petersen, N.J. Gender and Peripheral Arterial Disease. J. Am. Board Fam. Med. 2006, 19, 132–140. [Google Scholar] [CrossRef] [Green Version]
- Grace, S.L.; Gravely Witte, S.; Kayaniyil, S.; Brual, J.; Suskin, N.; Stewart, D.E. A Multisite Examination of Sex Differences in Cardiac Rehabilitation Barriers by Participation Status. J. Womens Health (Larchmt.) 2009, 18, 209–216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McDermott, M.M.; Spring, B.; Tian, L.; Treat-Jacobson, D.; Ferrucci, L.; Lloyd-Jones, D.; Zhao, L.; Polonsky, T.; Kibbe, M.R.; Bazzano, L.; et al. Effect of Low-Intensity vs High-Intensity Home-Based Walking Exercise on Walk Distance in Patients with Peripheral Artery Disease: The LITE Randomized Clinical Trial. JAMA-J. Am. Med. Assoc. 2021, 325, 1266–1276. [Google Scholar] [CrossRef] [PubMed]
- McDermott, M.M.; Spring, B.; Berger, J.S.; Treat-Jacobson, D.; Conte, M.S.; Creager, M.A.; Criqui, M.H.; Ferrucci, L.; Gornik, H.L.; Guralnik, J.M.; et al. Effect of a Home-Based Exercise Intervention of Wearable Technology and Telephone Coaching on Walking Performance in Peripheral Artery Disease: The Honor Randomized Clinical Trial. JAMA-J. Am. Med. Assoc. 2018, 319, 1665–1676. [Google Scholar] [CrossRef]
- Bearne, L.M.; Volkmer, B.; Peacock, J.; Sekhon, M.; Fisher, G.; Galea Holmes, M.N.; Douiri, A.; Amirova, A.; Farran, D.; Quirke-McFarlane, S.; et al. Effect of a Home-Based, Walking Exercise Behavior Change Intervention vs Usual Care on Walking in Adults With Peripheral Artery Disease The MOSAIC Randomized Clinical Trial. JAMA-J. Am. Med. Assoc. 2022, 327, 1344–1355. [Google Scholar] [CrossRef] [PubMed]
- Witvrouwen, I.; Van Craenenbroeck, E.M.; Abreu, A.; Moholdt, T.; Kränkel, N. Exercise Training in Women with Cardiovascular Disease: Differential Response and Barriers-Review and Perspective. Eur. J. Prev. Cardiol. 2019, 28, 779–790. [Google Scholar] [CrossRef]
- Lozano, F.S.; González-Porras, J.R.; March, J.R.; Carrasco, E.; Lobos, J.M. Differences between Women and Men with Intermittent Claudication: A Cross-Sectional Study. J. Womens Health (Larchmt.) 2014, 23, 834–841. [Google Scholar] [CrossRef]
Males Exercise (n = 138) | Female Exercise (n = 62) | Males Control (n = 149) | Females Control (n = 51) | p | |
---|---|---|---|---|---|
Age, years | 72 ± 11 | 73 ± 11 | 71 ± 11 | 74 ± 10 | 0.19 |
Risk factors; n (%) | |||||
Smoking | 127 (92) | 50 (81) | 132 (89) | 43 (84) | 0.12 |
Hypertension | 106 (77) | 47 (76) | 122 (82) | 41 (80) | 0.66 |
Hyperlipidemia | 85 (62) | 41 (66) | 105 (70) | 32 (63) | 0.43 |
Diabetes mellitus | 68 (49) | 35 (57) | 71 (48) | 30 (59) | 0.42 |
Chronic Kidney Disease | 56 (41) | 22 (36) | 47 (32) | 14 (28) | 0.28 |
Comorbidities; n (%) | |||||
Ischemic heart disease | 69 (50) | 31 (50) | 76 (51) | 25 (49) | 0.99 |
Stroke | 25 (18) | 10 (16) | 29 (20) | 12 (23) | 0.77 |
Pulmonary disease | 14 (10) | 4 (7) | 22 (15) | 5 (10) | 0.38 |
Neoplastic disease | 15 (11) | 10 (16) | 25 (17) | 8 (16) | 0.52 |
Age-adjusted Charlson Index | 7 ± 2 | 7 ± 2 | 7 ± 2 | 7 ± 2 | 0.87 |
Laboratory values | |||||
Hemoglobin, g/dL | 13.8 ± 1.5 | 12.9 ± 1.3 | 13.6 ± 1.9 | 13.0 ± 1.4 | 0.18 |
Total Cholesterol, mg/dL | 204 ± 63 | 209 ± 45 | 187 ± 45 | 187 ± 51 | 0.08 |
Triglycerides, mg/dL | 162 ± 87 | 163 ± 95 | 135 ± 71 | 148 ± 59 | 0.14 |
Serum creatinine, mg/dL | 1.47 ± 0.56 | 1.42 ± 1.02 | 1.57 ± 1.05 | 1.50 ± 1.61 | 0.85 |
Peripheral artery disease | |||||
Lower limbs revascularization | 27 (20) | 7 (11) | 34 (23) | 7 (14) | 0.18 |
Bilateral disease | 107 (78) | 53 (86) | 109 (81) | 41 (95) | 0.06 |
ABI more impaired limb | 0.62 ± 0.16 | 0.62 ± 0.17 | 0.61 ± 0.17 | 0.62 ± 0.20 | 0.91 |
ABI less impaired limb | 0.83 ± 0.20 | 0.84 ± 0.18 | 0.78 ± 0.19 | 0.83 ± 0.22 | 0.19 |
Deceased n (%) | Survived n (%) | Hazard Ratio (95% Conficence Interval) | |
---|---|---|---|
Exercise Group | 31 (16%) | 169 (85%) | 0.292 0.210 to 0.405 |
Control Group | 112 (56%) | 88 (44%) | 3.423 2.470 to 4.763 |
Females | 34 (30%) | 79 (70%) | 0.796 0.553 to 1.145 |
Males | 109 (38%) | 178 (62%) | 1.257 0.874 to 1.808 |
Females Exercise | 6 (10%) | 56 (90%) | See Table 3. |
Males Exercise | 25 (18%) | 113 (82%) | |
Females Control | 28 (55%) | 23 (45%) | |
Males Control | 84 (56%) | 65 (44%) |
Females Control | Males Control | Females Exercise | Males Exercise | |
---|---|---|---|---|
Females Control | - | 1.049 (0.610–1.804) | 0.164 (0.088–0.305) | 0.303 (0.177–0.521) |
Males Control | 0.954 (0.554–1.640) | - | 0.1566 (0.096–0.256) | 0.289 (0.196–0.426) |
Females Exercise | 6.088 (3.274–11.321) | 6.385 (3.900–10.454) | - | 1.8468 (1.130–3.017) |
Males Exercise | 3.297 (1.921–5.658) | 3.457 (2.347–5.094) | 0.542 (0.331–0.885) | - |
Males Exercise (n = 138) | Females Exercise (n = 62) | Males Control (n = 149) | Females Control (n = 51) | |
---|---|---|---|---|
Age | 1.11 (1.06–1.18) | 1.07 (1.05–1.10) | 1.07 (1.02–1.13) | |
Smoking | ||||
Hypertension | ||||
Hyperlipidemia | ||||
Diabetes | ||||
Chronic Kidney Disease | 2.69 (1.11–6.51) | 21.27 (2.12–213.62) | ||
Ischemic heart disease | ||||
Stroke | ||||
Pulmonary disease | ||||
Neoplastic disease | 4.28 (1.43–12.8) | |||
Age-adjusted Charlson Index | 1.13 (1.01–1.27) | |||
Lower limbs revascularization | ||||
Bilateral disease | ||||
ABI more impaired limb | ||||
ABI less impaired limb |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lamberti, N.; Traina, L.; Savriè, C.; Tsolaki, E.; Rinaldo, N.; Straudi, S.; Guerzoni, F.; Napoli, N.; Manfredini, R.; Gasbarro, V.; et al. Lower All-Cause Mortality Risk in Females and Males with Peripheral Artery Disease following Pain-Free Home-Based Exercise: A 7-Year Observational Study. J. Pers. Med. 2023, 13, 636. https://doi.org/10.3390/jpm13040636
Lamberti N, Traina L, Savriè C, Tsolaki E, Rinaldo N, Straudi S, Guerzoni F, Napoli N, Manfredini R, Gasbarro V, et al. Lower All-Cause Mortality Risk in Females and Males with Peripheral Artery Disease following Pain-Free Home-Based Exercise: A 7-Year Observational Study. Journal of Personalized Medicine. 2023; 13(4):636. https://doi.org/10.3390/jpm13040636
Chicago/Turabian StyleLamberti, Nicola, Luca Traina, Caterina Savriè, Elpiniki Tsolaki, Natascia Rinaldo, Sofia Straudi, Franco Guerzoni, Nicola Napoli, Roberto Manfredini, Vincenzo Gasbarro, and et al. 2023. "Lower All-Cause Mortality Risk in Females and Males with Peripheral Artery Disease following Pain-Free Home-Based Exercise: A 7-Year Observational Study" Journal of Personalized Medicine 13, no. 4: 636. https://doi.org/10.3390/jpm13040636
APA StyleLamberti, N., Traina, L., Savriè, C., Tsolaki, E., Rinaldo, N., Straudi, S., Guerzoni, F., Napoli, N., Manfredini, R., Gasbarro, V., & Manfredini, F. (2023). Lower All-Cause Mortality Risk in Females and Males with Peripheral Artery Disease following Pain-Free Home-Based Exercise: A 7-Year Observational Study. Journal of Personalized Medicine, 13(4), 636. https://doi.org/10.3390/jpm13040636