Lung and Gut Microbiome in COPD
Abstract
:1. Introduction
2. An Overview of the Human Gut Microbiome
3. An Overview of the Human Lung Microbiome
4. The Gut–Lung Theory
5. COPD and Microbiomes
6. Lung Microbiome in COPD Patients According to Lung Tissue Samples
7. Lung Microbiome in COPD Patients According to BALF Samples
8. Lung Microbiome in COPD Patients According to Sputum Samples
9. Gut Microbiota in COPD Patients
10. The Relation between Microbiomes and COPD Exacerbations
11. Lung Function and Microbiome
12. The Potential Impact of Current Knowledge on Microbiomes in the Treatment of COPD
13. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Global Initiative for Chronic Obstructive Lung Disease—GOLD. Available online: https://goldcopd.org/ (accessed on 14 March 2022).
- The Top 10 Causes of Death. Available online: https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death (accessed on 6 February 2022).
- Hua, J.-L.; Hu, W.-P.; Zuo, Y.-H.; Zhang, J. Prevention of Acute Exacerbation in Subjects with Moderate-to-Very Severe COPD by Modulating Lower Respiratory Microbiome: Protocol of a Prospective, Multicenter, Randomized Controlled Trial. Int. J. Chron. Obstruct. Pulmon Dis. 2020, 15, 2985–2990. [Google Scholar] [CrossRef] [PubMed]
- Vogelmeier, C.F.; Criner, G.J.; Martinez, F.J.; Anzueto, A.; Barnes, P.J.; Bourbeau, J.; Celli, B.R.; Chen, R.; Decramer, M.; Fabbri, L.M.; et al. Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Lung Disease 2017 Report. GOLD Executive Summary. Am. J. Respir. Crit. Care Med. 2017, 195, 557–582. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Li, Y.; Mao, J.; Bian, Q.; Xuan, Y.; Shen, T.; Li, S. Combination of Chinese and Western Medicine Optimizes the Intestinal Microbiota of Exacerbated Chronic Obstructive Pulmonary Disease in Rats. Evid.-Based Complement. Altern. Med. 2021, 2021, e9975407. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Hou, C.; Li, Y.; Zhao, Z.; Liu, J.; Lu, X.; Shang, X.; Xin, Y. Analysis of the Bacterial Community in Chronic Obstructive Pulmonary Disease Sputum Samples by Denaturing Gradient Gel Electrophoresis and Real-Time PCR. BMC Pulm. Med. 2014, 14, 179. [Google Scholar] [CrossRef] [PubMed]
- Shukla, S.D.; Budden, K.F.; Neal, R.; Hansbro, P.M. Microbiome Effects on Immunity, Health and Disease in the Lung. Clin. Transl. Immunol. 2017, 6, e133. [Google Scholar] [CrossRef] [PubMed]
- Anand, S.; Mande, S.S. Diet, Microbiota and Gut-Lung Connection. Front. Microbiol. 2018, 9, 2147. [Google Scholar] [CrossRef]
- Shi, C.Y.; Yu, C.H.; Yu, W.Y.; Ying, H.Z. Gut-Lung Microbiota in Chronic Pulmonary Diseases: Evolution, Pathogenesis, and Therapeutics. Can. J. Infect. Dis. Med. Microbiol. 2021, 2021, e9278441. [Google Scholar] [CrossRef]
- Petersen, C.; Round, J.L. Defining Dysbiosis and Its Influence on Host Immunity and Disease. Cell Microbiol. 2014, 16, 1024–1033. [Google Scholar] [CrossRef]
- Valdes, A.M.; Walter, J.; Segal, E.; Spector, T.D. Role of the Gut Microbiota in Nutrition and Health. BMJ 2018, 361, k2179. [Google Scholar] [CrossRef]
- Leitao Filho, F.S.; Alotaibi, N.M.; Ngan, D.; Tam, S.; Yang, J.; Hollander, Z.; Chen, V.; FitzGerald, J.M.; Nislow, C.; Leung, J.M.; et al. Sputum Microbiome Is Associated with 1-Year Mortality after Chronic Obstructive Pulmonary Disease Hospitalizations. Am. J. Respir. Crit. Care Med. 2019, 199, 1205–1213. [Google Scholar] [CrossRef]
- Vaughan, A.; Frazer, Z.A.; Hansbro, P.M.; Yang, I.A. COPD and the Gut-Lung Axis: The Therapeutic Potential of Fibre. J. Thorac. Dis. 2019, 11, S2173–S2180. [Google Scholar] [CrossRef] [PubMed]
- Rouka, E.; Gourgoulianni, N.; Lüpold, S.; Hatzoglou, C.; Gourgoulianis, K.I.; Zarogiannis, S.G. Prediction and Enrichment Analyses of the Homo Sapiens-Drosophila Melanogaster COPD-Related Orthologs: Potential for Modeling of Human COPD Genomic Responses with the Fruit Fly. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 2022, 322, R77–R82. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Zheng, D.; Lin, Y.; Liu, Z.; Liang, Z.; Su, J.; Chen, R.; Zhou, H.; Wang, Z. Association of Sputum Microbiome with Clinical Outcome of Initial Antibiotic Treatment in Hospitalized Patients with Acute Exacerbations of COPD. Pharmacol. Res. 2020, 160, 105095. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Shi, G. Smoking and Microbiome in Oral, Airway, Gut and Some Systemic Diseases. J. Transl. Med. 2019, 17, 225. [Google Scholar] [CrossRef] [PubMed]
- Segal, L.N.; Clemente, J.C.; Tsay, J.-C.J.; Koralov, S.B.; Keller, B.C.; Wu, B.G.; Li, Y.; Shen, N.; Ghedin, E.; Morris, A.; et al. Enrichment of the Lung Microbiome with Oral Taxa Is Associated with Lung Inflammation of a Th17 Phenotype. Nat. Microbiol. 2016, 1, 16031. [Google Scholar] [CrossRef]
- Morris, A.; Beck, J.M.; Schloss, P.D.; Campbell, T.B.; Crothers, K.; Curtis, J.L.; Flores, S.C.; Fontenot, A.P.; Ghedin, E.; Huang, L.; et al. Comparison of the Respiratory Microbiome in Healthy Nonsmokers and Smokers. Am. J. Respir. Crit. Care Med. 2013, 187, 1067–1075. [Google Scholar] [CrossRef]
- Wang, Z.; Maschera, B.; Lea, S.; Kolsum, U.; Michalovich, D.; Van Horn, S.; Traini, C.; Brown, J.R.; Hessel, E.M.; Singh, D. Airway Host-Microbiome Interactions in Chronic Obstructive Pulmonary Disease. Respir. Res. 2019, 20, 113. [Google Scholar] [CrossRef]
- Stojanov, S.; Berlec, A.; Štrukelj, B. The Influence of Probiotics on the Firmicutes/Bacteroidetes Ratio in the Treatment of Obesity and Inflammatory Bowel Disease. Microorganisms 2020, 8, 1715. [Google Scholar] [CrossRef]
- Varraso, R.; Chiuve, S.E.; Fung, T.T.; Barr, R.G.; Hu, F.B.; Willett, W.C.; Camargo, C.A. Alternate Healthy Eating Index 2010 and Risk of Chronic Obstructive Pulmonary Disease among US Women and Men: Prospective Study. BMJ 2015, 350, h286. [Google Scholar] [CrossRef]
- Glowacki, R.W.P.; Martens, E.C. In Sickness and Health: Effects of Gut Microbial Metabolites on Human Physiology. PLoS Pathog. 2020, 16, e1008370. [Google Scholar] [CrossRef]
- Lloyd-Price, J.; Abu-Ali, G.; Huttenhower, C. The Healthy Human Microbiome. Genome Med. 2016, 8, 51. [Google Scholar] [CrossRef] [PubMed]
- Vich Vila, A.; Collij, V.; Sanna, S.; Sinha, T.; Imhann, F.; Bourgonje, A.R.; Mujagic, Z.; Jonkers, D.M.A.E.; Masclee, A.A.M.; Fu, J.; et al. Impact of Commonly Used Drugs on the Composition and Metabolic Function of the Gut Microbiota. Nat. Commun. 2020, 11, 362. [Google Scholar] [CrossRef] [PubMed]
- Pragman, A.A.; Kim, H.B.; Reilly, C.S.; Wendt, C.; Isaacson, R.E. The Lung Microbiome in Moderate and Severe Chronic Obstructive Pulmonary Disease. PLoS ONE 2012, 7, e47305. [Google Scholar] [CrossRef] [PubMed]
- Durack, J.; Lynch, S.V. The Gut Microbiome: Relationships with Disease and Opportunities for Therapy. J. Exp. Med. 2019, 216, 20–40. [Google Scholar] [CrossRef] [PubMed]
- Rapozo, D.C.M.; Bernardazzi, C.; de Souza, H.S.P. Diet and Microbiota in Inflammatory Bowel Disease: The Gut in Disharmony. World J. Gastroenterol. 2017, 23, 2124–2140. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Shi, Q.; Ying, S.; Zhu, D.; Chen, H.; Yang, X.; Xu, J.; Xu, F.; Tao, F.; Xu, B. Effects of Compound Caoshi Silkworm Granules on Stable COPD Patients and Their Relationship with Gut Microbiota: A Randomized Controlled Trial. Medicine 2020, 99, e20511. [Google Scholar] [CrossRef] [PubMed]
- Ananya, F.N.; Ahammed, M.R.; Fahem, M.M.; Kafle, S.; Viswanathan, M.; Desai, D.; Akku, R.; Khan, F.; Hernandez, T.E.; Bala, S.K.; et al. Association of Intestinal Microbial Dysbiosis With Chronic Obstructive Pulmonary Disease. Cureus 2021, 13, e19343. [Google Scholar] [CrossRef]
- Zakharkina, T.; Heinzel, E.; Koczulla, R.A.; Greulich, T.; Rentz, K.; Pauling, J.K.; Baumbach, J.; Herrmann, M.; Grünewald, C.; Dienemann, H.; et al. Analysis of the Airway Microbiota of Healthy Individuals and Patients with Chronic Obstructive Pulmonary Disease by T-RFLP and Clone Sequencing. PLoS ONE 2013, 8, e68302. [Google Scholar] [CrossRef]
- Enaud, R.; Prevel, R.; Ciarlo, E.; Beaufils, F.; Wieërs, G.; Guery, B.; Delhaes, L. The Gut-Lung Axis in Health and Respiratory Diseases: A Place for Inter-Organ and Inter-Kingdom Crosstalks. Front. Cell. Infect. Microbiol. 2020, 10, 9. [Google Scholar] [CrossRef]
- Seixas, S.; Kolbe, A.R.; Gomes, S.; Sucena, M.; Sousa, C.; Vaz Rodrigues, L.; Teixeira, G.; Pinto, P.; Tavares de Abreu, T.; Bárbara, C.; et al. Comparative Analysis of the Bronchoalveolar Microbiome in Portuguese Patients with Different Chronic Lung Disorders. Sci. Rep. 2021, 11, 15042. [Google Scholar] [CrossRef]
- Su, L.; Qiao, Y.; Luo, J.; Huang, R.; Li, Z.; Zhang, H.; Zhao, H.; Wang, J.; Xiao, Y. Characteristics of the Sputum Microbiome in COPD Exacerbations and Correlations between Clinical Indices. J. Transl. Med. 2022, 20, 76. [Google Scholar] [CrossRef]
- Korkontzelou, A.; Pantelis, C.; Ioannis, N. Lower Respiratory Tract Microbiome. Pneumon 2017, 30, 165–174. [Google Scholar]
- Erb-Downward, J.R.; Thompson, D.L.; Han, M.K.; Freeman, C.M.; McCloskey, L.; Schmidt, L.A.; Young, V.B.; Toews, G.B.; Curtis, J.L.; Sundaram, B.; et al. Analysis of the Lung Microbiome in the “Healthy” Smoker and in COPD. PLoS ONE 2011, 6, e16384. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Zhu, Q.-L.; Shen, Y.; Yan, T.; Zhou, X. Dynamic Changes of Gut and Lung Microorganisms during Chronic Obstructive Pulmonary Disease Exacerbations. Kaohsiung J. Med. Sci. 2020, 36, 107–113. [Google Scholar] [CrossRef] [PubMed]
- Dang, A.T.; Marsland, B.J. Microbes, Metabolites, and the Gut–Lung Axis. Mucosal Immunol. 2019, 12, 843–850. [Google Scholar] [CrossRef] [PubMed]
- Mammen, M.J.; Sethi, S. COPD and the Microbiome. Respirology 2016, 21, 590–599. [Google Scholar] [CrossRef]
- Sze, M.A.; Dimitriu, P.A.; Hayashi, S.; Elliott, W.M.; McDonough, J.E.; Gosselink, J.V.; Cooper, J.; Sin, D.D.; Mohn, W.W.; Hogg, J.C. The Lung Tissue Microbiome in Chronic Obstructive Pulmonary Disease. Am. J. Respir. Crit. Care Med. 2012, 185, 1073–1080. [Google Scholar] [CrossRef]
- Pragman, A.A.; Lyu, T.; Baller, J.A.; Gould, T.J.; Kelly, R.F.; Reilly, C.S.; Isaacson, R.E.; Wendt, C.H. The Lung Tissue Microbiota of Mild and Moderate Chronic Obstructive Pulmonary Disease. Microbiome 2018, 6, 7. [Google Scholar] [CrossRef]
- Sze, M.A.; Dimitriu, P.A.; Suzuki, M.; McDonough, J.E.; Campbell, J.D.; Brothers, J.F.; Erb-Downward, J.R.; Huffnagle, G.B.; Hayashi, S.; Elliott, W.M.; et al. Host Response to the Lung Microbiome in Chronic Obstructive Pulmonary Disease. Am. J. Respir. Crit. Care Med. 2015, 192, 438–445. [Google Scholar] [CrossRef]
- Dicker, A.J.; Huang, J.T.J.; Lonergan, M.; Keir, H.R.; Fong, C.J.; Tan, B.; Cassidy, A.J.; Finch, S.; Mullerova, H.; Miller, B.E.; et al. The Sputum Microbiome, Airway Inflammation, and Mortality in Chronic Obstructive Pulmonary Disease. J. Allergy Clin. Immunol. 2021, 147, 158–167. [Google Scholar] [CrossRef]
- Galiana, A.; Aguirre, E.; Rodriguez, J.C.; Mira, A.; Santibañez, M.; Candela, I.; Llavero, J.; Garcinuño, P.; López, F.; Ruiz, M.; et al. Sputum Microbiota in Moderate versus Severe Patients with COPD. Eur. Respir. J. 2014, 43, 1787–1790. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Nuñez, M.; Millares, L.; Pomares, X.; Ferrari, R.; Pérez-Brocal, V.; Gallego, M.; Espasa, M.; Moya, A.; Monsó, E. Severity-Related Changes of Bronchial Microbiome in Chronic Obstructive Pulmonary Disease. J. Clin. Microbiol. 2014, 52, 4217–4223. [Google Scholar] [CrossRef] [PubMed]
- Cabrera-Rubio, R.; Garcia-Núñez, M.; Setó, L.; Antó, J.M.; Moya, A.; Monsó, E.; Mira, A. Microbiome Diversity in the Bronchial Tracts of Patients with Chronic Obstructive Pulmonary Disease. J. Clin. Microbiol. 2012, 50, 3562–3568. [Google Scholar] [CrossRef] [PubMed]
- Molyneaux, P.L.; Mallia, P.; Cox, M.J.; Footitt, J.; Willis-Owen, S.A.G.; Homola, D.; Trujillo-Torralbo, M.-B.; Elkin, S.; Kon, O.M.; Cookson, W.O.C.; et al. Outgrowth of the Bacterial Airway Microbiome after Rhinovirus Exacerbation of Chronic Obstructive Pulmonary Disease. Am. J. Respir. Crit. Care Med. 2013, 188, 1224–1231. [Google Scholar] [CrossRef] [PubMed]
- Chiu, Y.-C.; Lee, S.-W.; Liu, C.-W.; Lan, T.-Y.; Wu, L.S.-H. Relationship between Gut Microbiota and Lung Function Decline in Patients with Chronic Obstructive Pulmonary Disease: A 1-Year Follow-up Study. Respir. Res. 2022, 23, 10. [Google Scholar] [CrossRef] [PubMed]
- Chiu, Y.-C.; Lee, S.-W.; Liu, C.-W.; Lin, R.C.-J.; Huang, Y.-C.; Lan, T.-Y.; Wu, L.S.-H. Comprehensive Profiling of the Gut Microbiota in Patients with Chronic Obstructive Pulmonary Disease of Varying Severity. PLoS ONE 2021, 16, e0249944. [Google Scholar] [CrossRef] [PubMed]
- Bowerman, K.L.; Rehman, S.F.; Vaughan, A.; Lachner, N.; Budden, K.F.; Kim, R.Y.; Wood, D.L.A.; Gellatly, S.L.; Shukla, S.D.; Wood, L.G.; et al. Disease-Associated Gut Microbiome and Metabolome Changes in Patients with Chronic Obstructive Pulmonary Disease. Nat. Commun. 2020, 11, 5886. [Google Scholar] [CrossRef]
- Mayhew, D.; Devos, N.; Lambert, C.; Brown, J.R.; Clarke, S.C.; Kim, V.L.; Magid-Slav, M.; Miller, B.E.; Ostridge, K.K.; Patel, R.; et al. Longitudinal Profiling of the Lung Microbiome in the AERIS Study Demonstrates Repeatability of Bacterial and Eosinophilic COPD Exacerbations. Thorax 2018, 73, 422–430. [Google Scholar] [CrossRef]
- Sze, M.A.; Tsuruta, M.; Yang, S.-W.J.; Oh, Y.; Man, S.F.P.; Hogg, J.C.; Sin, D.D. Changes in the Bacterial Microbiota in Gut, Blood, and Lungs Following Acute LPS Instillation into Mice Lungs. PLoS ONE 2014, 9, e111228. [Google Scholar] [CrossRef]
- Dickson, R.P.; Singer, B.H.; Newstead, M.W.; Falkowski, N.R.; Erb-Downward, J.R.; Standiford, T.J.; Huffnagle, G.B. Enrichment of the Lung Microbiome with Gut Bacteria in Sepsis and the Acute Respiratory Distress Syndrome. Nat. Microbiol. 2016, 1, 16113. [Google Scholar] [CrossRef]
- Wang, Z.; Locantore, N.; Haldar, K.; Ramsheh, M.Y.; Beech, A.S.; Ma, W.; Brown, J.R.; Tal-Singer, R.; Barer, M.R.; Bafadhel, M.; et al. Inflammatory Endotype–Associated Airway Microbiome in Chronic Obstructive Pulmonary Disease Clinical Stability and Exacerbations: A Multicohort Longitudinal Analysis. Am. J. Respir. Crit. Care Med. 2021, 203, 1488–1502. [Google Scholar] [CrossRef] [PubMed]
- Lai, H.-C.; Lin, T.-L.; Chen, T.-W.; Kuo, Y.-L.; Chang, C.-J.; Wu, T.-R.; Shu, C.-C.; Tsai, Y.-H.; Swift, S.; Lu, C.-C. Gut Microbiota Modulates COPD Pathogenesis: Role of Anti-Inflammatory Parabacteroides Goldsteinii Lipopolysaccharide. Gut 2022, 71, 309–321. [Google Scholar] [CrossRef] [PubMed]
- Alexopoulos, E.C.; Malli, F.; Mitsiki, E.; Bania, E.G.; Varounis, C.; Gourgoulianis, K.I. Frequency and Risk Factors of COPD Exacerbations and Hospitalizations: A Nationwide Study in Greece (Greek Obstructive Lung Disease Epidemiology and Health EcoNomics: GOLDEN Study). Int. J. Chron. Obstruct. Pulmon Dis. 2015, 10, 2665–2674. [Google Scholar] [CrossRef] [PubMed]
- Webb, K.A.; Olagoke, O.; Baird, T.; Neill, J.; Pham, A.; Wells, T.J.; Ramsay, K.A.; Bell, S.C.; Sarovich, D.S.; Price, E.P.Y. Genomic Diversity and Antimicrobial Resistance of Prevotella Species Isolated from Chronic Lung Disease Airways. Microb. Genom. 2022, 8, 000754. [Google Scholar] [CrossRef]
- Wang, Z.; Bafadhel, M.; Haldar, K.; Spivak, A.; Mayhew, D.; Miller, B.E.; Tal-Singer, R.; Johnston, S.L.; Ramsheh, M.Y.; Barer, M.R.; et al. Lung Microbiome Dynamics in COPD Exacerbations. Eur. Respir. J. 2016, 47, 1082–1092. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.-Y.; Li, S.-W.; Chin, C.-Y.; Hsu, C.-W.; Lee, C.-C.; Yeh, Y.-M.; Wu, K.-A. Association of Exacerbation Phenotype with the Sputum Microbiome in Chronic Obstructive Pulmonary Disease Patients during the Clinically Stable State. J. Transl. Med. 2021, 19, 121. [Google Scholar] [CrossRef]
- Ma, N.; Qi, Y.; Liang, X.; Bai, J.; Deng, J.; Li, M.; He, Z. Compare the Effect of Inhaled Corticosteroids and Systemic Corticosteroids on Sputum Microbiome of AECOPD. Front. Med. 2021, 8, 637246. [Google Scholar] [CrossRef]
- Huang, Y.J.; Sethi, S.; Murphy, T.; Nariya, S.; Boushey, H.A.; Lynch, S.V. Airway Microbiome Dynamics in Exacerbations of Chronic Obstructive Pulmonary Disease. J. Clin. Microbiol. 2014, 52, 2813–2823. [Google Scholar] [CrossRef]
- Bouquet, J.; Tabor, D.E.; Silver, J.S.; Nair, V.; Tovchigrechko, A.; Griffin, M.P.; Esser, M.T.; Sellman, B.R.; Jin, H. Microbial Burden and Viral Exacerbations in a Longitudinal Multicenter COPD Cohort. Respir. Res. 2020, 21, 77. [Google Scholar] [CrossRef]
- Dicker, A.J.; Crichton, M.L.; Pumphrey, E.G.; Cassidy, A.J.; Suarez-Cuartin, G.; Sibila, O.; Furrie, E.; Fong, C.J.; Ibrahim, W.; Brady, G.; et al. Neutrophil Extracellular Traps Are Associated with Disease Severity and Microbiota Diversity in Patients with Chronic Obstructive Pulmonary Disease. J. Allergy Clin. Immunol. 2018, 141, 117–127. [Google Scholar] [CrossRef]
- Jang, Y.O.; Lee, S.H.; Choi, J.J.; Kim, D.-H.; Choi, J.-M.; Kang, M.-J.; Oh, Y.-M.; Park, Y.-J.; Shin, Y.; Lee, S.W. Fecal Microbial Transplantation and a High Fiber Diet Attenuates Emphysema Development by Suppressing Inflammation and Apoptosis. Exp. Mol. Med. 2020, 52, 1128–1139. [Google Scholar] [CrossRef] [PubMed]
- Mortaz, E.; Adcock, I.M.; Ricciardolo, F.L.M.; Varahram, M.; Jamaati, H.; Velayati, A.A.; Folkerts, G.; Garssen, J. Anti-Inflammatory Effects of Lactobacillus Rahmnosus and Bifidobacterium Breve on Cigarette Smoke Activated Human Macrophages. PLoS ONE 2015, 10, e0136455. [Google Scholar] [CrossRef] [PubMed]
- Dickson, R.P.; Morris, A. Macrolides, Inflammation and the Lung Microbiome: Untangling the Web of Causality. Thorax 2017, 72, 10–12. [Google Scholar] [CrossRef]
- Slater, M.; Rivett, D.W.; Williams, L.; Martin, M.; Harrison, T.; Sayers, I.; Bruce, K.D.; Shaw, D. The Impact of Azithromycin Therapy on the Airway Microbiota in Asthma. Thorax 2014, 69, 673–674. [Google Scholar] [CrossRef]
- Segal, L.N.; Clemente, J.C.; Wu, B.G.; Wikoff, W.R.; Gao, Z.; Li, Y.; Ko, J.P.; Rom, W.N.; Blaser, M.J.; Weiden, M.D. Randomised, Double-Blind, Placebo-Controlled Trial with Azithromycin Selects for Anti-Inflammatory Microbial Metabolites in the Emphysematous Lung. Thorax 2017, 72, 13–22. [Google Scholar] [CrossRef] [PubMed]
- Parameswaran, G.I.; Sethi, S. Long-Term Macrolide Therapy in Chronic Obstructive Pulmonary Disease. CMAJ 2014, 186, 1148–1152. [Google Scholar] [CrossRef]
- Macowan, M.G.; Liu, H.; Keller, M.D.; Ween, M.; Hamon, R.; Tran, H.B.; Hodge, S. Interventional Low-Dose Azithromycin Attenuates Cigarette Smoke-Induced Emphysema and Lung Inflammation in Mice. Physiol. Rep. 2020, 8, e14419. [Google Scholar] [CrossRef]
Study | Sample | Human/Rats | Study Sample Size | Conclusions |
---|---|---|---|---|
(1) Sze et al., 2012 [39] | Lung tissue | Human | Thirty-two (eight smokers, eight non-smokers without COPD, eight with COPD GOLD 4, and four with CF). | Increase of Firmicutes, Lactobacillus, and Burkholderia species in COPD compared to other groups. |
(2) Pragman et al., 2018 [40] | Lung tissue, nasal, brochial, oral | Human | Nine patients( three with mild and six with moderate COPD). | Streptococcus was the most common genus in COPD. Upper resperatory brochial tree is richer but less diverse in microorganisms than the lower brochial tree. |
(3) John R. Erb-Downward et al., 2011 [35] | BAL | Human | Fourteen (seven healthy smokers, four smokers with COPD, thee non-smokers). | Low microbial diversity and presence of Pseudomonas spp. were associated with a decrease in lung function and progression of COPD. |
Lung tissue | Human | Eight specimens from six COPD patients. | (1) Differences in the microbiome in different regions of the same lung; (2) Low microbial diversity and presence of Pseudomonas spp. associated with a decrease in lung function. | |
(4) Sze et al., 2015 [41] | Lung tissue | Human | Forty samples from five COPD patients with GOLD 4 and 28 samples from four healthy donors. | (1) Low microbiome diversity was associated with the pathogenesis of COPD; (2) Increase of Proteobacteria and Actinobacteria and a decrease in Firmicutes and Bacteroidetes phyla was observed in COPD patients. |
(5) Dicker et al., 2021 [42] | Sputum | Human | Two hundred and fifty-two cases of stable COPD. | (1) Proteobacteria dominance was associated with the impairment of lung function and frequency of exacerbations; (2) Low microbiome diversity and high abundance of Proteobacteria and Haemophilus were associated with eosinopenia, while high abundance of Firmicutes and Streptococcus was associated with eosinophilia. |
(6) Galiana et al., 2014 [43] | Sputum | Human | Nineteen (nine moderate or mild COPD patients, 10 severe or very severe COPD patients). | Actinomyces was associated with COPD severity. |
(7) Marian Garcia-Nuñez et al., 2014 [44] | Sputum | Human | Seventeen COPD patients. | (1) Low microbial diversity was associated with progression of COPD; (2) Advanced disease was associated with the increase of Proteobacteria phylum and decrease of Firmicutes phylum. |
(8) Wang et al., 2019 [19] | Sputum | Human | One hundred and one samples from 16 healthy subjects and 43 COPD patients. | (1) Increased relative abundance of Moraxella, Streptococcus, and Actinobacteria, and a low microbial diversity in COPD patients; (2) Haemophilus and Neisseria were positively associated with sputum neutrophil counts, and Streptococcus, Megasphaera, and Veillonella was negatively associated with sputum neutrophil counts. |
(9) Wu et al., 2014 [6] | Sputum | Human | Twenty (10 healthy controls and 10 COPD patients). | (1) Increased diversity in COPD patients; (2) Increase of Streptococcus pneumoniae, Klebsiella pneumoniae, and Pseudomonas aeruginosa in COPD patients. |
(10) Zakharkina et al., 2013 [30] | BAL | Human | Eighteen (nine heathy controls, nine COPD patients). | (1) The phylum Cyanobacteria and genera Afipia, Brevundimonas, Curvibacter, Moraxella, Neisseria, Undibacterium, Corynebacterium, Capnocytophaga, and Leptolyngbia were characteristic for COPD. |
(11) Pragman et al., 2012 [25] | BAL | Human | Thirty-two (22 patients with moderate/severe COPD, 10 healthy controls). | Increase in microbial diversity was associated with the development of COPD. |
(12) Seixas et al., 2021 [32] | BAL | Human | One hundred and six patients with lung disease, seven of whom suffer from COPD GOLD 2. | Association of Haemophilus with COPD. |
(13) Cabrera et al., 2012 [45] | BAL, sputum | Human | Six moderate COPD patients. | Sputum has lower microbial diversity compared with that of BAL and lung tissue. |
(14) Molyneaux et al., 2013 [46] | Sputum | Human | 31 (14 COPD and 17 healthy) | Increase in Proteobacteria and Veillonellaceae and decrease in Firmicute in COPD. |
(15) Chiu et al., 2022 [47] | Feces | Human | Fifty-five COPD patients. | Bacteroidetes and Alloprevorella during a one-year period contributed to little or no reduction in lung function. During the same period, Firmicutes were related to a decline in lung function. |
(16) Chiu et al., 2021 [48] | Feces | Human | Sixty COPD patients. | (1) Gut microbiome was not associated with severity of COPD; (2) Ruminococcaceae NK4A214 group, Lachnoclostridium, and Bacteroidetes were more abundant in mild COPD, while Tyzzerella 4 and Dialister were less abundant; (3) Fusobacterium and Aerococcus were more abundant in severe COPD; (4) Bacteroides sp. had a positive correlation with lung function and a negative correlation with eosinophil count. |
(17) Bwerman et al., 2020 [49] | Feces | Human | Fifty-seven (28 COPD patients and 29 healthy controls). | (1) Bifidobacteriaceae, Eubacteriaceae, Lactobacillaceae, Micrococcaceae, Streptococcaceae. and Veillonellaceae increased in COPD while Desulfovibrionaceae, Gastranaerophilaceae. and Selenomonadaceae decreased; (2) S. vestibularis and two unnamed Streptococcus species (sp001556435, sp000187445) were enriched in COPD; (3) Lung function had a positive correlation with Desulfovibrio piger_A and CAG-302 sp001916775 and a negative correlation with Streptococcus sp000187445 and S. vestibularis. |
Study | Sample | Human/Rats | Study Sample Size | Conclusions |
---|---|---|---|---|
(1) Leitao et al., 2019 [12] | Sputum | Human | One hundred and two patients. | High microbial diversity and the presence of Veillonella was associated with a positive outcome and a shorter hospital LOS, while the presence of Staphylococcus was associated with a longer LOS and increased mortality risk. |
(2) Wang et al., 2019 [19] | Sputum | Human | One hundred and one sputum samples from 16 healthy subjects and 43 COPD patients. | (1) During COPD exacerbations, increased Moraxella and decreased microbial diversity was observed compared to a stable state; (2) The microbiome at a stable state did not predict exacerbation frequency. |
(3) Su et al., 2022 [33] | Sputum | Human | Seventy-six samples from 28 patients with AECOPD, 23 stable COPD, 15 in recovery, and 10 healthy controls. | (1) Low microbial diversity was associated with AECOPD; (2) Decrease in Firmicutes and Bacteroidetes and increase in Proteobacteria and Actinobacteria was found in AECOPD patients; (3) Increased proportions of Rothia, unidentified Corynebacteriaceae, and Stenotrophomonas, and decreased levels of Prevotella, Alloprevotella, Porphyromonas, and unidentified Prevotellaceae were found in AECOPD patients; (4) Positive correlation between Veillonella and lung function and negative association between Haemophilus and Prevotella with a severity of dyspnea; (5) CRP levels were positively associated with Staphylococcus and negatively correlated with Alloprevotella. |
(4) Mayhew et al., 2018 [50] | Sputum | Human | Five hundred and eighty-four samples from 101 COPD patients. | Moraxella was associated with increased risk for exacerbations, and Lactobacillus was negatively correlated with exacerbation frequency. |
(5) Wang et al., 2016 [57] | Sputum | Human | Four hundred and seventy-six samples from 87 COPD patients (stable state, exacerbation, 2 weeks post-therapy, and 6 weeks recovery). | Low microbial diversity, increase in Proteobacteria and Moraxella, and a decrease in Firmicutes were observed during exacerbations. |
(6) Huang et al., 2014 [60] | Sputum | Human | Sixty samples from 12 patients (before, at onset, after an exacerbation). | (1) Members of the Proteobacteria phylum were increased in exacerbations; (2) An increase in taxa species can induce the rise of organisms of the same taxa that altogether contribute to exacerbation pathogenesis. |
(7) Liu et al., 2020 [15] | sputum | Human | Forty-one AECOPD patients and 26 healthy controls. | LOS in hospital during an exacerbation was positively correlated with the presence of Achromobacter, Pseudomonas, Stenotrophomonas, and Ralstonia in sputum samples, whereas the presence of Peptostreptococcus, Fusobacterium, and Porphyromonas was inversely correlated with LOS. |
Study | Sample | Human/Rats | Study Sample Size | Conclusions |
---|---|---|---|---|
(1) Li et al., 2021 [5] | Fecal samples, lung, and intestinal tissues | Rats | 25 | Intervention of integrated Chinese and Western medicine improved lung function, reduced the pathological injury of alveoli and intestines, and alleviated the systematic inflammatory response. |
(2) Jang et al., 2020 [63] | Feces | Mouse | 88 | (1) FMT and HFD and their combination attenuated emphysema development; (2) FMT and HFD altered the gut microbiome composition. |
(3) Lai et al. 2020, [54] | Feces | Rats | Not mentioned | FMT and administration of Parabacteroides goldesteinii (Pg) and Pg-Lps relieved COPD symptoms. |
(4) Wang et al., 2016 [57] | Sputum | Human | Four hundred and seventy-six samples from 87 COPD patients (stable state, exacerbations, 2 weeks post-therapy, and 6 weeks recovery). | (1) Treatment with corticosteroids resulted in decreased microbial diversity, an increase of Proteobacteria over Firmicutes, a decrease of Streptococcus, and an increase of Haemophilus and Moraxella; (2) An opposite trend in both the diversity and microbial composition changes was observed for subjects treated with antibiotics. |
(5) Huang et al., 2014 [60] | Sputum | Human | 60 | Treatment with antibiotics decreased the abundance of Proteobacteria. Treatment with corticosteroids led to an enrichment of Proteobacteria phyla. |
(6) Segal et al., 2017 [67] | BAL | Human | Twenty smokers (current or ex-smokers) with emphysema. | Azithromycin had an anti-inflammatory effect via the induction of bacterial metabolites and reduced microbial diversity. |
(7) Slater et al., 2014 [66] | Saline washings | Human | Five patients with moderate/severe asthma. | Azithromycin increased the abundance of Anaerococcus while lowering the quantity of Haemophilus, Pseudomonas, and Staphylococcus. |
(8) Macowan et al., 2020 [69] | Lung tissue | Rats | fifteen (10 in cigarette smoke and 5 in fresh air). | Azithromycin attenuated emphysematous changes due to smoke exposure. |
(9) Liu et al., 2020 [15] | Sputum | Human | Forty-one AECOPD patients and 26 healthy controls. | (1) Increase in Proteobacteria, the presence of Pseudomonas, Achromobacter, Stenotrophomonas, and Ralstonia, and the poor microbial diversity was associated with the failure of antibiotic therapy; (2) The presence of Prevotella, Peptostreptococcus, Leptotrichia, and Selenomonas was associated with the success of antibiotic treatment; (3) Patients with similar microbiome profiles responded to the same adjusted therapy after treatment failure. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karakasidis, E.; Kotsiou, O.S.; Gourgoulianis, K.I. Lung and Gut Microbiome in COPD. J. Pers. Med. 2023, 13, 804. https://doi.org/10.3390/jpm13050804
Karakasidis E, Kotsiou OS, Gourgoulianis KI. Lung and Gut Microbiome in COPD. Journal of Personalized Medicine. 2023; 13(5):804. https://doi.org/10.3390/jpm13050804
Chicago/Turabian StyleKarakasidis, Efstathios, Ourania S. Kotsiou, and Konstantinos I. Gourgoulianis. 2023. "Lung and Gut Microbiome in COPD" Journal of Personalized Medicine 13, no. 5: 804. https://doi.org/10.3390/jpm13050804
APA StyleKarakasidis, E., Kotsiou, O. S., & Gourgoulianis, K. I. (2023). Lung and Gut Microbiome in COPD. Journal of Personalized Medicine, 13(5), 804. https://doi.org/10.3390/jpm13050804