Extended Complex Temporomandibular Joint Reconstructions Exploiting Virtual Surgical Planning, Navigation Assistance, and Custom-Made Prosthesis: A Comprehensive Protocol and Workflow
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Population/Study Design
2.2. Physical Examination
2.3. Preoperative Exams
2.3.1. Routine Examination
2.3.2. Staging Images
2.3.3. Combined Imaging Study Protocol
- CT: An ultrathin CT was performed, aiming to identify the skeletal structures with the following parameters: slice thickness = 0.625 mm, matrix = 512 × 512 px.
- Magnetic resonance imaging (MRI): A 1.5-Tesla system MRI (Aera; Siemens; Erlangen, Germany) was performed. Multiple sequences were acquired in order to best represent the different anatomical structures:
- ○
- Soft tissues: After contrast medium administration, a 3D-VIBE T1-w sequence was acquired with a slice thickness of 1 mm and a matrix of 512 × 512 px.
- ○
- Vascularization: Being a particularly delicate area considering the vascular and other structures present in the area, these must be identified. Medially to the glenoid fossa, besides the internal maxillary artery, there are the foramen ovalis, through which there is the mandibular nerve V3 (third division of the trigeminal nerve CN V), and the the foramen spinosum, which gives passage to the middle meningeal artery. Posteromedially instead, there are the foramen lacerum; the carotid canal, which contains the internal carotid artery; the jugular hole, which gives passage to the glossopharyngeal nerve (CN IX), vagus nerve (CN X), and accessory nerve (CN XI), and in its posterolateral originating from the sigmoid sinus, gives rise through the hole to the internal jugular vein; the stylomastoid hole, which contains the stylomastoid artery and the facial nerve (CN VII). So, to segment and reconstruct arterial vasculature, a 3D time-of-flight (TOF) MRI with the following parameters was acquired: TR = 25.0 ms; TE = 7.15 ms; slice thickness = 0.5 mm; in-plane resolution: 0.4 × 0.4 mm; slice GAP = −25%; matrix 256 × 256 px. To highlight venous structures, a phase-contrast MR venography sequence was performed.
- Computed Tomography Angiography (CTA): When a free bone flap was planned (e.g., free fibula flap, free iliac crest flap, etc.) in order to perform a mixed autologous/alloplastic eTMJR, the patient underwent a CTA, given the need to know the anatomy of the vascular pedicle.
2.3.4. Intraoral Digital Scanning and Virtual Bite Registration
2.4. Virtual Surgical Planning
2.5. Surgical Guides and eTMJR Prosthesis
2.6. D Printing
2.7. Navigation Assistance Setup
2.8. Surgery
2.9. Follow-Up and Outcome Evaluation
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shen, Y.; Ma, C.; Wang, L.; Li, J.; Wu, Y.; Sun, J. Surgical Management of Giant Cell Tumors in Temporomandibular Joint Region Involving Lateral Skull Base: A Multidisciplinary Approach. J. Oral. Maxillofac. Surg. 2016, 74, 2295–2311. [Google Scholar] [PubMed]
- Levine, J.P.; Patel, A.; Saadeh, P.B.; Hirsch, D.L. Computer-Aided design and manufacturing in craniomaxillofacial surgery: The new state of the art. J. Craniofac. Surg. 2012, 23, 288–293. [Google Scholar] [CrossRef] [PubMed]
- Voss, P.J.; Leow, A.M.; Schulze, D.; Metzger, M.C.; Liebehenschel, N.; Schmelzeisen, R. Navigation-Guided resection with immediate functional reconstruction for high-grade malignant parotid tumour at skull base. Int. J. Oral. Maxillofac. Surg. 2009, 38, 886–890. [Google Scholar] [CrossRef] [PubMed]
- Govoni, F.A.; Felici, N.; Ornelli, M.; Marcelli, V.A.; Migliano, E.; Pesucci, B.A.; Pistilli, R. Total mandible and bilateral TMJ reconstruction combining a customized jaw implant with a free fibular flap: A case report and literature review. Maxillofac. Plast. Reconstr. Surg. 2023, 45, 6. [Google Scholar] [CrossRef] [PubMed]
- Mommaerts, M.Y.; Nicolescu, I.; Dorobantu, M.; De Meurechy, N. Extended Total Temporomandibular Joint Replacement with Occlusal Adjustments: Pitfalls, Patient-reported Outcomes, Subclassification, and a New Paradigm. Ann. Maxillofac. Surg. 2020, 10, 73–79. [Google Scholar] [CrossRef] [PubMed]
- Briceno, W.X.; Milkovich, J.; El-Rabbany, M.; Caminiti, M.F.; Psutka, D.J. Reconstruction of Large Defects Using Extended Temporomandibular Joint Patient-Matched Prostheses. J. Oral. Maxillofac. Surg. 2022, 80, 1018–1032. [Google Scholar] [CrossRef] [PubMed]
- Khattak, Y.R.; Arif, H.; Gull, H.; Ahmad, I. Extended total temporomandibular joint reconstruction prosthesis: A comprehensive analysis. J. Stomatol. Oral. Maxillofac. Surg. 2023, 124, 101404. [Google Scholar] [CrossRef]
- Zheng, J.S.; Liu, X.H.; Chen, X.Z.; Jiang, W.B.; Abdelrehem, A.; Zhang, S.Y.; Chen, M.J.; Yang, C. Customized skull base-temporomandibular joint combined prosthesis with 3D-printing fabrication for craniomaxillofacial reconstruction: A preliminary study. Int. J. Oral. Maxillofac. Surg. 2019, 48, 1440–1447. [Google Scholar] [CrossRef] [PubMed]
- Elledge, R.; Mercuri, L.G.; Speculand, B. Extended total temporomandibular joint replacements: A classification system. Br. J. Oral. Maxillofac. Surg. 2018, 56, 578–581. [Google Scholar] [CrossRef] [PubMed]
- Higginson, J.; Panayides, C.; Speculand, B.; Mercuri, L.G.; Elledge, R.O.C. Modification of an extended total temporomandibular joint replacement (eTMJR) classification system. Br. J. Oral. Maxillofac. Surg. 2022, 60, 983–986. [Google Scholar] [CrossRef] [PubMed]
- Santillan, A.; Hee Sur, M.; Schwarz, J.; Easthausen, I.; Behrman, D.A.; Patsalides, A. Endovascular preoperative embolization for temporomandibular joint replacement surgery. Interv. Neuroradiol. 2020, 26, 99–104. [Google Scholar] [CrossRef] [PubMed]
- Cillo, J.E., Jr.; Sinn, D.; Truelson, J.M. Management of middle meningeal and superficial temporal artery hemorrhage from total temporomandibular joint replacement surgery with a gelatin-based hemostatic agent. J. Craniofac. Surg. 2005, 16, 309–312. [Google Scholar] [CrossRef] [PubMed]
- Jones, R. The use of virtual planning and navigation in the treatment of temporomandibular joint ankylosis. Aust. Dent. J. 2013, 58, 358–367. [Google Scholar] [CrossRef] [PubMed]
- Neuhaus, M.T.; Zeller, A.N.; Bartella, A.K.; Sander, A.K.; Lethaus, B.; Zimmerer, R.M. Accuracy of Guided Surgery and Real-Time Navigation in Temporomandibular Joint Replacement Surgery. Dent. J. 2021, 9, 87. [Google Scholar] [CrossRef] [PubMed]
- Sanovich, R.; Mehta, U.; Abramowicz, S.; Widmer, C.; Dolwick, M.F. Total alloplastic temporomandibular joint reconstruction using Biomet stock prostheses: The University of Florida experience. Int. J. Oral. Maxillofac. Surg. 2014, 43, 1091–1095. [Google Scholar] [CrossRef] [PubMed]
- Mercuri, L.G. Total joint reconstruction—Autologous or alloplastic. Oral. Maxillofac. Surg. Clin. North Am. 2006, 18, 399–410. [Google Scholar] [CrossRef] [PubMed]
- Saeed, N.; Hensher, R.; McLeod, N.; Kent, J. Reconstruction of the temporomandibular joint autogenous compared with alloplastic. Br. J. Oral. Maxillofac. Surg. 2002, 40, 296–299. [Google Scholar] [CrossRef] [PubMed]
- Tarsitano, A.; Battaglia, S.; Corinaldesi, G.; Marchetti, C.; Pellegrino, G.; Ciocca, L. Mandibular reconstruction using a new design for a patient-specific plate to support a fibular free flap and avoid double-barrel technique. Acta Otorhinolaryngol. Ital. 2021, 41, 230–235. [Google Scholar] [CrossRef] [PubMed]
Category | Description |
---|---|
Fossa component: | |
F0 | Standard fossa component (contained within fossa) |
FA | Extended fossa component extending into the site of the zygomatic arch |
FT | Extended fossa component extending to cover a defect in the temporal bone |
Mandible (ramus) component: | |
M0 | Standard condyle-ramus component (proximal to angle of mandible) |
M1 | Extended proximal to ipsilateral mental foramen |
M2 | Extended proximal to contralateral mental foramen |
M3 | Extended beyond contralateral mental foramen |
M4 | Total alloplastic mandible, including both condyles |
Category | Description |
---|---|
Fossa component: | |
F0 | Standard fossa component (contained within fossa) |
F1 | Extending anteriorly to but not beyond the articular eminence |
F2 | Extending beyond the articular eminence anteriorly (zygomatic arch defect) |
F3 | Temporal bone defect not including auditory apparatus +/− arch defect |
F4 | Temporal bone defect involving auditory apparatus +/− arch defect |
F5 | Temporal defect extending to jugular foramen |
Mandible (ramus) component: | |
M0 | Standard condyle-ramus component (proximal to angle of mandible) |
M1 | Extended proximal to ipsilateral mental nerve foramen/region |
M2 | Extended proximal to contralateral mental nerve foramen/region |
M3 | Extensive extending beyond contralateral mental nerve foramen/region |
M4 | Total alloplastic mandible (including both condyles) |
ID | Age | eTMJR Class | Image | Reconstructed Structures | Fossa Materials | Condyle Materials | Screws and Fixation Holes |
---|---|---|---|---|---|---|---|
1 | 71 | FT-M0 | Temporal bone, aygomatic arch, glenoid fossa and condyle | Unalloyed titanium mesh temporal and zygomatic backing capping the UHMWPE fossa | Cobalt-chromiun-molybdenum alloy condylar head and Titanium alloy body | Skull component: 62.0 mm titanium screws. Manibular component: 82.7 mm titanium screws | |
2 | 58 | FA-M0 | Glenoid fossa with medial extension and condyle | Alloyed titanium backing capping the UHMWPE fossa | Cobalt-chromiun-molybdenum alloy condylar head and Titanium alloy body | Skull component: 52.0 mm titanium screws. Manibular component: 82.7 mm titanium screws | |
3 | 41 | FO-M3 * | Glenoid fossa and complete left hemimandible | Alloyed titanium backing capping the UHMWPE fossa | Cobalt-chromiun-molybdenum alloy condylar head and Titanium alloy body consisting of two interloching pieces | Skull component: 52.0 mm titanium screws. Manibular component: 112.7 mm titanium screws | |
4 | 71 | FA-M3 | Left zygomatic arch, glenoid fossa and complete left hemimandible extended to the right hemimandible ramus | Alloyed titanium zygomatic backing capping the UHMWPE fossa | Titantium alloy | Skull component: 82.3 mm titanium screws. Manibular component: 62.7 mm titanium screws | |
5 | 26 | FA-M0 | Temporal bone, zygomatic arch, glenoid fossa and condyle bilatreally | Alloyed titanium zygomatic backing capping the UHMWPE fossa | Cobalt-chromiun-molybdenum alloy condylar head and Titanium alloy body | Skull component: 172.0 mm titanium screws. Manibular component: 192.7 mm titanium screws | |
6 | 54 | F0-M2 | Glenoid fossa and complete right hemimandible | Alloyed titanium backing capping the UHMWPE fossa | Cobalt-chromiun-molybdenum alloy condylar head and Titanium alloy mesh body | Skull component: 52.3 mm titanium screws. Manibular component: 92.7 mm titanium screws | |
7 | 63 | F0-M3 | Glenoid fossa and complete left hemimandible | Alloyed titanium backing capping the UHMWPE fossa | Cobalt-chromiun-molybdenum alloy | Skull component: 52.3 mm titanium screws. Manibular component: 82.7 mm titanium screws | |
8 | 24 | F0-M3 * | Glenoid fossa and complete right hemimandible extended to the left hemimandible ramus | Cobalt-chromium-molybdenum alloy backing capping the UHMWPE fossa | Cobalt-chromiun-molybdenum alloy | Skull component: 52.3 mm titanium screws. Manibular component: 112.7 mm titanium screws | |
9 | 52 | FT-M0 | Temporal bone, zygomatic arch, glenoid fossa extended medially and condyle | Cobalt-chromium-molybdenum alloy backing capping the UHMWPE fossa | Cobalt-chromiun-molybdenum alloy | Skull component: 82.3 mm titanium screws. Manibular component: 82.7 mm titanium screws |
ID | Age | Gender | Diagnosis | Complications | eTMJR Class | MIO before Surgery | MIO after Surgery | VAS Preoperatory | VAS at 6 Months | Follow-Up |
---|---|---|---|---|---|---|---|---|---|---|
1 | 71 | Female | Ossifying fibroma o right temporal bone | None | FT-M0 | 29 mm | 35 mm | 2 | 0 | 5 years |
2 | 58 | Male | Left condylar osteoma | Partial left facial palsy | FA-M0 | 20 mm | 32 mm | 7 | 2 | 5 years |
3 | 41 | Male | Sarcomatoid carcinoma of lef hemimandible | None | F0-M3 * | 35 mm | 35 mm | 4 | 3 | 1 year |
4 | 71 | Male | High grade Mucoepidermoid carcinoma of the oral pelvis | Periprocedural pulmonary infection, Partial left facial palsy | FA-M3 | 27 mm | 30 mm | 7 | 5 | 4 years |
5 | 26 | Male | Bilateral severe TMJ ankylosis | None | FA-M0 | 8 mm | 24 mm | 8 | 1 | 4 years |
6 | 54 | Female | Left mandibular angle odontogenic keratocyst | None | F0-M2 | 36 mm | 38 mm | 5 | 3 | 3 years |
7 | 63 | Female | Infiltrating squamous cell carcinoma of the left cheek mucosa | Loss of the implant | F0-M3 | 23 mm | 34 mm | 5 | 2 | 2 years |
8 | 24 | Male | Right hemifacial fibrous dysplasia | None | F0-M3 * | 24 mm | 31 mm | 3 | 0 | 1 year |
9 | 52 | Female | Left articular eminence osteoblastoma | None | FT-M0 | 10 mm | 33 mm | 7 | 1 | 8 months |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Raccampo, L.; Sembronio, S.; Tel, A.; Robiony, M. Extended Complex Temporomandibular Joint Reconstructions Exploiting Virtual Surgical Planning, Navigation Assistance, and Custom-Made Prosthesis: A Comprehensive Protocol and Workflow. J. Pers. Med. 2023, 13, 931. https://doi.org/10.3390/jpm13060931
Raccampo L, Sembronio S, Tel A, Robiony M. Extended Complex Temporomandibular Joint Reconstructions Exploiting Virtual Surgical Planning, Navigation Assistance, and Custom-Made Prosthesis: A Comprehensive Protocol and Workflow. Journal of Personalized Medicine. 2023; 13(6):931. https://doi.org/10.3390/jpm13060931
Chicago/Turabian StyleRaccampo, Luca, Salvatore Sembronio, Alessandro Tel, and Massimo Robiony. 2023. "Extended Complex Temporomandibular Joint Reconstructions Exploiting Virtual Surgical Planning, Navigation Assistance, and Custom-Made Prosthesis: A Comprehensive Protocol and Workflow" Journal of Personalized Medicine 13, no. 6: 931. https://doi.org/10.3390/jpm13060931
APA StyleRaccampo, L., Sembronio, S., Tel, A., & Robiony, M. (2023). Extended Complex Temporomandibular Joint Reconstructions Exploiting Virtual Surgical Planning, Navigation Assistance, and Custom-Made Prosthesis: A Comprehensive Protocol and Workflow. Journal of Personalized Medicine, 13(6), 931. https://doi.org/10.3390/jpm13060931